JPS6028849B2 - Manufacturing method of composite ion exchange membrane - Google Patents

Manufacturing method of composite ion exchange membrane

Info

Publication number
JPS6028849B2
JPS6028849B2 JP54035029A JP3502979A JPS6028849B2 JP S6028849 B2 JPS6028849 B2 JP S6028849B2 JP 54035029 A JP54035029 A JP 54035029A JP 3502979 A JP3502979 A JP 3502979A JP S6028849 B2 JPS6028849 B2 JP S6028849B2
Authority
JP
Japan
Prior art keywords
membrane
ion exchange
exchange membrane
roll
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54035029A
Other languages
Japanese (ja)
Other versions
JPS55127437A (en
Inventor
安弘 鍵山
俊勝 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP54035029A priority Critical patent/JPS6028849B2/en
Publication of JPS55127437A publication Critical patent/JPS55127437A/en
Publication of JPS6028849B2 publication Critical patent/JPS6028849B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は複合イオン交換膜の新規な製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for manufacturing a composite ion exchange membrane.

イオン交換膜はより優れた機能を有するものが益々要求
されている。
There is an increasing demand for ion exchange membranes with better functionality.

一般にイオン交換膜は電気透析による海水濃縮製塩、塩
水の脱塩、イオン性物質と非イオン性物質の分離、拡散
透析、アルカリ金属塩水溶液の電解、有機合成電解反応
、逆浸透、限外濠過等の技術分野で広く利用されている
。このようなイオン交換膜の機能を支配しているのは、
高分子膜状物に結合しているイオン交換基である。この
イオン交換基の膜内に於ける濃度(固定イオン濃度)、
イオン交換基の膜内に於ける分布状態、異種のイオン交
換基が膜内に存在するときの存在のさせ方によってイオ
ン交換膜の機能は全く異なったものとなってくる。この
ような複合イオン交換膜として従来公知のものは、陽イ
オン交換膜と陰イオン交換膜を一体としたバィポーラー
ィオン交換膜、特開昭52−68873、特開昭52−
7567隻割こ開示されているようなイオン交換膜の表
層部のみ固定イオン濃度の高い薄層が存在する腸イオン
交換膜及び陰イオン交換膜、アルカリ金属塩水溶液の電
解用の隔膜として用いられる例えば特関昭50−108
182に開示されているような含ふっ素系イオン交換膜
などがある。
Generally, ion exchange membranes are used for seawater concentration salt production by electrodialysis, desalination of salt water, separation of ionic and nonionic substances, diffusion dialysis, electrolysis of aqueous alkali metal salt solutions, organic synthesis electrolytic reactions, reverse osmosis, ultra-horizontal filtration, etc. It is widely used in technical fields. What governs the function of such ion exchange membranes is
It is an ion exchange group bonded to a polymer membrane. The concentration of this ion exchange group in the membrane (fixed ion concentration),
The function of the ion exchange membrane becomes completely different depending on the state of distribution of the ion exchange groups within the membrane and the manner in which different types of ion exchange groups are present in the membrane. Conventionally known composite ion exchange membranes include bipolar ion exchange membranes that integrate a cation exchange membrane and an anion exchange membrane;
Intestinal ion exchange membranes and anion exchange membranes in which only the surface layer of the ion exchange membrane has a thin layer with a high concentration of fixed ions, as disclosed in 7567, are used as diaphragms for electrolysis of aqueous alkali metal salt solutions, for example. Tokuseki Showa 50-108
Examples include fluorine-containing ion exchange membranes such as those disclosed in No. 182.

しかしながら、これらの公知の複合イオン交換膜は優れ
た機能性を有しているにもかかわらず、その製造方法が
複雑であったり、イオン交換基の導入、分布が不均一に
なることを防ぐためにその制御が難しく容易に且つ大量
に目的物を製造することが出来ない。
However, although these known composite ion-exchange membranes have excellent functionality, their manufacturing methods are complicated, and in order to prevent the introduction and distribution of ion-exchange groups from becoming non-uniform, It is difficult to control and it is not possible to easily manufacture the target product in large quantities.

本発明者等はこのような従来の複合イオン交換膜の製造
に関する欠陥を補うべく鋭意研究を重ねて来た。
The present inventors have conducted extensive research in order to compensate for the deficiencies associated with the production of conventional composite ion exchange membranes.

その結果高性能の複合イオン交換膜を連続的に製造する
技術を完成させ提案するに至った。本発明は膜状被覆材
とイオン交換膜又は容易にイオン交換基を導入出来る高
分子膜状物とを別々の保持具に保持し、膜状被覆材及び
/又はイオン交換膜又は容易にイオン交換基を導入出釆
る高分子膜状物に、ビニル基及び/又はアリール基を有
する単量体又は該単量体温合物を連続的に付着させた後
、膜状被覆材とイオン交換膜又は容易にイオン交換膜を
導入出来る高分子膜状物を積層し、次いで該単量体を重
合し、必要に応じてイオン交換基を導入する複合イオン
交換膜の製造方法である。
As a result, we completed and proposed a technology to continuously manufacture high-performance composite ion exchange membranes. The present invention holds a membrane-like coating material and an ion-exchange membrane or a polymeric membrane-like material into which ion exchange groups can be easily introduced in separate holders, and After continuously adhering a monomer having a vinyl group and/or an aryl group or a mixture of the monomers to a polymer membrane into which groups are introduced, a membrane coating material and an ion exchange membrane or This is a method for producing a composite ion-exchange membrane, in which polymeric membranes into which ion-exchange membranes can be easily introduced are laminated, the monomers are then polymerized, and ion-exchange groups are introduced as necessary.

なお、本発明でいう複合イオン交換膜とは陽イオン交換
膜又は陰イオン交換膜に於いて、膜の断面についてイオ
ン交換基の濃度、種類及び分布の少くとも1種が異なる
ものの総称である。
Note that the composite ion exchange membrane as used in the present invention is a general term for cation exchange membranes or anion exchange membranes in which the cross section of the membrane differs in at least one of the concentration, type, and distribution of ion exchange groups.

本発明で用いる膜状被覆材としては特に制限がなく公知
のものが使用出来るが、一般にはイオン交換膜或は容易
にイオン交換基を導入出来る高分子膜状物の表層部に或
は内部に存在させるビニル基及び/又はアリール基を有
する単量体或は該単量体混合物(以下浸債液とも略す)
で膨潤しないものを用いるのが好ましい。
The membrane-like coating material used in the present invention is not particularly limited and any known material can be used; however, in general, it is used on the surface or inside of an ion-exchange membrane or a polymer membrane into which ion-exchange groups can be easily introduced. A monomer having a vinyl group and/or an aryl group or a mixture of the monomers (hereinafter also referred to as immersion liquid)
It is preferable to use a material that does not swell.

具体的に例示すれば、セルローズ系のフィルム(商品名
、セロフアン);ポリビニルアルコール系のフィルム(
商品名、ピニロン);ポリエチレンテレフタレートのよ
うなポリエステル系のフィルム:−藤或は二軸延伸した
ポリエチレン又はポリプロピレン製等のフィルム:更に
はポリテトラフルオロェチレン、ポリ一弗化エチレン、
ポリ発化ビニIJデン、ポリ三弗化−塩化エチレン等か
ら出来た合発秦系フィルム;或はテトラフルオロェチレ
ンとへキサフルオロプロピレンの共重合体、テトラフル
オロェチレンとパーフルオロアルキルビニルヱーテルの
共重合体等の含弗蓑系フィルム:などが好適に用いうる
。特に工業的に実施するときセルローズ系、ポリビニル
アルコール系、ポリエステル系のフィルム等が望ましい
。勿論、単一のフィルムでなくラミネートしたフィルム
も有効であり、例えばポIJェチレンのフィルムに薄膜
状にポリピニルアルコールのフィルムをラミネートした
ものなどである。いづれにせよ可榛性があり、被覆能が
あり、且つ浸贋液による膨潤の少ないものであれば特に
制限はない。また好適に用いられる膜状被覆物の厚みは
使用目的によって異なり一概に限定出来ないが、一般に
は0.0002〜0.1弧の厚みのもの、好ましくは0
.001〜0.08肌のものが最も広く利用される。本
発明で用いるイオン交換膜或は容易にイオン交換基を導
入出来る高分子膜状物としては、従来公知のイオン交換
膜或はイオン交換膜の原膜が何ら制限なく用いられる。
Specific examples include cellulose-based film (product name: Cellophane); polyvinyl alcohol-based film (
(trade name, Pinylon); polyester films such as polyethylene terephthalate; - films made of rattan or biaxially oriented polyethylene or polypropylene; furthermore, polytetrafluoroethylene, polymonofluoroethylene,
Copolymerized film made from polyvinyl IJden, polytrifluoride-ethylene chloride, etc.; or copolymer of tetrafluoroethylene and hexafluoropropylene, tetrafluoroethylene and perfluoroalkyl vinyl A fluorine-containing film such as a copolymer of ether and the like can be suitably used. Particularly in industrial implementation, cellulose-based, polyvinyl alcohol-based, polyester-based films, etc. are desirable. Of course, a laminated film is also effective instead of a single film, such as a polypynyl alcohol film laminated in a thin film form on a polyjethylene film. In any case, there are no particular limitations as long as the material is flexible, has a coating ability, and is less likely to swell due to counterfeit liquid. The thickness of the film-like coating suitably used varies depending on the purpose of use and cannot be unconditionally limited, but it is generally 0.0002 to 0.1 arc thick, preferably 0.0002 to 0.1 arc thick.
.. 001 to 0.08 skin is most widely used. As the ion exchange membrane or the polymer membrane into which ion exchange groups can be easily introduced for use in the present invention, conventionally known ion exchange membranes or raw membranes of ion exchange membranes can be used without any limitations.

