JP2624424B2 - Bipolar membrane - Google Patents

Bipolar membrane

Info

Publication number
JP2624424B2
JP2624424B2 JP4157087A JP15708792A JP2624424B2 JP 2624424 B2 JP2624424 B2 JP 2624424B2 JP 4157087 A JP4157087 A JP 4157087A JP 15708792 A JP15708792 A JP 15708792A JP 2624424 B2 JP2624424 B2 JP 2624424B2
Authority
JP
Japan
Prior art keywords
membrane
cation exchange
exchange membrane
bipolar membrane
water electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4157087A
Other languages
Japanese (ja)
Other versions
JPH061865A (en
Inventor
浩喜 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP4157087A priority Critical patent/JP2624424B2/en
Publication of JPH061865A publication Critical patent/JPH061865A/en
Application granted granted Critical
Publication of JP2624424B2 publication Critical patent/JP2624424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水電解電圧が低く、耐
薬品性および耐久性に優れたバイポーラ膜に関し、特に
中性塩を分解し、アルカリと酸を効率よく得ることがで
きる水分解電気透析法において有用なバイポーラ膜に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bipolar membrane having a low water electrolysis voltage, excellent chemical resistance and durability, and more particularly to a water splitting method capable of decomposing a neutral salt and efficiently obtaining an alkali and an acid. The present invention relates to a bipolar membrane useful in electrodialysis.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】バイポ
ーラ膜は、陽イオン交換膜と陰イオン交換膜が貼り合わ
さった構造をしており、その製造方法も種々提案されて
いる。例えば陽イオン交換膜と陰イオン交換膜を、ポリ
エチレンイミン−エピクロルヒドリンの混合物で張り合
わせ硬化接着する方法(特公昭32−3962号)、陽
イオン交換膜と陰イオン交換膜を、イオン交換性接着剤
で接着する方法(特公昭34−3961号)、陽イオン
交換膜と陰イオン交換膜に、微粉の陰または陽イオン交
換樹脂と熱可塑性物質とのペースト状混合物を塗布し圧
着させる方法(特公昭35−14531号)、陽イオン
交換膜の表面にビニルピリジンとエポキシ化合物からな
る糊状物質を塗布し、これに放射線照射することによっ
て製造する方法(特公昭38−16633号)、陰イオ
ン交換膜の表面にスルホン酸型高分子電解質とアリルア
ミン類を付着させた後、電離性放射線を照射し架橋させ
る方法(特公昭51−4113号)、イオン交換膜の表
面に反対荷電を有するイオン交換樹脂の分散系と母体重
合体との混合物を沈着させる方法(特開昭53−371
90号)、ポリエチレンフィルムにスチレン、ジビニル
ベンゼンを含浸重合したシート状物をステンレス製の枠
にはさみつけ、一方の側をスルホン化させた後、シート
を取り外して残りの部分にクロロメチル化、次いでアミ
ノ化処理する方法(米国特許3562139号)等が挙
げられる。しかしながら、これらの方法によって得られ
るバイポーラ膜においては、一般に水を分解しようとす
るとき、水の理論電解電圧(0.83ボルト)よりはる
かに高い電圧がかかってしまい、高電力消費を要すると
いう問題がある。
2. Description of the Related Art A bipolar membrane has a structure in which a cation exchange membrane and an anion exchange membrane are bonded to each other, and various production methods have been proposed. For example, a method of laminating and bonding a cation exchange membrane and an anion exchange membrane with a mixture of polyethyleneimine-epichlorohydrin (Japanese Patent Publication No. 32-3962), a method in which a cation exchange membrane and an anion exchange membrane are bonded with an ion exchange adhesive Adhesion method (Japanese Patent Publication No. 34-3961), a method of applying a paste-like mixture of a fine powder of an anion or cation exchange resin and a thermoplastic substance to a cation exchange membrane and an anion exchange membrane and compressing the mixture (Japanese Patent Publication No. 35-19635) 14531), a method of applying a paste-like substance composed of vinyl pyridine and an epoxy compound to the surface of a cation exchange membrane and irradiating the applied substance (Japanese Patent Publication No. 38-16633). A method in which a sulfonic acid type polymer electrolyte and an allylamine are attached to the surface and then cross-linked by irradiating with ionizing radiation (Japanese Patent Publication No. 51-4) No. 13), a method of depositing a mixture of the dispersion and maternal polymer ion exchange resin having an opposite charge to the surface of the ion exchange membrane (JP 53-371
No. 90), a sheet material obtained by impregnating and polymerizing a polyethylene film with styrene and divinylbenzene was sandwiched in a stainless steel frame, one side was sulfonated, the sheet was removed, and the remaining portion was chloromethylated. Amination treatment (US Pat. No. 3,562,139) and the like. However, in the bipolar membrane obtained by these methods, when water is generally decomposed, a voltage much higher than the theoretical electrolysis voltage of water (0.83 volts) is applied, and high power consumption is required. There is.