例えば共有結合性の架橋構造を有するもの又は有さない
もの;高分子構造から見るとき重合型のもの又は縮合型
のもの:イオン交換膜としたとき、イオン交換基の分布
状態が均質系のもの又は不均質系のもの;材質面から云
えば炭化水素系のもの又は含ふつ秦系のもの等々何ら制
限なく用いられる。またイオン交換基の種類から見ると
き強酸性基、弱酸性基、強塩基性基、弱塩基性基等の従
来公知の腸イオン交換基又は陰イオン交換基を結合した
イオン交換膜、或はこれらの陽イオン交換基、陰イオン
交換基を容易に導入出来る官能基を有する高分子膜状物
が何ら制限なく用いられる。しかし、特に本発明の製造
方法に於いて好ましいイオン交換膜或は容易にイオン交
換基を導入出来る高分子膜状物はジビニルベンゼン、ジ
アリ−ル、ジァクリレート、ジメタアクリレート等のポ
リピニル、ポリアリール化合物を一成分とする三次元架
橋構造を有するものである。
For example, those with or without a covalent cross-linked structure; polymeric or condensed types when viewed from the polymer structure: ion exchange membranes with a homogeneous distribution of ion exchange groups Or a heterogeneous type; in terms of material, a hydrocarbon type or a copper-containing type can be used without any restriction. In addition, in terms of the types of ion exchange groups, ion exchange membranes with conventionally known intestinal ion exchange groups or anion exchange groups such as strong acidic groups, weak acidic groups, strong basic groups, and weak basic groups, or these A polymer membrane having a functional group into which a cation exchange group or an anion exchange group can be easily introduced can be used without any restriction. However, especially in the production method of the present invention, preferred ion exchange membranes or polymer membranes into which ion exchange groups can be easily introduced include polypynyl and polyaryl compounds such as divinylbenzene, diaryl, diacrylate, and dimethacrylate. It has a three-dimensional crosslinked structure as one component.

この場合の他の成分としては、一般に例えばスチレン;
クロルメチルスチレン類:ビニルピリジン類、ビニルト
ルェンのようなアルキル化スチレン類;アクリロニトリ
ル;ビニルイミダゾール類、ビニルピベラジン類;核酸
塩基を有するビニル化合物等の反応活性な官能基を有す
るもの;アクリル酸及びその塩類又はェステル類:メタ
アクリル酸及びその塩類又はェステル類:ビニルスルホ
ン酸及びその塩類又はェステル類:スチレンスルホン酸
及びその塩類又はェステル類等々である。この場合の全
単量体に対する上記ポリビニル、ポリアリール化合物の
量は0.5〜50%である場合が生成するイオン交換膜
の性質の点から好ましい。本発明で用いる前記イオン交
換膜或は容易にイオン交換基を導入出来る高分子膜状物
には一般に腰の機械的強度を高く保持するために絹、織
布、不織布、編物等の不活性な強度保持用の基材が存在
しているものが好適に使用される。
Other components in this case generally include, for example, styrene;
Chlormethylstyrenes: vinylpyridines, alkylated styrenes such as vinyltoluene; acrylonitrile; vinylimidazoles, vinylpiverazines; compounds with reactive functional groups such as vinyl compounds with nucleobases; acrylic acid and its salts or Esters: methacrylic acid and its salts or esters: vinylsulfonic acid and its salts or esters: styrenesulfonic acid and its salts or esters, and the like. In this case, the amount of the polyvinyl or polyaryl compound relative to the total monomers is preferably 0.5 to 50% from the viewpoint of the properties of the produced ion exchange membrane. The ion exchange membrane used in the present invention or a polymer membrane into which ion exchange groups can be easily introduced is generally made of an inert material such as silk, woven fabric, nonwoven fabric, or knitted fabric in order to maintain high mechanical strength. Those with a base material for strength retention are preferably used.

また他に可塑剤のような不活性な低分子化合物、ポリ塩
化ビニル、ポリエチレンの微粉末、ブタジェンーアクリ
ロニトリル、ブタジェンースチレン、天然ゴム等の可溶
性、分散性の良好な不活性な高分子化合物が共存してい
ても差しつかえない。また本発明で用いるビニル基及び
/またはアリール基を有する単量体或は単量体温合物則
ち浸薄液はイオン交換膜を製造するときに用いられる公
知のものが何ら制限なく用いられる。
In addition, inert low-molecular compounds such as plasticizers, polyvinyl chloride, polyethylene fine powder, butadiene-acrylonitrile, butadiene-styrene, natural rubber, and other inert polymers with good solubility and dispersibility. There is no problem even if the compounds coexist. Furthermore, as the monomer or monomer mixture having a vinyl group and/or aryl group, that is, the dipping liquid used in the present invention, any known monomer used in the production of ion exchange membranes can be used without any restriction.

この場合の組成及び成分は製造する複合イオン交換膜の
目的によって異なる。代表的なものを例示すれば、次の
通りである。1 イオン交換膜の断面に関してイオン交
換基の濃度が異なる複合イオン交換膜を作る場合には、
浸靖液としてイオン交換膜、或は容易にイオン交換基を
導入出来る高分子膜状物(以下これらを原イオン交換膜
とも云う)の有するイオン交換基の濃度(固定イオン濃
度)よりも固定イオン濃度が高く、或は低くなるような
組成を選定する。
The composition and components in this case vary depending on the purpose of the composite ion exchange membrane to be manufactured. Typical examples are as follows. 1 When making a composite ion exchange membrane with different concentrations of ion exchange groups in the cross section of the ion exchange membrane,
The concentration of fixed ions is higher than the concentration of ion exchange groups (fixed ion concentration) possessed by an ion exchange membrane or a polymer membrane into which ion exchange groups can be easily introduced (hereinafter also referred to as original ion exchange membrane) as an immersion solution. A composition with a high or low concentration is selected.

2 イオン交換膜の断面に関して架橋密度の異なる複合
イオン交換膜を作るときには、浸薄液として原イオン交
換膜製造時の架橋剤濃度と異なる組成を選定する。
2. When making a composite ion-exchange membrane with different cross-linking densities in terms of the cross-section of the ion-exchange membrane, select a dipping solution with a composition different from the cross-linking agent concentration used in producing the original ion-exchange membrane.

3 イオン交換膜の断面に関して、他の共重合体からな
るイオン交換体成分が均一に分散した複合イオン交換膜
を作る場合には、浸債液として原イオン交換膜に浸透性
の良好な組成を選定する。
3 Regarding the cross section of the ion exchange membrane, when making a composite ion exchange membrane in which ion exchange components made of other copolymers are uniformly dispersed, a composition with good permeability to the original ion exchange membrane is added as an impregnating liquid. Select.

4 バィポーラーィオン交換膜である複合イオン交換膜
を製造するときには、原イオン交換膜に結合している。
4. When manufacturing a composite ion exchange membrane, which is a bipolar ion exchange membrane, it is bonded to the original ion exchange membrane.

或は導入されるイオン交換基とは反対の電荷を有する、
或は反対の電荷のイオン交換基が容易に導入出来る単量
体を少なくとも一成分とした浸債液を選定する。5 イ
オン交換膜の断面に関して、該イオン交換膜の表層部の
み両性層を有する複合イオン交換膜を製造するときには
、陽イオン交換基及び陰イオン交換基のいづれをも有す
るか、或は浸債液を原イオン交換膜に付着させて重合し
たのち腸イオン交換基及び陰イオン交換基の両者を容易
に導入しうる単量体混合物を含有する浸漬液を選定する
or has an opposite charge to the ion exchange group to be introduced,
Alternatively, a dipping solution containing at least one component of a monomer into which an ion exchange group of opposite charge can be easily introduced is selected. 5 Regarding the cross section of the ion exchange membrane, when manufacturing a composite ion exchange membrane having an amphoteric layer only in the surface layer of the ion exchange membrane, it must have both cation exchange groups and anion exchange groups, or An immersion liquid containing a monomer mixture that can easily introduce both intestinal ion exchange groups and anion exchange groups after polymerization is selected.