【0003】また、エレクトロケミカ アクタ(Ele
ctrochemica Acta)Vol.31,N
o9,PP1175〜1176(1986)には、タン
グステン酸ナトリウム、硝酸クロム、メタケイ酸ナトリ
ウム、三塩化ルテニウムなど一種またはそれ以上の無機
電解質溶液により予め表面処理した陽イオン交換膜と陰
イオン交換膜を重ね合わせプレスして、水電解電圧の低
いバイポーラ膜を得る製法が報告されている。しかしな
がら、この製法による水電解電圧の低いバイポーラ膜
は、使用に際して比較的早く水電解電圧が上昇してしま
ったり、さらにはバイポーラ膜自体が容易に陽イオン交
換膜と陽イオン交換膜に剥離してしまうなど耐久性に問
題がある。
In addition, an electro-chemical actor (Ele)
trochemica Acta) Vol. 31, N
o9, PP1175 to 1176 (1986), a cation exchange membrane and an anion exchange membrane previously surface-treated with one or more inorganic electrolyte solutions such as sodium tungstate, chromium nitrate, sodium metasilicate, and ruthenium trichloride. A method for producing a bipolar membrane having a low water electrolysis voltage by press-fitting has been reported. However, in the bipolar membrane having a low water electrolysis voltage by this manufacturing method, the water electrolysis voltage rises relatively quickly at the time of use, and furthermore, the bipolar membrane itself is easily separated into a cation exchange membrane and a cation exchange membrane. There is a problem in durability, such as being lost.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記した
ような従来技術の問題点を解決して、水電解電圧の上昇
が小さく、かつ電流効率が高く、長時間の通電に対して
優れた耐久性を有するバイポーラ膜の開発につとめた。
その結果、陰イオン交換層の母体として主鎖に不飽和結
合を有しないスチレン系ブロック共重合体を用いること
により、所望の目的が達成されるバイポーラ膜を得て、
既に提案した(特願平4−121742号)。本発明の
目的は、上記の新規なバイポーラ膜に基づき、さらに耐
薬品性、長時間使用の耐久性に優れたバイポーラ膜を提
供することにある。
Means for Solving the Problems The present inventors have solved the above-mentioned problems of the prior art, and have found that the rise in water electrolysis voltage is small, the current efficiency is high, and We worked on the development of a bipolar membrane with excellent durability.
As a result, by using a styrene-based block copolymer having no unsaturated bond in the main chain as a base of the anion exchange layer, a bipolar membrane that achieves a desired purpose is obtained,
It has already been proposed (Japanese Patent Application No. 4-121742). An object of the present invention is to provide a bipolar membrane based on the above-mentioned novel bipolar membrane, which is further excellent in chemical resistance and durability for long-time use.

【0005】即ち、本発明によれば、陽イオン交換膜
と、主鎖に不飽和結合を有しないスチレン系ブロック共
重合体を母体とした多価アミンによる架橋構造を有する
陰イオン交換体とよりなることを特徴とするバイポーラ
膜が提供される。
That is, according to the present invention, a cation exchange membrane and an anion exchanger having a crosslinked structure of a polyvalent amine based on a styrene-based block copolymer having no unsaturated bond in the main chain are used. A bipolar membrane is provided.

【0006】本発明における陽イオン交換膜は特に限定
されず、公知の陽イオン交換膜である。例えばスルホン
酸基、カルボン酸基などのイオン交換基を有する陽イオ
ン交換膜が使用できるが、バイポーラ膜の用途上から酸
性下においてもイオン交換基が解離しているスルホン酸
基を有する陽イオン交換膜が望ましい。また陽イオン交
換膜は、重合型、均一型、不均一型、あるいは補強材の
有無や製造方法に由来する陽イオン交換膜の種類、形式
などいかなるものであってもよい。なお、陽イオン交換
膜の中に陰イオン交換基を若干有するような陽イオン交
換膜であっても、陽イオンの輸率が90%以上であれ
ば、本発明の陽イオン交換膜として十分である。
[0006] The cation exchange membrane in the present invention is not particularly limited, and is a known cation exchange membrane. For example, a cation exchange membrane having an ion exchange group such as a sulfonic acid group and a carboxylic acid group can be used, but a cation exchange membrane having a sulfonic acid group in which the ion exchange group is dissociated even under acidic conditions from the use of a bipolar membrane. A membrane is preferred. The cation exchange membrane may be of any type, such as a polymerization type, a uniform type, a non-uniform type, or a type and a type of a cation exchange membrane derived from the presence or absence of a reinforcing material and a production method. In addition, even if the cation exchange membrane has some anion exchange groups in the cation exchange membrane, the cation exchange membrane of the present invention is sufficient if the cation transport number is 90% or more. is there.

【0007】本発明に用いる陽イオン交換膜は、水電解
電圧の上昇をさらに小さくするために、その少なくとも
表面に存在するイオン交換基の対イオンを重金属イオン
にイオン交換して重金属イオン型にすることもできる。
このような本発明にいう重金属イオンとしては、原子番
号が20〜90のハロゲン、不活性気体元素を除くイオ
ンであり、一般に鉄(II,III)、チタン(IV)、スズ
(II,IV)、ジルコニウム(IV)、パラジウム(II)、
ルテニウム(III)などが望ましい。重金属イオン型の
陽イオン交換膜を得る方法は、公知のイオン交換法が採
用でき、一般に陽イオン交換膜を重金属塩の溶液に浸漬
する方法、陽イオン交換膜に重金属塩の溶液を塗布また
は噴霧する方法などによって達成される。このような重
金属イオン型陽イオン交換膜における重金属イオンは、
該膜の厚み方向に均一に分布している必要はなく、少な
くとも陰イオン交換体被膜を形成させる側に存在してい
ればよく、その割合は全イオン交換容量の0.001〜
100%、特に0.01〜50%が好ましい。
The cation exchange membrane used in the present invention is of a heavy metal ion type in which at least the counter ion of the ion exchange group present on the surface is ion-exchanged to a heavy metal ion in order to further reduce the increase in water electrolysis voltage. You can also.
The heavy metal ion referred to in the present invention is an ion excluding halogen and an inert gas element having an atomic number of 20 to 90, and is generally iron (II, III), titanium (IV), tin (II, IV). , Zirconium (IV), palladium (II),
Ruthenium (III) is desirable. As a method for obtaining a heavy metal ion-type cation exchange membrane, a known ion exchange method can be adopted.In general, a method in which the cation exchange membrane is immersed in a solution of a heavy metal salt, or a solution of the heavy metal salt is applied to or sprayed on the cation exchange membrane. It is achieved by such methods. Heavy metal ions in such a heavy metal ion type cation exchange membrane,
It is not necessary that the film is uniformly distributed in the thickness direction of the membrane, and it is sufficient that the film is present at least on the side on which the anion exchanger film is formed.
100%, particularly preferably 0.01 to 50%.

【0008】本発明において、陰イオン交換体の母体と
なる主鎖に不飽和結合を有しないスチレン系ブロック共
重合体は、詳しくはポリスチレンのセグメント(ブロッ
ク)とポリオレフィンのセグメント(ブロック)よりな
る共重合体であり、具体的にはポリスチレンと例えばポ
リエチレン、ポリ(エチレン−プロピレン)、ポリ(エ
チレン−ブチレン)などのほか、ポリブタジエン、ポリ
イソプレンなどの水素添加ポリマーとのブロック共重合
体であるスチレン系の飽和型熱可塑性エラストマーであ
る。さらにポリオレフィンのセグメントを式により示す
と、
In the present invention, the styrenic block copolymer having no unsaturated bond in the main chain serving as a base of the anion exchanger is specifically a copolymer comprising a polystyrene segment (block) and a polyolefin segment (block). Styrene, which is a block copolymer of a polystyrene and a hydrogenated polymer such as polybutadiene and polyisoprene in addition to polystyrene and, for example, polyethylene, poly (ethylene-propylene), poly (ethylene-butylene), etc. Is a saturated thermoplastic elastomer. Furthermore, when the segment of the polyolefin is shown by the formula,

【0009】[0009]

【化1】 Embedded image

【0010】などである。And so on.

【0011】このようなスチレン系ブロック共重合体に
おけるポリスチレンの含有量は、一般に10〜85重量
%、特に30〜70重量%が好ましい。即ち、ポリスチ
レンの含有量が10重量%より少ない共重合体では、得
られる陰イオン交換体被膜の電気抵抗が高くなり、水電
解電圧が上昇するため好ましくない。またポリスチレン
の含有量が85重量%より多い共重合体では、得られる
陰イオン交換体被膜が脆く、機械的強度が低下するため
好ましくない。
The content of polystyrene in such a styrenic block copolymer is generally 10 to 85% by weight, preferably 30 to 70% by weight. In other words, a copolymer having a polystyrene content of less than 10% by weight is not preferred because the electrical resistance of the resulting anion exchanger coating increases and the water electrolysis voltage increases. On the other hand, a copolymer having a polystyrene content of more than 85% by weight is not preferable because the resulting anion exchanger film is brittle and the mechanical strength is reduced.

【0012】本発明におけるバイポーラ膜は、一般に上
記したスチレン系ブロック共重合体を母体として、従来
公知の陰イオン交換基を導入する方法により得られたポ
リマーの溶液を用いて陽イオン交換膜上に陰イオン交換
体の被膜を形成することにより得られる。即ち、一般に
所定のスチレン系ブロック共重合体をハロメチル化し、
次いで該共重合体を適当な溶剤に溶解し、陽イオン交換
膜上に流延し被膜を形成させた後、多価アミンと反応さ
せて架橋構造を有する陰イオン交換体の被膜を形成させ
る方法;溶媒に溶解したハロメチル化共重合体に多価ア
ミンを加えアミノ化し、陽イオン交換膜上に流延し架橋
構造を有する陰イオン交換体の被膜を形成させる方法;
ハロメチル化共重合体を多価アミンをでアミノ化してア
ミノ化共重合体とした後、溶剤に溶解し陽イオン交換膜
上に流延し架橋構造を有する陰イオン交換体の被膜を形
成させる方法などが採用される。
In general, the bipolar membrane of the present invention is formed on a cation exchange membrane by using a solution of a polymer obtained by introducing a conventionally known anion exchange group, using the above-mentioned styrene block copolymer as a base. It is obtained by forming a coating of an anion exchanger. That is, in general, a predetermined styrene-based block copolymer is halomethylated,
Then, the copolymer is dissolved in a suitable solvent, cast on a cation exchange membrane to form a coating, and then reacted with a polyvalent amine to form a coating of an anion exchanger having a crosslinked structure. A method in which a polyvalent amine is added to a halomethylated copolymer dissolved in a solvent to amination and cast on a cation exchange membrane to form a coating of an anion exchanger having a crosslinked structure;
A method in which a halomethylated copolymer is aminated with a polyvalent amine to form an aminated copolymer, which is then dissolved in a solvent and cast on a cation exchange membrane to form a film of an anion exchanger having a crosslinked structure. Is adopted.

【0013】上記のハロメチル化方法としては、特に制
限されず公知の方法が用いられる。例えば、スチレン系
ブロック共重合体をハロメチル化剤に安定な溶剤に溶解
し、ハロメチル化剤と反応させることができる。溶剤と
してはクロロホルム,ジクロロエタンなどのハロゲン化
炭化水素が用いられる。ハロメチル化剤としては、クロ
ロメチルメチルエーテルや塩酸−パラホルムアルデヒド
などが使用できる。触媒としては塩化スズや塩化亜鉛な
どが使用できる。
The above-mentioned halomethylation method is not particularly limited, and a known method can be used. For example, the styrenic block copolymer can be dissolved in a solvent stable in the halomethylating agent and reacted with the halomethylating agent. Halogenated hydrocarbons such as chloroform and dichloroethane are used as the solvent. As the halomethylating agent, chloromethyl methyl ether or hydrochloric acid-paraformaldehyde can be used. Tin chloride or zinc chloride can be used as the catalyst.

【0014】ハロメチル化共重合体またはアミノ化共重
合体を溶解するために使用される溶剤としては、例えば
テトラヒドロフラン、クロロホルム、ジクロロエタン、
ジメチルホルムアミドなどの単独系、またはクロロホル
ム−メタノール、ジクロロエタン−メタノールなどの混
合系のものが適宜、選択して用いられる。ハロメチル化
共重合体またはアミノ化共重合体の溶液は、濃度として
一般に0.1〜35重量%に調製される。
The solvent used for dissolving the halomethylated copolymer or aminated copolymer includes, for example, tetrahydrofuran, chloroform, dichloroethane,
A single system such as dimethylformamide or a mixed system such as chloroform-methanol and dichloroethane-methanol is appropriately selected and used. Solutions of halomethylated or aminated copolymers are generally prepared at a concentration of 0.1 to 35% by weight.