複合イオン交換膜を製造する場合の浸債液の選定の1例
を前記したが、該浸債液の選定は製造しようとする複合
イオン交換膜の種類、目的によって実施すればよい。
An example of the selection of a bonding liquid in the case of manufacturing a composite ion exchange membrane has been described above, but the selection of the bonding liquid may be carried out depending on the type and purpose of the composite ion exchange membrane to be manufactured.

更に上記浸蒲液はビニル基及び/又はアリール基を有す
る単量体を主成分とするが、その他に原イオン交換膜へ
の浸債液の浸透を加速、或は減速するため適宜重合に関
与しない溶媒を添加してもよい。例えばパラフィン、ジ
オキサン、高級アルコール、ベンゼン、ナフタリン、ケ
ロシン、ジオクチルフタレート等である。また複合イオ
ン交換膜の表層に存在させる異種層の厚みを制禦するた
めに浸漬液の粘度調節剤としてポリ塩化ビニル、ポリエ
チレン等の微粉末と分散させたり、或はスチレンーブタ
ジェンゴム、天然ゴム、ブタジェンーアクリロニトリル
ゴム等の可溶性のゴムを熔解してもよい。更に浸債液は
原イオン交換膜面に付着させた後、重合を実施するため
に重合開始剤を溶解しておく必要があり、この重合開始
剤としては従来公知のラジカル重合開始剤で分解温度が
30℃乃至160ooの間のもの、好ましくは50qo
から13000までのものが好適に用いられる。本発明
の特徴は膜状被覆材と原イオン交換膜とを別々の保持臭
に保持する。
Furthermore, the above-mentioned immersion liquid mainly contains a monomer having a vinyl group and/or an aryl group, but other components may also be involved in polymerization to accelerate or slow down the penetration of the immersion liquid into the raw ion exchange membrane. You may add a solvent that does not contain the For example, paraffin, dioxane, higher alcohol, benzene, naphthalene, kerosene, dioctyl phthalate, etc. In addition, in order to control the thickness of the heterogeneous layer present on the surface layer of the composite ion exchange membrane, fine powders such as polyvinyl chloride and polyethylene are dispersed as viscosity modifiers in the immersion liquid, or styrene-butadiene rubber, natural Rubber, soluble rubber such as butadiene-acrylonitrile rubber may be melted. Furthermore, in order to carry out polymerization after adhering the soaking liquid to the surface of the raw ion exchange membrane, it is necessary to dissolve a polymerization initiator, which is a conventionally known radical polymerization initiator. is between 30℃ and 160oo, preferably 50qo
to 13,000 is preferably used. A feature of the present invention is that the membrane coating material and the original ion exchange membrane are kept in separate retention odors.

次いで保持具から取出された膜状被覆材及び/又は原イ
オン交換膜に浸債液を連続的に付着させる。付着手段は
膜状被覆材又は原イオン交換膜への浸債液の吹付け、塗
装或は膜状被覆材又は原イオン交換膜を浸債液へつける
方法など如何なる手段を採用してもよいが、一般には後
者の方法が工業的に最も容易である。前記の浸債液を付
着させた膜状被覆材と原イオン交換膜とは積層した後、
浸債液を重合する。積層物は一般には積層した状態で重
合に供することも出来るが、重合に長時間を要する場合
は積層物を一旦巻取って巻取った状態で重合するるこ‐
とも出来る。浸債液を重合することによって複合イオン
交換膜を得ることが出来るが、原イオン交換膜としてイ
オン交換基や容易に導入出来る高分子膜状物を使用した
場合或し、は浸債液の重合体にイオン交換基が含まれて
いない場合等は必要に応じて後処理でイオン交換基を導
入すればよい。イオン交換基の導入方法はイオン交換膜
の製法として公知の方法を採用すればよい。本発明の方
法を詳細に説明するために、以下添付図面に準じて説明
する。
Next, the soaking liquid is continuously applied to the membrane coating material and/or the original ion exchange membrane taken out from the holder. The attachment means may be any method such as spraying the immersion liquid onto the membrane coating material or the raw ion exchange membrane, painting, or applying the membrane coating material or the raw ion exchange membrane to the immersion liquid. Generally, the latter method is industrially easiest. After the film-like coating material to which the above-mentioned bonding solution was attached and the original ion exchange membrane are laminated,
Polymerize the soaking liquid. Generally, laminates can be subjected to polymerization in a laminated state, but if polymerization takes a long time, the laminate may be wound up once and then polymerized in the rolled up state.
I can also do it. A composite ion-exchange membrane can be obtained by polymerizing an immersion solution, but if an ion-exchange group or an easily introduced polymer membrane is used as the original ion-exchange membrane, or if the polymerization of the immersion solution is If an ion exchange group is not included in the combination, an ion exchange group may be introduced in a post-treatment if necessary. As a method for introducing the ion exchange group, a method known as a method for manufacturing an ion exchange membrane may be adopted. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to explain the method of the present invention in detail, the method will be described below with reference to the accompanying drawings.

第1図から第8図までに本発明の複合イオン交換膜を作
るとき代表的な原理的を示している。これらは原理的な
ものであり、これによって本発明は拘束されるものでは
ない。まず原イオン交換膜の両面に浸債液を付着させる
必要がある場合には、第1図、第2図、第3図、第5図
、第8図による方法を採用すればよく、片面にのみ付着
させる必要があるときには、第4図、第6図、第7図に
示すような方法に従って製造すればよい。図中「 1は
巻取りロール、2は膜状被覆材、3はイオン交換膜或は
容易にイオン交換基を導入出来る高分子膜状物、4は縞
付ロール、5はガイドロール、6はエキス/ゞンダーロ
ールをそれぞれ示す。2及び3は別々の円管状の保持臭
に固定され回転する。
FIGS. 1 to 8 show typical principles for producing the composite ion exchange membrane of the present invention. These are fundamental principles, and the present invention is not restricted thereby. First, if it is necessary to attach the soaking liquid to both sides of the raw ion exchange membrane, the methods shown in Figures 1, 2, 3, 5, and 8 may be adopted; If it is necessary to attach only the wafer, it may be manufactured according to the method shown in FIGS. 4, 6, and 7. In the figure, 1 is a winding roll, 2 is a film-like covering material, 3 is an ion exchange membrane or a polymer film-like material into which ion exchange groups can be easily introduced, 4 is a striped roll, 5 is a guide roll, and 6 is a The extractor/underrolls are shown respectively. 2 and 3 are fixed to separate cylindrical retainers and rotate.

第2図以降に於いても、膜状被覆材と原イオン交換膜が
円滑に巻取られように、或はしわの発生、たるみ、膜厚
の不均一をなくすために適宜エキスパンダーロール6、
ガイドロール5、続付ロール4等を増減してもよい。第
1図から第3図までは原イオン交換膜を浸債液に浸潰し
ながら連続的に作る方法である。原イオン交換膜への浸
債液の付着量を制禦するには、高分子膜状物の送り速度
、締付けロールの圧力を変えることによって実施出来る
。一般にこの場合の浸債液への浸債時間は1秒〜7幼時
間の間で適宜選択される。浸債温度は通常室温付近で実
施されるが、浸債液の付着量を多くするため加溢したり
、或いは減じるために冷却したりするとよい。一般に浸
債液が凝固しない温度以上乃至重合を開始しない温度以
下で行うとよい。第4図から第8図までは膜状被覆材に
浸溶液に浸潰して付着させる方法である。
From FIG. 2 onwards, the expander roll 6 is used as appropriate to ensure that the membrane coating material and the raw ion exchange membrane are wound up smoothly, or to eliminate wrinkles, sagging, and uneven film thickness.
The number of guide rolls 5, follow-on rolls 4, etc. may be increased or decreased. Figures 1 to 3 show a method in which an original ion exchange membrane is continuously produced while being immersed in a dipping solution. The amount of adhering liquid to the raw ion exchange membrane can be controlled by changing the feeding speed of the polymer membrane and the pressure of the clamping roll. Generally, the time for immersing the bond in the immersion liquid in this case is appropriately selected from 1 second to 7 hours. The bonding temperature is usually carried out at around room temperature, but it is preferable to overflow to increase the amount of the bonding solution deposited, or to cool it to reduce the amount. Generally, it is preferable to carry out the reaction at a temperature above the temperature at which the soaking liquid does not solidify or below a temperature at which polymerization does not start. FIGS. 4 to 8 show a method of attaching a membrane-like coating material by soaking it in a dipping solution.