【0015】また、多価アミンとしては、1分子中に2
個以上の1〜3級アミノ基を有するものであれば特に制
限されず、例えばエチレンジアミン,トリメチレンジア
ミン、N,N,N’,N’−テトラメチル−1,3−プ
ロパンジアミン、N,N,N’,N’−テトラメチル−
1,6−ヘキサンジアミンなどのジアミン類、イミノビ
スプロピルアミン、ジエチレントリアミンなどのトリア
ミン類、ポリエチレンイミン、ポリビニルピリジンなど
のポリアミン類などが用いられる。なかでも、1分子中
に2個の3級アミノ基を有するジアミン類は、ハロメチ
ル基との反応性が高く容易に入手できることから、特に
好適に使用される。
As the polyvalent amine, 2 per molecule is used.
There is no particular limitation as long as it has at least one or more primary to tertiary amino groups, for example, ethylenediamine, trimethylenediamine, N, N, N ′, N′-tetramethyl-1,3-propanediamine, N, N , N ', N'-tetramethyl-
Diamines such as 1,6-hexanediamine, triamines such as iminobispropylamine and diethylenetriamine, and polyamines such as polyethyleneimine and polyvinylpyridine are used. Among them, diamines having two tertiary amino groups in one molecule are particularly preferably used because they have high reactivity with halomethyl groups and can be easily obtained.

【0016】さらに、ハロメチル化共重合体またはアミ
ノ化共重合体の溶液は、流延した後、自然乾燥または加
熱によって溶剤を蒸発させて、所望の陰イオン交換体被
膜を得る。
Further, after the solution of the halomethylated copolymer or the aminated copolymer is cast, the solvent is evaporated by natural drying or heating to obtain a desired anion exchanger film.

【0017】このようにして得られる本発明の陰イオン
交換体被膜におけるイオン交換容量は、特に制限されな
いが、一般に0.2〜4.0ミリ当量/g(乾燥樹
脂)、好ましくは0.5〜2.5ミリ当量/g(乾燥樹
脂)である。即ち、陰イオン交換体被膜におけるイオン
交換容量が4.0ミリ当量/g(乾燥樹脂)より大きい
と水電解電圧における電流効率が低くなり好ましくな
い。また、陰イオン交換体被膜におけるイオン交換容量
が0.2ミリ当量/g(乾燥樹脂)より小さいと、電気
抵抗が高くなり、水電解電圧が上昇するため好ましくな
い。
The ion exchange capacity of the thus obtained anion exchanger film of the present invention is not particularly limited, but is generally from 0.2 to 4.0 meq / g (dry resin), preferably from 0.5 to 4.0 meq / g (dry resin). ~ 2.5 meq / g (dry resin). That is, if the ion exchange capacity of the anion exchanger film is greater than 4.0 meq / g (dry resin), the current efficiency at the water electrolysis voltage is undesirably low. On the other hand, if the ion exchange capacity of the anion exchanger film is smaller than 0.2 meq / g (dry resin), the electric resistance increases and the water electrolysis voltage increases, which is not preferable.

【0018】なお、本発明において、陽イオン交換膜の
表面はハロメチル化共重合体またはアミノ化共重合体の
溶液を流延するにあたり、十分に乾燥すること、またサ
ンドペーパーなどで粗面化することにより、よく密着し
た陰イオン交換体被膜が形成され、耐久性に優れたバイ
ポーラ膜を得ることができる。粗面化の方法としては、
一般にサンドペーパーなどを用いて陽イオン交換膜の表
面を処理して、微細な凸凹をつける方法、または長尺の
陽イオン交換膜を製造し、巻き取りの際にガイドロール
に凸凹を設け、接触により該膜の表面に凸凹をつける方
法が採用される。
In the present invention, the surface of the cation exchange membrane is sufficiently dried when casting the solution of the halomethylated copolymer or the aminated copolymer, and is roughened with sandpaper or the like. As a result, a well adhered anion exchanger film is formed, and a bipolar membrane having excellent durability can be obtained. As a method of surface roughening,
In general, the surface of the cation exchange membrane is treated with sandpaper to provide fine irregularities, or a long cation exchange membrane is manufactured, and the rolls are provided with irregularities on the guide roll during winding. A method of making the surface of the film uneven.

【0019】[0019]

【発明の効果】本発明によれば、水電解電圧が低く、且
つ耐薬品性,長時間使用の耐久性に優れたバイポーラ膜
を容易に得ることができる。したがって、このような本
発明のバイポーラ膜を用いた水の電気分解においては、
電力原単位を大幅に低減できる効果がある。特に最近、
酸とアルカリの中和生成物である塩は排水規制の強化か
ら外洋投棄が難しいため、本発明のバイポーラ膜は、こ
のような塩の水溶液から酸とアルカリを再生する方法に
おいて極めて有用である。
According to the present invention, a bipolar membrane having a low water electrolysis voltage, excellent chemical resistance, and excellent long-term durability can be easily obtained. Therefore, in such water electrolysis using the bipolar membrane of the present invention,
This has the effect of significantly reducing power consumption. Especially recently,
Since the salt, which is a neutralized product of an acid and an alkali, is difficult to dump in the open sea due to stricter drainage regulations, the bipolar membrane of the present invention is extremely useful in a method for regenerating an acid and an alkali from an aqueous solution of such a salt.

【0020】[0020]

【実施例】以下、本発明を更に具体的に説明するため実
施例を示すが、本発明はこれらの実施例に制限されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0021】なお、実施例および比較例におけるバイポ
ーラ膜の特性は、次のような測定により求めた。即ち、
有効通電面積10cm2 のバイポーラ膜で隔てられた二
室型のアクリル製セルの両室に白金電極を設け、陽極室
側に1.00N−水酸化ナトリウム水溶液100ml
を、また、陰極室側に1.00N−塩酸水溶液100m
lをそれぞれ供して、1Aの直流電流を5〜10時間通
電後、両室の酸,塩基および塩の量を測定することによ
りバイポーラ膜の水電解効率として水酸イオンの発生効
率(ηOH)と水素イオンの発生効率(ηH)を求め
た。さらに、バイポーラ膜の両側のごく近傍に白金線電
極を設け、バイポーラ膜の水電解電圧を測定した。
The characteristics of the bipolar films in Examples and Comparative Examples were obtained by the following measurements. That is,
Platinum electrodes were provided in both chambers of a two-room acrylic cell separated by a bipolar membrane having an effective energization area of 10 cm 2 , and 100 ml of a 1.00 N aqueous sodium hydroxide solution was provided on the anode chamber side.
And a 100 m aqueous 1.00 N hydrochloric acid solution on the cathode chamber side.
After applying a DC current of 1 A for 5 to 10 hours, the amounts of acid, base and salt in both chambers are measured to determine the water electrolysis efficiency of the bipolar membrane and the generation efficiency of hydroxyl ions (ηOH). The hydrogen ion generation efficiency (ηH) was determined. Further, platinum wire electrodes were provided very close to both sides of the bipolar membrane, and the water electrolysis voltage of the bipolar membrane was measured.

【0022】また、長時間の通電においては、上記の二
室型のアクリル製セルを用いて、陽極室側に4.00N
−水酸化ナトリウム水溶液を、また、陰極室側に4.0
0N−塩酸水溶液をそれぞれ供して、40℃の恒温水槽
中で1Aの直流電流を通電した。
In the case of long-time energization, 4.00 N is applied to the anode chamber side using the above-described two-chamber type acrylic cell.
An aqueous sodium hydroxide solution and 4.0
Each of the 0N-hydrochloric acid aqueous solutions was supplied, and a DC current of 1 A was applied in a constant temperature water bath at 40 ° C.

【0023】実施例1 スルホン酸基をイオン交換基として持つ陽イオン交換膜
(商品名:ネオセプタCM−1、徳山曹達社製)を予め
サンドペーパーで処理して一方の表面を粗面化し、室温
で風乾した。
Example 1 A cation exchange membrane having a sulfonic acid group as an ion exchange group (trade name: Neosepta CM-1, manufactured by Tokuyama Soda Co., Ltd.) was previously treated with sandpaper to roughen one surface, And air-dried.

【0024】また、ポリスチレンのセグメント(65重
量%)とポリイソプレンの水素添加されたセグメント
(35重量%)から成る主鎖に不飽和結合を有しない共
重合体100gをクロロホルム1000gに溶解し、1
00gのクロロメチルメチルエーテルと10gの塩化ス
ズを加え、40℃で15時間反応させ、メタノール中で
沈澱,洗浄した後、乾燥させ、クロロメチル化した共重
合体を得た。
Also, 100 g of a copolymer having no unsaturated bond in the main chain composed of a polystyrene segment (65% by weight) and a hydrogenated segment of polyisoprene (35% by weight) was dissolved in 1000 g of chloroform.
00 g of chloromethyl methyl ether and 10 g of tin chloride were added, reacted at 40 ° C. for 15 hours, precipitated in methanol, washed, and dried to obtain a chloromethylated copolymer.

【0025】つぎに、クロロメチル化共重合体をクロロ
ホルム/メタノール(容量比5:1)の混合溶剤に溶か
して18重量%のクロロメチル化共重合体溶液とした
後、上記の陽イオン交換膜の粗面化した表面に塗布、乾
燥し厚みが25μmのクロロメチル化共重合体被膜を形
成させた。
Next, the chloromethylated copolymer was dissolved in a mixed solvent of chloroform / methanol (volume ratio: 5: 1) to obtain an 18% by weight chloromethylated copolymer solution. And dried to form a chloromethylated copolymer film having a thickness of 25 μm.

【0026】さらに、このクロロメチル化共重合体の被
膜を有する陽イオン交換膜をN,N,N’,N’−テト
ラメチル−1,3−プロパンジアミンのメタノール溶液
(10重量%)に30℃で50時間浸漬し、水洗した
後、バイポーラ膜を得た。
Further, the cation exchange membrane having the chloromethylated copolymer coating was added to a methanol solution of N, N, N ', N'-tetramethyl-1,3-propanediamine (10% by weight). After immersion at 50 ° C. for 50 hours and washing with water, a bipolar membrane was obtained.

【0027】得られたバイポーラ膜についてその特性を
測定したところ、水電解効率はηOH=98.5%,η
H=98.5%で水電解電圧は1.9ボルトであった。
このバイポーラ膜の特性は4ヶ月間の通電を経ても変わ
らず、またバイポーラ膜中に気泡および水泡の発生も認
められなかった。
When the characteristics of the obtained bipolar membrane were measured, the water electrolysis efficiency was ηOH = 98.5%, ηOH
At H = 98.5%, the water electrolysis voltage was 1.9 volts.
The characteristics of this bipolar film did not change even after 4 months of energization, and no bubbles or water bubbles were observed in the bipolar film.

【0028】比較例1 実施例1と同じ陽イオン交換膜を予めサンドペーパーで
処理して一方の表面を粗面化した。次いで陰イオン交換
膜(商品名:ネオセプタAM−1、徳山曹達社製)を上
記陽イオン交換膜の粗面化した側に重ねバイポーラ膜を
作製した。
Comparative Example 1 The same cation exchange membrane as in Example 1 was previously treated with sandpaper to roughen one surface. Next, an anion exchange membrane (trade name: Neosepta AM-1, manufactured by Tokuyama Soda Co., Ltd.) was placed on the roughened side of the cation exchange membrane to produce a bipolar membrane.

【0029】得られたバイポーラ膜についてその特性を
測定したところ、水電解電圧は最初3.5ボルトであっ
たものが24時間通電後には5.8ボルトに上昇し、水
電解効率はηOH=98.0%,ηH=98.1%であ
った。また、このバイポーラ膜は6時間経過後には膜中
に気泡が発生しており、50時間経過後には発生した気
泡が大きくなり、実質的に水電解が行えない状態となっ
た。
When the characteristics of the obtained bipolar membrane were measured, the water electrolysis voltage was initially 3.5 volts, but increased to 5.8 volts after 24 hours of energization, and the water electrolysis efficiency was ηOH = 98. 0.0% and ηH = 98.1%. Further, in the bipolar film, bubbles were generated in the film after 6 hours, and the generated bubbles became large after 50 hours, so that water electrolysis could not be performed substantially.