この場合は膜状被覆材と浸債液の親和性の差違によって
付着量を一般に制禦出来る。浸債液と親和性のある膜状
被覆材を用いることによって多量に付着させることも出
来る。或いは膜状被覆材の表層部を疎にして、より多く
の浸猿液が付着するようにして実施するとも出来る。付
着量を極度に小とするために浸債液と親和性の少ない膜
状被覆材を用い更に原イオン交換膜と接触する前に布、
海綿状のもので一部拭きとって積層することも出来る。
巻取る場合には膜状被覆材と原イオン交換膜は充分に糟
層し、両者の間に気泡等が入らないようにするのが好ま
しい。鰭層したあとはそのまま連続的に重合することも
出来るが、巻取りロールに巻取って重合するのが一般的
である。
In this case, the amount of adhesion can generally be controlled by the difference in affinity between the film-like coating material and the soaking liquid. It is also possible to deposit a large amount by using a film-like coating material that has an affinity for the bonding liquid. Alternatively, the surface layer of the membrane-like covering material may be made sparse so that more of the immersion liquid can adhere thereto. In order to minimize the amount of adhesion, a membrane-like coating material with low affinity for the bonding solution is used, and a cloth,
You can also layer it by wiping some of it off with a spongy material.
When winding up, it is preferable that the membrane-like coating material and the original ion exchange membrane be sufficiently laminated to prevent air bubbles from entering between the two. After forming the fin layer, it is possible to polymerize continuously as it is, but it is common to polymerize by winding it up on a winding roll.

重合は一般にラジカル重合開始剤によって加熱によって
重合するのが好ましいが光、y線、X線等の電離性放射
線によって重合させることも出釆る。更にはラジカル重
合開始剤の不存在下に電離性放射線のみで重合させるこ
とも出来る。加熱によって重合させる場合には、浸債液
に添加する重合開始剤の種類、分解条件等で異なる。重
合温度は生成した浸薄液の重合体或は原イオン交換膜が
分解を生じる温度以下で実施される。原イオン交換膜に
付着した浸贋液が重合したあとは、膜状被覆材を剥ぎと
ることが好ましい。セルローズ系、ポリビニルアルコー
ル系の膜状被覆材は剥ぎ取らないで、そのまま次のイオ
ン交換基導入反応を実施しても、イオン交換基の導入に
支障がない場合がある。例えば、スルホン化反応中に膜
状被覆材が分解する場合は反応中に自然に膜状被覆材は
除去されてしまうし、アミノ化反応は膜状被覆材の存在
下でも進行し、反応後剥離してもよい。しかし一般に膜
状被覆材は剥離除去したのちに、イオン交換基導入反応
が実施される。イオン交換基の導入は従来公知の手段が
何ら制限なく採用される。例えば加水分解、酸化、還元
、スルホン化、アミノ化、アルキル化等々である。この
ようにして作られた複合イオン交換膜は、その目的によ
って各分野に利用される。本発明の複合イオン交換膜の
若干の例について記すと、例えば膜の断面に関してイオ
ン交換基の濃度に異方性のある本発明の方法で作った複
合イオン交換膜は低い電気抵抗を有し、機械的強度に優
れ、且つ表層部のみ固定イオン濃度を高くすると、答高
濃度塩、酸、塩基溶液の電気透析、電解反応の隔膜に於
いて著しく高い異符号イオン間選択性を示す。或は反対
電荷の層を形成すればバィポーラー膜となり、高い加水
分解効率を長期にわたって示す。或は一価イオン選択透
過性をも示し、高い固定イオン濃度の反対電荷の薄層を
形成すると、一般には塩濃度の高い領域では多価イオン
雛透過性能力が、従来の一価イオン選択性膜では劣って
くるのに、高濃度城に於いても有効であり、食塩電解の
隔腰に用いる場合のように高濃度食塩溶液中に徴量のカ
ルシウム、マグネシウム、ストロンチウムのような有害
なイオン種が含まれていても多価イオンを横面で排除す
る能力がある。本発明の方法で作った複合イオン交換膜
は従来公知のイオン交換膜を用いるプロセスに全て用い
ることが出来る。また従釆公知の電気透析、電気分解、
拡散透析、逆浸透、限外績週、イオン電極等々の全ての
装置に適用することが出来る。以下の実施例によって本
発明の内容を説明するが、以下の実施例によって本発明
の内容は何ら拘束されるものではない。なお実施例中、
膜の電気抵抗は0.5規定食塩水中で25.000で1
000サイクル交流で測定したものである。
Polymerization is generally preferably carried out by heating using a radical polymerization initiator, but polymerization may also be carried out by ionizing radiation such as light, Y-rays, and X-rays. Furthermore, polymerization can also be carried out using only ionizing radiation in the absence of a radical polymerization initiator. When polymerizing by heating, it depends on the type of polymerization initiator added to the soaking liquid, decomposition conditions, etc. The polymerization temperature is lower than the temperature at which the polymer of the produced dipping solution or the original ion exchange membrane decomposes. After the imbibing liquid adhering to the original ion exchange membrane has polymerized, it is preferable to peel off the membrane-like coating material. Even if the cellulose-based or polyvinyl alcohol-based film-like coating material is not removed and the next ion-exchange group introduction reaction is performed as it is, there may be no problem in introducing the ion-exchange group. For example, if the membrane-like coating material decomposes during the sulfonation reaction, it will be naturally removed during the reaction, and the amination reaction will proceed even in the presence of the membrane-like coating material, and it will peel off after the reaction. You may. However, generally, the ion exchange group introduction reaction is carried out after the film-like coating material is peeled off and removed. For the introduction of the ion exchange group, conventionally known means can be employed without any restrictions. For example, hydrolysis, oxidation, reduction, sulfonation, amination, alkylation, etc. The composite ion exchange membrane thus produced is used in various fields depending on its purpose. To describe some examples of the composite ion exchange membrane of the present invention, for example, the composite ion exchange membrane made by the method of the present invention, which has anisotropy in the concentration of ion exchange groups with respect to the cross section of the membrane, has low electrical resistance, It has excellent mechanical strength, and when the fixed ion concentration is increased only in the surface layer, it exhibits extremely high selectivity between ions of opposite signs in electrodialysis of highly concentrated salt, acid, and base solutions and as a diaphragm for electrolytic reactions. Alternatively, if layers with opposite charges are formed, a bipolar membrane is formed, which exhibits high hydrolysis efficiency over a long period of time. Alternatively, it also exhibits monovalent ion selective permselectivity, and forming a thin layer of opposite charge with a high fixed ion concentration generally reduces the multivalent ion permeability ability in regions of high salt concentration to the conventional singly charged ion selectivity. Although it is inferior to membranes, it is effective even in high-concentration conditions, and is effective in removing harmful ions such as calcium, magnesium, and strontium that are present in high-concentration saline solutions, such as when used in saline electrolysis. It has the ability to laterally exclude multivalent ions even if they contain species. The composite ion exchange membrane produced by the method of the present invention can be used in all processes using conventionally known ion exchange membranes. Also known as electrodialysis, electrolysis,
It can be applied to all devices such as diffusion dialysis, reverse osmosis, ultra-dialysis, ion electrodes, etc. The content of the present invention will be explained with reference to the following examples, but the content of the present invention is not restricted in any way by the following examples. In addition, in the example,
The electrical resistance of the membrane is 1 at 25,000 in 0.5N saline.
000 cycles of AC.