【0030】実施例2 実施例1と同じ陽イオン交換膜(商品名:ネオセプタC
M−1、徳山曹達社製)を予めサンドペーパーで処理し
て一方の表面を粗面化し、2重量%の塩化第一スズ水溶
液に25℃で1時間浸漬した後、イオン交換水で充分に
洗浄し、室温で風乾した。
Example 2 The same cation exchange membrane as in Example 1 (trade name: Neosepta C)
M-1; manufactured by Tokuyama Soda Co., Ltd.) was previously treated with sandpaper to roughen one surface, immersed in a 2% by weight aqueous solution of stannous chloride at 25 ° C. for 1 hour, and then sufficiently washed with ion-exchanged water. Washed and air dried at room temperature.

【0031】次いで、実施例1で得られたクロロメチル
化共重合体をクロロホルム/メタノール(容量比5:
1)の混合溶剤に溶かして18重量%のクロロメチル化
共重合体溶液とした後、上記のスズイオン型陽イオン交
換膜の粗面化した表面に塗布、乾燥し厚みが20μmの
クロロメチル化共重合体の被膜を形成させた。
Next, the chloromethylated copolymer obtained in Example 1 was mixed with chloroform / methanol (volume ratio: 5:
After dissolving in the mixed solvent of 1) to obtain a chloromethylated copolymer solution of 18% by weight, the solution is applied to the roughened surface of the tin ion type cation exchange membrane, dried and dried to obtain a chloromethylated copolymer having a thickness of 20 μm. A polymer coating was formed.

【0032】さらに、このクロロメチル化共重合体被膜
を有するスズイオン型陽イオン交換膜をN,N,N’,
N’−テトラメチル−1,3−プロパンジアミンのメタ
ノール溶液(10重量%)に30℃で70時間浸漬し、
充分に水洗した後、バイポーラ膜を得た。
Further, the tin ion type cation exchange membrane having the chloromethylated copolymer coating was used for N, N, N ',
Immersed in a methanol solution of N'-tetramethyl-1,3-propanediamine (10% by weight) at 30 ° C. for 70 hours,
After sufficiently washing with water, a bipolar membrane was obtained.

【0033】このようにして得られたバイポーラ膜の特
性を測定したところ、水電解効率はηOH=99.4
%,ηH=99.3%で水電解電圧は1.3ボルトであ
った。さらに、このバイポーラ膜をクロロホルム/メタ
ノール(容量比3:1)の混合溶液に3時間浸漬し、充
分に水洗した後、バイポーラ膜の特性を測定したとこ
ろ、水電解効率はηOH=99.1%,ηH=99.1
%で水電解電圧は1.3ボルトであった。このバイポー
ラ膜の特性は4ヶ月間の通電を経ても変わらず、またバ
イポーラ膜中に気泡および水泡の発生も認められなかっ
た。
When the characteristics of the bipolar membrane thus obtained were measured, the water electrolysis efficiency was ηOH = 99.4.
%, ΗH = 99.3% and the water electrolysis voltage was 1.3 volts. Further, the bipolar membrane was immersed in a mixed solution of chloroform / methanol (volume ratio: 3: 1) for 3 hours, washed sufficiently with water, and the characteristics of the bipolar membrane were measured. The water electrolysis efficiency was ηOH = 99.1% , ΗH = 99.1
% And the water electrolysis voltage was 1.3 volts. The characteristics of this bipolar film did not change even after 4 months of energization, and no bubbles or water bubbles were observed in the bipolar film.

【0034】比較例2 実施例2で得られたクロロメチル化共重合体の被膜を有
するスズイオン型陽イオン交換膜をトリメチルアミン水
溶液(10重量%)に30℃で48時間浸漬し、水洗し
た後、バイポーラ膜を得た。
Comparative Example 2 A tin ion type cation exchange membrane having a chloromethylated copolymer film obtained in Example 2 was immersed in a trimethylamine aqueous solution (10% by weight) at 30 ° C. for 48 hours, washed with water, A bipolar membrane was obtained.

【0035】得られたバイポーラ膜をクロロホルム/メ
タノール(容量比3:1)の混合溶液に3時間浸漬した
ところ、アニオン交換体の被膜が溶解してしまい、実質
的にバイポーラ膜の特性を測ることができなかった。
When the obtained bipolar membrane was immersed in a mixed solution of chloroform / methanol (volume ratio: 3: 1) for 3 hours, the coating of the anion exchanger was dissolved, and the characteristics of the bipolar membrane were measured. Could not.

【0036】実施例3 実施例2と同じ陽イオン交換膜(商品名:ネオセプタC
M−1、徳山曹達社製)を予めサンドペーパーで処理し
て一方の表面を粗面化し、2重量%の塩化第一鉄水溶液
に25℃で1時間浸漬した後、イオン交換水で充分に洗
浄し、室温で風乾した。
Example 3 The same cation exchange membrane as in Example 2 (trade name: Neosepta C)
M-1 (manufactured by Tokuyama Soda Co., Ltd.) was previously treated with sandpaper to roughen one surface, immersed in a 2% by weight aqueous ferrous chloride solution at 25 ° C. for 1 hour, and then sufficiently ion-exchanged with water. Washed and air dried at room temperature.

【0037】次に、実施例1において得たクロロメチル
化共重合体をテトラヒドロフランに溶解し20重量%の
溶液とした後、この溶液にN,N,N’,N’−テトラ
メチル−1,6−ヘキサンジアミンを3重量%加えた。
このようにして調製した溶液を、上記の鉄イオン型の陽
イオン交換膜の粗面化した側に塗布、乾燥してアミノ化
共重合体の被膜の厚みが30μmであるバイポーラ膜を
作製した。
Next, the chloromethylated copolymer obtained in Example 1 was dissolved in tetrahydrofuran to form a 20% by weight solution, and N, N, N ', N'-tetramethyl-1, 3% by weight of 6-hexanediamine was added.
The solution thus prepared was applied to the roughened side of the iron ion type cation exchange membrane and dried to prepare a bipolar membrane having a thickness of the aminated copolymer film of 30 μm.

【0038】このようにして得られたバイポーラ膜の特
性を測定したところ、水電解効率はηOH=98.8
%,ηH=99.0%で水電解電圧は1.3ボルトであ
った。さらに、このバイポーラ膜を4ヶ月間通電してバ
イポーラ膜の特性を測定したところ、水電解効率はηO
H=98.6%,ηH=98.8%で水電解電圧は1.
3ボルトであった。また、バイポーラ膜中に気泡および
水泡の発生も認められなかった。
When the characteristics of the bipolar membrane thus obtained were measured, the water electrolysis efficiency was ηOH = 98.8.
%, ΗH = 99.0% and the water electrolysis voltage was 1.3 volts. Further, when the bipolar membrane was energized for 4 months and the characteristics of the bipolar membrane were measured, the water electrolysis efficiency was ηO
H = 98.6%, ηH = 98.8%, and the water electrolysis voltage was 1.
3 volts. Further, generation of bubbles and water bubbles in the bipolar film was not observed.

【0039】比較例3 実施例1において得たクロロメチル化共重合体をテトラ
ヒドロフランに溶解し20重量%の溶液とした後、この
溶液にトリエチルアミンを3重量%加えた。このように
して調製した溶液を、実施例3において得た鉄イオン型
の陽イオン交換膜の粗面化した側に塗布、乾燥してアミ
ノ化共重合体の被膜の厚みが32μmであるバイポーラ
膜を作製した。
Comparative Example 3 The chloromethylated copolymer obtained in Example 1 was dissolved in tetrahydrofuran to form a 20% by weight solution, and 3% by weight of triethylamine was added to this solution. The solution prepared in this manner is applied to the roughened side of the iron ion type cation exchange membrane obtained in Example 3, and dried to form a bipolar membrane having a coating of an aminated copolymer having a thickness of 32 μm. Was prepared.

【0040】このようにして得られたバイポーラ膜の特
性を測定したところ、水電解効率はηOH=98.5
%,ηH=98.5%で水電解電圧は1.4ボルトであ
った。さらに、このバイポーラ膜を4ヶ月間通電してバ
イポーラ膜の特性を測定したところ、バイポーラ膜中に
気泡および水泡の発生は認められなかったが、水電解効
率はηOH=81.1%,ηH=81.0%に低下し
た。また水電解電圧は1.9ボルトに上昇した。
When the characteristics of the bipolar membrane thus obtained were measured, the water electrolysis efficiency was ηOH = 98.5.
%, ΗH = 98.5% and the water electrolysis voltage was 1.4 volts. Further, when the bipolar film was energized for 4 months and the characteristics of the bipolar film were measured, no bubbles and bubbles were generated in the bipolar film. However, the water electrolysis efficiency was ηOH = 81.1%, ηH = It decreased to 81.0%. The water electrolysis voltage rose to 1.9 volts.

【0041】実施例4 ポリスチレンのセグメント(42重量%)とポリイソプ
レンの水素添加されたセグメント(58重量%)から成
る主鎖に不飽和結合を有しない共重合体50gをクロロ
ホルム1000gに溶解し、50gのクロロメチルメチ
ルエーテルと10gの塩化スズを加え、35℃で40時
間反応させ、メタノール中で沈澱し洗浄、乾燥し、クロ
ロメチル化共重合体を得た。
Example 4 50 g of a copolymer having no unsaturated bonds in the main chain composed of segments of polystyrene (42% by weight) and hydrogenated segments of polyisoprene (58% by weight) were dissolved in 1000 g of chloroform. 50 g of chloromethyl methyl ether and 10 g of tin chloride were added, reacted at 35 ° C. for 40 hours, precipitated in methanol, washed and dried to obtain a chloromethylated copolymer.

【0042】次いで、このクロロメチル化共重合体をテ
トラヒドロフランに溶解し20重量%に調製した後、
N,N,N’,N’−テトラメチル−1,6−ヘキサン
ジアミンを3重量%加えた。この溶液を実施例2におい
て得たスズイオン型の陽イオン交換膜の粗面化した側に
塗布、乾燥し、アニオン交換体の被膜の厚みが28μm
であるバイポーラ膜を作製した。
Next, this chloromethylated copolymer was dissolved in tetrahydrofuran to adjust to 20% by weight.
3% by weight of N, N, N ', N'-tetramethyl-1,6-hexanediamine was added. This solution was applied to the roughened side of the tin ion type cation exchange membrane obtained in Example 2, dried, and the thickness of the anion exchanger film was 28 μm.
Was fabricated.

【0043】このようにして得られたバイポーラ膜の特
性を測定したところ、水電解効率はηOH=99.4
%,ηH=99.3%で水電解電圧は1.4ボルトであ
った。つぎに、このバイポーラ膜をアセトン/メタノー
ル(容量比1:1)の混合溶液に8時間浸漬し、充分に
水洗した後、バイポーラ膜の特性を測定したところ、水
電解効率はηOH=99.1%,ηH=99.1%で水
電解電圧は1.4ボルトであった。
When the characteristics of the bipolar membrane thus obtained were measured, the water electrolysis efficiency was ηOH = 99.4.
%, ΗH = 99.3% and the water electrolysis voltage was 1.4 volts. Next, the bipolar membrane was immersed in a mixed solution of acetone / methanol (volume ratio: 1: 1) for 8 hours, washed sufficiently with water, and the characteristics of the bipolar membrane were measured. The water electrolysis efficiency was ηOH = 99.1. %, ΗH = 99.1% and the water electrolysis voltage was 1.4 volts.