輸率は0.5規定食塩水と2.5規定食塩水の間に膜を
はさんで25.0ooで測定した膜電位からネルンスト
の式を用いて計算した値である。膜の陽イオン交換容量
は塩酸で酸型にした膜を0.8規定食塩水に平衡にし、
イオン交換した水素イオンを1/1の規定か性ソーダで
通定して求めた。膜の陰イオン交換容量は膜を1規定塩
酸に浸潰して塩素イオン型としたのちに、メタノールで
充分に洗液して腰に吸着した塩素イオンを除去したのち
、0.2規定硝酸ソーダ溶液で数回膜の塩素イオンを溶
出し、この量を分析して求めた。膜の含水率はナトリウ
ム型或は塩素イオン型の膜の湿潤重量を測定し、次いで
80qCで2時間空気乾燥器中で乾燥し、塩化カルシウ
ムを乾燥剤としたデシケータ中に保存後秤量し、これを
乾燥膜重量とし、湿潤重量と乾燥膜重量の差を乾燥膜重
量で除して求めた。交換容量は乾燥膜(Na型またはC
I型)1グラムあたりの交換容量で表示した。次いで膜
性能の評価のために海水濃縮を実施した。
The transport number is a value calculated using the Nernst equation from the membrane potential measured at 25.0 oo by inserting a membrane between 0.5N saline and 2.5N saline. The cation exchange capacity of the membrane is determined by equilibrating the membrane in acid form with hydrochloric acid and 0.8N saline.
The ion-exchanged hydrogen ions were determined using 1/1 normal caustic soda. The anion exchange capacity of the membrane is determined by immersing the membrane in 1N hydrochloric acid to form a chloride ion type, washing thoroughly with methanol to remove the chlorine ions adsorbed on the membrane, and then soaking the membrane in 0.2N sodium nitrate solution. The chloride ions were eluted from the membrane several times and the amount was determined by analysis. The moisture content of the membrane is determined by measuring the wet weight of the sodium type or chloride ion type membrane, then drying it in an air dryer at 80 qC for 2 hours, storing it in a desiccator using calcium chloride as a desiccant, and then weighing it. was determined as the dry membrane weight, and the difference between the wet weight and the dry membrane weight was divided by the dry membrane weight. Exchange capacity is determined by dry membrane (Na type or C
Type I) Expressed as exchange capacity per gram. Seawater concentration was then performed to evaluate membrane performance.

海水は徳山湾の海水をサンドフィルターで猿過したあと
、塩酸添加してpHを5.5〜6.01こ調整して用い
た。平均の海水の中の塩素イオン濃度は0.496規定
であった。温度は3000に制禦した。電気透析槽は有
効通電面積ld力の締付型電気透析槽で海水側の厚みは
1仇ゆで濃縮液は各対毎に溢出するようにしたものであ
る。電流密度3A/d〆で海水流速は膜面に対して6伽
Seで1であった。連続的に濃縮し平衡になったのちに
数回サンプリンして、その平均値でもつて示した。なお
純塩率はそのものの膜について測定し、次いでポリエチ
レンィミンの20■mの水溶液を膜面に対して2肌se
c‐1の流速で4時間接触させたのち再び純塩率を測定
したものである。
Seawater from Tokuyama Bay was filtered through a sand filter, and then hydrochloric acid was added to adjust the pH to 5.5 to 6.01 before use. The average chloride ion concentration in seawater was 0.496 normal. The temperature was controlled to 3000. The electrodialysis tank is a clamping type electrodialysis tank with an effective current-carrying area of 1d force, and the thickness of the seawater side is 1 mm, so that the concentrated liquid overflows from each pair. At a current density of 3 A/d, the seawater flow velocity was 1 at 6 Se relative to the membrane surface. After continuous concentration and equilibrium, samples were taken several times and the average value is also shown. The pure salt rate was measured on the membrane itself, and then a 20 μm aqueous solution of polyethyleneimine was applied to the membrane surface twice.
The pure salt ratio was measured again after contacting for 4 hours at a flow rate of c-1.

実施例 1 スチレン6碇部、純度55%のジピニルベンゼン6部、
ジオクチルフタレ−ト23部、ポリ塩化ビニル微粉末2
碇部!こ1部のペンゾィルパーオキサィドを混合して調
整した粘滴なべースト状混合物を満たしたバットの中を
ポリ塩化ビニル製の平織布を連続的にくぐらせて該ペー
スト状物を平織布に均一に付着させ、次いでこれにポリ
ビニルアルコール製のフィルムを重ね合わせて、過剰の
ペースト状混合物をニップロールでいまり取り、連続的
にロールに巻取った。
Example 1 6 parts of styrene, 6 parts of dipinylbenzene with a purity of 55%,
23 parts of dioctyl phthalate, 2 parts of polyvinyl chloride fine powder
Ikaribe! A plain woven polyvinyl chloride cloth was passed continuously through a vat filled with a sticky paste-like mixture prepared by mixing 1 part of penzoyl peroxide. It was applied uniformly to a plain woven cloth, and then a polyvinyl alcohol film was superimposed thereon, and the excess paste-like mixture was taken up with a nip roll and continuously wound up on the roll.

次いで、これを110ooのオートクレープ中に4時間
放置して重合させ、ポリビニルアルコール製のフィルム
をはぎとり高分子膜状物(原イオン交換膜)とした。次
いでこの高分子膜状物を第1図に示した装置によって複
合イオン交換膜の原膜を製造した。即ちロールはいづれ
も長さ90伽でロール1は直径20伽、ロール2は直径
20肌でポリビニルアルコールの0.02肌のフイルム
をまきつけてあった。綿付ロールは直径10弧で約lk
9′cめで締め付けた。膜の送り速度は2のノmjnで
あった。浸債液としてはスチレン6碇郡、純度約55%
のジビニルベンゼン30部に約1.5音Bのペンゾィル
パーオキサィドを溶解したものであった。約50のを巻
取り、充分に巻締めたあと、オートクレープ中で窒素雰
囲気下、11000で4時間加熱重合してポリビニルア
ルコール製のフィルムをはぎとり高分子膜状物を得た。
これをポリエチレン製のネットに巻いて硫酸とクロルス
ルホン酸が1:1であるスルホン化俗に50q○で45
分間浸潰し、次いで常温の濃硫酸に浸潰し、80%硫酸
、40%硫酸、水、2.5規定のカー性ソーダに約1時
間づつ浸潰し本発明のイオン交換膜とした。なお比較の
ために本発明の製造方法を実施する際に用いた高分子膜
状物(原イオン交換膜)をそのまま上と同じ条件でスル
ホン化処理した。得られた本発明の膜と比較のための膜
の性質を第1表に示した。なお表中の数字は膜中10ケ
所をサンプIJングして測定したものの算術平均値であ
る。具体的に膜の電気抵抗で示すと、本発明の膜は士0
.20−の、比較のための膜は±0.30一塊の範囲内
にあった。第1表米1 明細書毒串銭の方法でポリエチ
レンィミン処理した物縄率を浦。
Next, this was left in a 110 oo autoclave for 4 hours to polymerize, and the polyvinyl alcohol film was peeled off to obtain a polymer membrane (original ion exchange membrane). Next, a raw membrane of a composite ion exchange membrane was produced from this polymeric membrane using the apparatus shown in FIG. That is, each roll had a length of 90 mm, roll 1 had a diameter of 20 mm, and roll 2 had a diameter of 20 mm and was wrapped with a 0.02 mm polyvinyl alcohol film. The roll with cotton has a diameter of 10 arcs and is approximately lk.
I tightened it to 9'c. The membrane feed rate was 2 mjn. The bonding liquid is styrene, purity approximately 55%.
It was prepared by dissolving penzoyl peroxide of approximately 1.5 tones B in 30 parts of divinylbenzene. After about 50 rolls were wound up and sufficiently tightened, the polyvinyl alcohol film was peeled off by heating and polymerizing in an autoclave at 11,000 in a nitrogen atmosphere for 4 hours to obtain a polymer film.
This is wrapped in a polyethylene net and sulfonated with sulfuric acid and chlorosulfonic acid in a ratio of 1:1.
The membrane was soaked for 1 minute, then in concentrated sulfuric acid at room temperature, and then soaked in 80% sulfuric acid, 40% sulfuric acid, water, and 2.5 N carbon soda for about 1 hour each to obtain the ion exchange membrane of the present invention. For comparison, the polymer membrane (original ion exchange membrane) used in carrying out the production method of the present invention was subjected to sulfonation treatment under the same conditions as above. Table 1 shows the properties of the obtained membranes of the present invention and comparative membranes. The numbers in the table are the arithmetic average values of measurements taken by sampling at 10 locations in the film. Specifically, the membrane of the present invention has an electrical resistance of 0.
.. 20-, comparative membranes were within ±0.30 blocks. Table 1: 1. The rate of rope treated with polyethyleneimine using the method described in the specification.

海液擬の船に用い雌イオ雛蝋燭 山曹達蓋山製燈のネオセブタAFS‐4Tを用いた.,
実施例 2実施例1で用いたスチレン、ジビニルベンゼ
ン、ポリ塩化ビニル等を主成分としたペースト状混合物
をポリ塩化ビニル製の布に付着させ、表面にポリビニル
アルコール製のシートを重ねて重合した得た高分子膜状
物(原イオン交換膜)を第3図に示す装置を用いて本発
明の複合イオン交換膜の原腰を製造した。
A Neo Sebuta AFS-4T manufactured by Hina Watakuzan Soda Futoshiyama was used for the sea liquid simulation ship. ,
Example 2 The paste-like mixture mainly composed of styrene, divinylbenzene, polyvinyl chloride, etc. used in Example 1 was adhered to a polyvinyl chloride cloth, and a polyvinyl alcohol sheet was layered on the surface to polymerize it. A raw material of the composite ion exchange membrane of the present invention was manufactured using the apparatus shown in FIG.

即ち、ロールの長さはいづれも90cmでありロールー
は直径30肌、ロール2及び3は直径20cmで、締め
付けロールである4は直径10cmであった。ロ−ル2
には各々長さ0,05伽のポリエステルフィルム(商品
名;テトロン)を巻きつけた。ロール3に原イオン交換
膜をとりつけた。浸債液としては純度約55%のジピニ
ルベンゼン2碇部と4ービニルピリジン6碇部の混合液
にスチレンーブタジェンの共重合体ゴムを3部熔解し、
更に1部のペンゾィルパーオキサィドを熔解した。これ
を浸債液バット7に入れ、ロール3に巻いた原イオン交
換膜を送り速度5の/minで浸潰し、ロール4によっ
て互に0.5【9/のの圧力で締めつけ、ポリエステル
フィルムと積層してロール1に巻取った。充分に巻き締
めたあと80qoのオートクレープ中に入れ窒素雰囲気
下で4時間加熱して重合させた。次いでポリエステルフ
ィルムを剥ぎ取り高分子膜状物を得た。次いでこれをま
ず98%の硫酸と90%のクロルスルホン酸の1:1の
溶液に50qoで浸潰しクロルスルホン化処理をしたの
ち、常温の硫酸、80%硫酸、40%硫酸、水、2.5
規定のか性ソーダにそれぞれ1時間づっ浸潰した。次い
でョウ化メチル4の都、n−へキサン6礎都からなるア
ルキル化格に浸潰し、表層部のピリジン環をアルキル化
して本発明のイオン交換膜とした。本発明のイオン交換
膜を二室セルに組込んで4−ビニルピリジンを付着重合
した膜面を陽極に向けて両室に0.5規定食塩水を満た
して1.0A/dあの電流を流して両室のpHを測定し
た。
That is, the length of the rolls was all 90 cm, the roll was 30 cm in diameter, rolls 2 and 3 were 20 cm in diameter, and the tightening roll 4 was 10 cm in diameter. roll 2
Each was wrapped with a polyester film (trade name: Tetron) having a length of 0.05 mm. The original ion exchange membrane was attached to roll 3. As the soaking liquid, 3 parts of styrene-butadiene copolymer rubber was dissolved in a mixed solution of 2 parts of dipinylbenzene and 6 parts of 4-vinylpyridine with a purity of about 55%.
Additionally, 1 part of penzoyl peroxide was melted. This is placed in a soaking liquid vat 7, and the raw ion exchange membrane wound around the roll 3 is soaked at a feed rate of 5/min, and the rolls 4 are tightened together with a pressure of 0.5 [9/min] to form a polyester film. The layers were laminated and wound into roll 1. After sufficiently tightening, it was placed in an 80 qo autoclave and heated under a nitrogen atmosphere for 4 hours to polymerize. Next, the polyester film was peeled off to obtain a polymer film. Next, this was first immersed in a 1:1 solution of 98% sulfuric acid and 90% chlorosulfonic acid at 50 qo for chlorosulfonation treatment, and then sulfuric acid at room temperature, 80% sulfuric acid, 40% sulfuric acid, water, 2. 5
Each was soaked in the specified caustic soda for 1 hour. The membrane was then immersed in an alkylated solution consisting of 4 bases of methyl iodide and 6 bases of n-hexane, and the pyridine ring in the surface layer was alkylated to obtain the ion exchange membrane of the present invention. The ion exchange membrane of the present invention was assembled into a two-chamber cell, and with the membrane surface on which 4-vinylpyridine was attached and polymerized facing the anode, both chambers were filled with 0.5N saline and a current of 1.0 A/d was applied. The pH of both chambers was measured.

第2表に膜性質を示した。尚、比較のための膜は、原イ
オン交換膜をそのままスルホン化処理したものである。
第2表実施例 3 スチレン1碇部、クロルメチルスチレン8の郡、純度約
55%のジビニルベンゼン1の郡の混合溶液にアクリロ
ニトリルとブタジェンの共重合ゴムを5部溶解した粘鋼
としたペースト状混合物にペンゾィルパーオキサィド2
部を溶解した。
Table 2 shows the membrane properties. The membrane for comparison is the original ion exchange membrane which has been subjected to sulfonation treatment.
Table 2 Example 3 A sticky steel paste made by dissolving 5 parts of copolymer rubber of acrylonitrile and butadiene in a mixed solution of 1 part of styrene, 8 parts of chloromethylstyrene, and 1 part of divinylbenzene with a purity of about 55%. Penzoyl peroxide 2 to the mixture
part was dissolved.

これを浸債液バット7に満たし、このペースト状混合物
の中をポリ塩化ビニル製の平織布をくぐらせて、該べ−
スト状混合物を布に均一に付着させ、次いでこれにポリ
ビニルアルコール製のフィルムを重ね合せ、同時にニツ
プロールで過剰のペースト状混合物は除いて、連続的に
ロールに巻き取った。次いで80こ○で窒素雰囲気下に
オートクレープ中で8時間加熱重合した後、ロールから
剥ぎとり、ポリピニルアルコール製のシートを剥がして
高分子膜状物(原イオン交換膜)を得た。この高分子膜
状物を第5図に示す塗布装置の。
Fill the soaking liquid vat 7 with this mixture, pass a polyvinyl chloride plain woven cloth through the paste mixture, and
The strip-like mixture was uniformly adhered to a cloth, and then a polyvinyl alcohol film was superimposed thereon, and at the same time, excess paste-like mixture was removed using a nip roll, and the cloth was continuously wound onto a roll. After polymerization was then carried out by heating in an autoclave at 80 °C for 8 hours under a nitrogen atmosphere, the film was peeled off from the roll and the polypynyl alcohol sheet was peeled off to obtain a polymer membrane (original ion exchange membrane). This polymer film-like material is coated in a coating apparatus shown in FIG.

ール3にセットした。各ロールは長さはいづれも90c
mで、直径はロール1が30伽、ロール2が20肌、ロ
ール4が10伽、ロール5が5伽であった。浸債液とし
てはスチレン2碇部、クロルメチルスチレン5礎都、純
度約55%のジビニルベンゼン3碇部にペンソーィルパ
ーオキサィド3部を溶解した溶液を用いた。この浸債液
の中を第5図に示すようにポリビニルアルコール製のシ
ートをくぐらせて、ロール1にまきとって、充分に巻き
締めたのち、8000のオートクレープ中で窒素雰囲気
で8時間熱加重合した。次いでこの膜をトリメチルアミ
ン20部、水4礎部、アセトン40部の中に16時間(
25二○)浸潰してクロルメチル基をアミノ化処理して
陰イオン交換膜とした。得られた膜の性質は第3表に示
している。比較のための膜は浸濃処理する前の原イオン
交換膜をそのまま本発明と同じアミノ化処理をしたもの
である。第3表米1 海水濃縮の際の陽イオン交換膜と
しては億皿曹達液難陣封のネオセプタOH‐45Tを用
いた。
I set it to rule 3. Each roll is 90cm long
m, and the diameters were 30 mm for roll 1, 20 mm for roll 2, 10 mm for roll 4, and 5 mm for roll 5. The dipping solution used was a solution in which 3 parts of pensol peroxide was dissolved in 2 parts of styrene, 5 parts of chloromethylstyrene, and 3 parts of divinylbenzene having a purity of about 55%. As shown in Figure 5, a polyvinyl alcohol sheet was passed through the soaking solution, wrapped around roll 1, and tightly wrapped, and then heated in a nitrogen atmosphere for 8 hours in an 8000 autoclave. Polymerized. The membrane was then placed in 20 parts of trimethylamine, 4 parts of water, and 40 parts of acetone for 16 hours (
252○) An anion exchange membrane was obtained by soaking and aminating the chloromethyl groups. The properties of the membrane obtained are shown in Table 3. The membrane for comparison is a raw ion exchange membrane that has been subjected to the same amination treatment as in the present invention before being subjected to the immersion treatment. Table 3: 1 Neocepta OH-45T manufactured by Nissara Soda Liquid Nanjinfu was used as the cation exchange membrane during seawater concentration.

実施例 4ポリ塩化ビニル微粉末10礎部、4−ビニル
ピリジン16碇都、スチレン1碇郡、純度約55%のジ
ビニルベンゼン1碇都、ジオクチルフタレート25部を
混合して得たペースト状混合物にペンゾィルパーオキサ
ィド3部を均一に溶解した。
Example 4 A paste-like mixture obtained by mixing 10 parts of polyvinyl chloride fine powder, 16 parts of 4-vinylpyridine, 1 part of styrene, 1 part of divinylbenzene with a purity of about 55%, and 25 parts of dioctyl phthalate. 3 parts of penzoyl peroxide was uniformly dissolved.