【0044】さらに、このバイポーラ膜を6ヶ月間通電
してバイポーラ膜の特性を測定したところ、水電解効率
はηOH=98.8%,ηH=98.9%で水電解電圧
は1.4ボルトであった。また、バイポーラ膜中に気泡
および水泡の発生も認められなかった。
Further, the characteristics of the bipolar membrane were measured by energizing the bipolar membrane for 6 months. The water electrolysis efficiency was ηOH = 98.8%, ηH = 98.9%, and the water electrolysis voltage was 1.4 volts. Met. Further, generation of bubbles and water bubbles in the bipolar film was not observed.

【0045】比較例4 実施例4において得たクロロメチル化共重合体をクロロ
ホルム/メタノール(容量比5:1)の混合溶剤に溶か
し18重量%のクロロメチル化共重合体溶液とした後、
この溶液にトリエチルアミンを3重量%加えた。このよ
うにして調製した溶液を、実施例2において得たスズイ
オン型の陽イオン交換膜の粗面化した側に塗布、乾燥し
てアミノ化共重合体の被膜の厚みが35μmであるバイ
ポーラ膜を作製した。
Comparative Example 4 The chloromethylated copolymer obtained in Example 4 was dissolved in a mixed solvent of chloroform / methanol (volume ratio: 5: 1) to obtain a 18% by weight chloromethylated copolymer solution.
3% by weight of triethylamine was added to this solution. The solution prepared in this manner was applied to the roughened side of the tin ion type cation exchange membrane obtained in Example 2, and dried to form a bipolar membrane having an aminated copolymer film thickness of 35 μm. Produced.

【0046】このようにして得られたバイポーラ膜の特
性を測定したところ、水電解効率はηOH=98.4
%,ηH=98.5%で水電解電圧は1.5ボルトであ
った。つぎに、このバイポーラ膜をアセトン/メタノー
ル(容量比1:1)の混合溶液に8時間浸漬し、充分に
水洗した後、バイポーラ膜の特性を測定したところ、水
電解効率はηOH=78.9%,ηH=80.0%に低
下した。また、水電解電圧は2.2ボルトに上昇した。
When the characteristics of the thus obtained bipolar membrane were measured, the water electrolysis efficiency was ηOH = 98.4.
%, ΗH = 98.5% and the water electrolysis voltage was 1.5 volts. Next, this bipolar membrane was immersed in a mixed solution of acetone / methanol (volume ratio: 1: 1) for 8 hours, washed sufficiently with water, and the characteristics of the bipolar membrane were measured. The water electrolysis efficiency was ηOH = 78.9. %, ΗH = 80.0%. In addition, the water electrolysis voltage rose to 2.2 volts.

【0047】さらに、このバイポーラ膜を6ヶ月間通電
してバイポーラ膜の特性を測定したところ、バイポーラ
膜中に気泡および水泡の発生は認められなかったが、水
電解効率はηOH=62.3%,ηH=62.0%に低
下した。また水電解電圧は2.7ボルトに上昇した。
When the bipolar membrane was energized for 6 months and the characteristics of the bipolar membrane were measured, no bubbles and water bubbles were found in the bipolar membrane. However, the water electrolysis efficiency was ηOH = 62.3%. , ΗH = 62.0%. The water electrolysis voltage rose to 2.7 volts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽イオン交換膜と、主鎖に不飽和結合を
有しないスチレン系ブロック共重合体を母体とした多価
アミンによる架橋構造を有する陰イオン交換体とよりな
るバイポーラ膜。
1. A bipolar membrane comprising a cation exchange membrane and an anion exchanger having a crosslinked structure of a polyamine based on a styrene-based block copolymer having no unsaturated bond in the main chain.
JP4157087A 1992-06-17 1992-06-17 Bipolar membrane Expired - Lifetime JP2624424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4157087A JP2624424B2 (en) 1992-06-17 1992-06-17 Bipolar membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4157087A JP2624424B2 (en) 1992-06-17 1992-06-17 Bipolar membrane

Publications (2)

Publication Number Publication Date
JPH061865A JPH061865A (en) 1994-01-11
JP2624424B2 true JP2624424B2 (en) 1997-06-25

Family

ID=15641965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4157087A Expired - Lifetime JP2624424B2 (en) 1992-06-17 1992-06-17 Bipolar membrane

Country Status (1)

Country Link
JP (1) JP2624424B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852972U (en) * 1971-10-15 1973-07-09
CN100487003C (en) * 2004-12-21 2009-05-13 比亚迪股份有限公司 A kind of polymer and proton exchange membrane of containing polymer

Also Published As

Publication number Publication date
JPH061865A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
US5221455A (en) Bipolar membrane and method for its production
US6103078A (en) Methods for preparing membranes with fluid distribution passages
US4090931A (en) Anode-structure for electrolysis
JP3942758B2 (en) Anion exchange membrane
JP3364224B2 (en) Single film membrane, its manufacturing method and its use
KR100730009B1 (en) Bipolar membrane
Kim et al. Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI)
JPS6134515B2 (en)
EP1188784B1 (en) Cation-exchange membrane selectively permeable to monovalent cation and process for producing the same
JP2624424B2 (en) Bipolar membrane
JPWO2009096473A1 (en) Membrane for fuel cell and manufacturing method thereof
JP2801469B2 (en) Bipolar membrane
JPH04228591A (en) Bipolar membrane and its production
JP3134016B2 (en) Bipolar membrane
JP3981598B2 (en) Ion exchange membrane
JP3151043B2 (en) Method for producing acid and alkali
JPH0813900B2 (en) Bipolar film manufacturing method
JP3324853B2 (en) Method for producing acid aqueous solution and alkaline aqueous solution
JP3907459B2 (en) Electric regenerative deionizer
JPS6028849B2 (en) Manufacturing method of composite ion exchange membrane
JP3151042B2 (en) Method for producing acid and alkali
JP2004224862A (en) Ion exchange membrane
JPS6241319B2 (en)
JP3151045B2 (en) Method for producing acid and alkali
JPS63137187A (en) Double decomposition method of neutral salt

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 16