これを連続的にポリプロピレン製の平織布(75デニー
ルの糸をタテ・ョコともにィンチあたり50本打ち込ん
だもの)に付着させて表面をポリエステル(帝人製のテ
トロン)の0.025側の厚みのフィルムでおおし・、
過剰の付着したペースト状物を除きながら、直径20伽
のドラムに巻き締め、次いで8000まで4時間かけて
昇温し、更に4時間加熱重合させた。次いで表面のポリ
エステルフィルムを剥ぎ取り高分子膜状物を得た。この
高分子膜状物をn−へキサン6碇部とョワ化メチル4戊
郭(重量比)のアルキル化俗に浸潰しピリジン環をアル
キル化したのち充分に1規定塩酸で洗液し塩素イオン型
の陰イオン交換膜とした。次いでこの膜を減圧乾燥した
のちに第2図に記載の装置によって本発明のイオン交換
膜とした。第2図の各ロールは長さは90肌でロール1
は直径30肌、ロール2,3は直径20肌、ロール4は
直径10弧であった。上で得た減圧乾燥後の陰イオン交
換膜をロール3にとりつけ、ロール2には厚さが0.0
25柳のポリエステルフィルムをとりつけて各々送り速
度2m/minで浸簿液の中をくぐらせた。浸債液はイ
オン交換膜及びポリエステルフィルムのいづれに用いる
ものもスチレン1碇部、クロルメチルスチレン7の部、
純度約55%のジビニルベンゼン2碇都1こペンゾイル
パーオキサィド3部を熔解したものを用いた。充分に陰
イオン交換膜に浸糟液を浸み込ませたのち、ロール1に
巻き取り、巻き締めた。次いでこれを8000の窒素雰
囲気にあるオートクレープ中で1印時間加熱して重合せ
しめた。次いで、ポリエステルフィルムを剥がして得た
高分子膜状物を、トリメチルァミン2碇部、アセトン5
拍部、水3悦部からなる俗に浸潰してアミノ化処理して
本発明の陰イオン交換膜とした。本発明の陰イオン交換
膜の性質は第4表に示す。尚、比較のための陰イオン交
換膜は原イオン交換膜を用いた場合である。第4表 米1 海芯濃縮にあたつり場イオン交換膜としては.薦
肌曹達横製のネオセプタOH−45Tを用いた。
This was continuously attached to a polypropylene plain woven cloth (50 75 denier threads per inch both vertically and horizontally), and the surface was made with a thickness of 0.025 side of polyester (Teitoron manufactured by Teijin). Cover with a film of...
While removing the excess adhered paste, the mixture was wound around a drum having a diameter of 20 mm, and the temperature was then raised to 8,000 ℃ over 4 hours, followed by heating and polymerization for an additional 4 hours. Next, the polyester film on the surface was peeled off to obtain a polymer membrane. This polymer membrane was soaked in an alkylation solution of 6 parts of n-hexane and 4 parts of methyl chloride (weight ratio) to alkylate the pyridine ring, and then thoroughly washed with 1N hydrochloric acid and chlorinated. It is an ionic type anion exchange membrane. Next, this membrane was dried under reduced pressure, and then used in the apparatus shown in FIG. 2 to obtain the ion exchange membrane of the present invention. Each roll in Figure 2 has a length of 90 skins and 1 roll.
had a diameter of 30 skins, rolls 2 and 3 had a diameter of 20 skins, and roll 4 had a diameter of 10 arcs. The anion exchange membrane obtained above after drying under reduced pressure was attached to roll 3, and roll 2 had a thickness of 0.0.
25 pieces of polyester film were attached and passed through the immersion liquid at a feeding speed of 2 m/min. The soaking liquid used for both ion exchange membranes and polyester films contains 1 part of styrene, 7 parts of chloromethylstyrene,
A mixture of two parts of divinylbenzene and one part of penzoyl peroxide having a purity of about 55% was used. After sufficiently impregnating the anion exchange membrane with the impregnating solution, it was wound up onto a roll 1 and tightened. This was then heated in an autoclave in a nitrogen atmosphere at 8,000 ℃ for 1 hour to polymerize. Next, the polymer membrane obtained by peeling off the polyester film was treated with 2 parts of trimethylamine and 5 parts of acetone.
The anion exchange membrane of the present invention was obtained by soaking and aminating the membrane, which consisted of a pulse part and three water parts. The properties of the anion exchange membrane of the present invention are shown in Table 4. The anion exchange membrane used for comparison is the original ion exchange membrane. Table 4 Rice 1: As an ion exchange membrane for sea core concentration. Neocepta OH-45T manufactured by Kohada Soda Yoko was used.

実施例 5ポリ塩化ビニルの0.1肌のシートをスチレ
ン20部、純度約55%のジビニルベンゼン5部、ジオ
クチルフタレート1碇部、ジオキサン3の織こペンゾイ
ルパーオキサィド0.5部を溶解したものの中に浸潰し
、含浸、膨潤させたのち、これをセロフアンで重ね合わ
せて巻取り、巻き締め、110qoにオートクレープ中
で窒素雰囲気で加熱重合して後、セロフアンフィルムを
はぎとり高分子膜状物を得た。
Example 5 A sheet of 0.1 skin of polyvinyl chloride was dissolved in 20 parts of styrene, 5 parts of divinylbenzene with a purity of about 55%, 1 part of dioctyl phthalate, and 0.5 part of woven penzoyl peroxide with 3 parts of dioxane. After soaking, impregnating, and swelling in the polymer membrane, this was layered with cellophane, rolled up, tightened, heated and polymerized in an autoclave to 110 qo in a nitrogen atmosphere, and then the cellophane film was peeled off to form a polymer membrane. I got something like that.

これを98%の6000の濃硫酸中に1幼時間浸潰して
スルホン化処理し陽イオン交換膜(原イオン交換膜)と
した。さて、この陽イオン交換膜を第8図に示されてい
る方法に従って本発明の陽イオン交換膜とした。
This was sulfonated by soaking it in 98% 6000 concentrated sulfuric acid for 1 hour to obtain a cation exchange membrane (original ion exchange membrane). Now, this cation exchange membrane was made into a cation exchange membrane of the present invention according to the method shown in FIG.

即ち各々90肌の長さのロールを有し、ロール1が直径
30cm、ロール2,3が20肌、ロール4が10仇で
、ロール3に陽イオン交換膜をとりつけ、ロール2には
セロフアンをそれぞれとりつけた。次いで浸債液として
はスチレン2の部、メタクリル酸2碇郭、純度約55%
のジビニルベンゼン15部にラゥロィルパーオキサィド
1部を溶解したものを用い、腸イオン交換膜の送り速度
1の/minでセロフアンのフィルムを浸債液にくぐら
せて、該陽ィオン交換膜面上に重ね合わせ、ロール1に
巻き取った。次いでこれを100qoの窒素雰囲気にあ
るオートクレープ中に入れ加熱重合して高分子膜状物と
した。これを6.の規定のか性ソーダ中に浸潰して表層
部のカルボン酸基をカルボン酸ソーダに変換した。膜の
性質は第5表に示す。尚、表中比較のための膜とあるの
は原イオン交換膜そのものである。
That is, each roll has a length of 90 cm, roll 1 has a diameter of 30 cm, rolls 2 and 3 have a diameter of 20 cm, and roll 4 has a diameter of 10 cm. Roll 3 is equipped with a cation exchange membrane, and roll 2 is coated with cellophane. I installed each one. Next, the soaking liquid was 2 parts styrene, 2 parts methacrylic acid, and had a purity of about 55%.
Using a solution of 1 part of lauroyl peroxide dissolved in 15 parts of divinylbenzene, a film of cellophane was passed through the soaking solution at a feed rate of 1/min to form the cation exchange membrane. It was superimposed on the surface and wound up into roll 1. Next, this was placed in an autoclave in a 100 qo nitrogen atmosphere and polymerized by heating to form a polymer film. This is 6. The carboxylic acid groups on the surface layer were converted to sodium carboxylate by soaking them in the specified caustic soda. The properties of the membrane are shown in Table 5. Note that the membrane for comparison in the table is the original ion exchange membrane itself.

第5表 *1 食塩電解を実施した結果である。Table 5 *1 This is the result of performing salt electrolysis.

即ち、陽極室、中間室、陰極室を備えた三室式の食塩電
解槽(有効通電面積:ld淋)を用い、陽極としてはチ
タンのラス材に酸化チタンとルテニウムオキサイドをコ
ーティングしたもの、陰極としては軟鉄のラス材を用い
た。
In other words, a three-chamber salt electrolyzer (effective current carrying area: LD) was used, which was equipped with an anode chamber, an intermediate chamber, and a cathode chamber; the anode was a titanium lath coated with titanium oxide and ruthenium oxide, and the cathode was used soft iron lath material.

電流密度20A/d〆で陽極室、中間室には飽和食塩水
を供給し、陰極室から6規定のか性ソーダを取得した。
取得したか性ソーダの濃度と液量及び理論通電量から電
流効率を求めた。尚、電解時の温度は70こ0であった
。実施例 6 実施例1で得たスチレンージビニルベンゼン系のポリ塩
化ビニル製の布を補強材とした高分子膜状物を実施例1
と同様の第1図の塗布装置によって、本発明のイオン交
換膜とした。
Saturated saline was supplied to the anode chamber and the intermediate chamber at a current density of 20 A/d, and 6N caustic soda was obtained from the cathode chamber.
The current efficiency was determined from the concentration and liquid volume of the caustic soda obtained and the theoretical current flow rate. The temperature during electrolysis was 70°C. Example 6 A polymer membrane material using the styrene-divinylbenzene-based polyvinyl chloride cloth obtained in Example 1 as a reinforcing material was prepared in Example 1.
The ion exchange membrane of the present invention was prepared using a coating apparatus similar to that shown in FIG.

即ち浸債液としては4−ビニルピリジン10の部、純度
55%のジビニルベンゼン2戊部もこペンゾイルパーオ
キサイド1部を加えたものを用いた。膜状被覆材として
は0.02肋のポリビニルアルコール製のシートを用い
た。高分子膜状物の送り速度は遅く0.1m/minと
して高分子膜状物の中に充分に均一に浸み込ませた。次
いで巻取りロールーに巻取り、巻き締めたあと約6時間
室温でロールを回転させ、更に充分に高分子膜状物の断
面に関して均一に浸み込ませたあと、窒素雰囲気で70
℃で1幼時間加熱重合した。次いでポリピニルアルコー
ル製のシートを剥ぎとり得られた高分子膜状物を実施例
1と同様に硫酸−クロルスルホン酸からなるスルホン化
俗でスルホン化処理して、順次希釈液に浸債処理したあ
と、2.5規定カ性ソーダで洗修して、スルルホン酸基
と第三級ァミノ基を有する両性イオン交換膜とした。更
にこの膜をよう化メチル4の郡、メタノール6碇部から
なるアルキル化格に浸潰してピリジン環をアルキル化処
理して第四級アンモニウム塩基とした。この膜をクリス
タルバイオレットの0.5%水溶液に浸潰して、平衡に
して膜断面の染色を調べたところ、均一に紫色に染色さ
れていた。次いでこれを0.5規定食塩水に充分に平衡
にしたあと、水洗し、0.2規定の硝酸カリウム溶液に
液を取りかえながらくり返し浸潰し、膜のナトリウムィ
オオン、塩素イオンをカリウムイオン、硝酸イオンと交
換させ、熔出してきたナトリウムイオンを塩素イオンを
それぞれ分析して腸イオンと陰イオンの交換容量を測定
した。第6表に得られた膜の性質を示す。第6表実施例
7 実施例1で用いたポリ塩化ビニル製の布が補強材として
入っている高分子膜状物(原イオン交換膜)を実施例2
と同様にして、第3図に示す塗布側置を用いて、本発明
のイオン交換膜とした。
That is, the dipping solution used was 10 parts of 4-vinylpyridine, 2 parts of divinylbenzene with a purity of 55%, and 1 part of penzoyl peroxide. As the membrane-like covering material, a polyvinyl alcohol sheet having a thickness of 0.02 ribs was used. The feeding speed of the polymer film was slow, 0.1 m/min, to allow it to penetrate sufficiently and uniformly into the polymer film. Next, it was wound onto a take-up roll, and after being tightened, the roll was rotated at room temperature for about 6 hours, and the cross section of the polymer membrane was sufficiently soaked evenly, and then it was heated for 70 minutes in a nitrogen atmosphere.
Polymerization was carried out by heating at ℃ for 1 hour. Next, the polypynyl alcohol sheet was peeled off, and the resulting polymer membrane was sulfonated using a sulfonating compound consisting of sulfuric acid and chlorosulfonic acid in the same manner as in Example 1, and then sequentially immersed in a diluted solution. After that, the membrane was washed with 2.5N caustic soda to obtain an amphoteric ion exchange membrane having sulfonic acid groups and tertiary amino groups. Furthermore, this membrane was immersed in an alkylation system consisting of 4 parts of methyl iodide and 6 parts of methanol to alkylate the pyridine ring to form a quaternary ammonium base. When this membrane was immersed in a 0.5% aqueous solution of crystal violet and allowed to equilibrate, the cross section of the membrane was examined for staining, and was found to be uniformly stained purple. Next, this was sufficiently equilibrated with 0.5N saline solution, washed with water, and repeatedly soaked in 0.2N potassium nitrate solution while changing the solution. The exchange capacity of intestinal ions and anions was measured by exchanging sodium ions with ions and analyzing the dissolved sodium ions and chloride ions. Table 6 shows the properties of the obtained membrane. Table 6 Example 7 The polymer membrane material (original ion exchange membrane) containing the polyvinyl chloride cloth used in Example 1 as a reinforcing material was used in Example 2.
In the same manner as above, the ion exchange membrane of the present invention was prepared using the coating side shown in FIG.

即ち浸債液としては、4−ビニルピリジン5$部、スチ
レン4碇都1こ純度約55%のジビニルベンゼン2碇部
を混合し、これにペンゾィルパーオキサィド2部を混合
したものを用いた。また膜状被覆材としては、0.02
側のセルロース系のフィルム(セロフアン)を用いた。
高分子膜状物の送り速度は15肌/minとして、該膜
状物の表層部近傍のみに浸透せしめるようにして、セロ
フアンフイルムを重ね合わせ、巻取りロール1に巻取り
、手早くオートクレープに入れ、窒素雰囲気で100q
oで4時間加熱重合して高分子膜状物を得た。この膜の
増加は4%であった。次いでこれを98%濃硫酸の60
00に調整したものの中に1幼時間浸潰してスルホン化
処理した。次いで、よう化メチル4俵郭、n−へキサン
6碇部(重量比)の中に2500で1観音間浸潰して、
膜表層部のピリジン環をアルキル化処理して本発明の腸
イオン交換膜とした。本発明の陽イオン交換膜は膜の中
心部及び裏面にはスルホン酸基が主に存在し、膜の片方
の表層部のみ四級アンモニウム塩基とスルホン酸基が混
合して存在する層が形成されていると思われる。これの
確認のためにクリスタルバイオレットの0.5%水溶液
に本発明の膜を浸潰し染色し断面を観察したところ、浸
債液を付着重合させた膜面のみ、約10ミクロンの厚み
で染色度が弱くなっていた。第7表に測定した膜の性質
を示している。比較のための膜は原イオン交換膜を本実
施例と同じ条件でスルホンン化したものである。
That is, the soaking liquid was prepared by mixing 5 parts of 4-vinylpyridine, 4 parts of styrene, 1 part of divinylbenzene with a purity of about 55%, and 2 parts of penzoyl peroxide. was used. In addition, as a membrane coating material, 0.02
A cellulose-based film (cellophane) was used on the side.
The feeding speed of the polymer film was set at 15 skins/min so that the cellophane film penetrated only into the vicinity of the surface layer of the film, and the cellophane film was overlapped, wound onto the winding roll 1, and quickly autoclaved. 100q in nitrogen atmosphere
Polymerization was carried out by heating at 300° C. for 4 hours to obtain a polymer film. This film increase was 4%. This was then dissolved in 60% of 98% concentrated sulfuric acid.
The sample was immersed in a solution adjusted to 0.00 for 1 hour for sulfonation treatment. Next, it was immersed in 4 bags of methyl iodide and 6 parts of n-hexane (weight ratio) at 2,500 ml for 1 hour,
The intestinal ion exchange membrane of the present invention was obtained by alkylating the pyridine ring in the surface layer of the membrane. In the cation exchange membrane of the present invention, sulfonic acid groups are mainly present in the center and back surface of the membrane, and a layer containing a mixture of quaternary ammonium bases and sulfonic acid groups is formed only in one surface layer of the membrane. It seems that To confirm this, the membrane of the present invention was immersed in a 0.5% aqueous solution of crystal violet and stained, and the cross section was observed. Only the surface of the membrane to which the immersion liquid had adhered and polymerized had a thickness of about 10 microns, and the degree of staining was was getting weaker. Table 7 shows the properties of the membranes measured. The membrane for comparison was an original ion exchange membrane sulfonated under the same conditions as in this example.

第7表 *1 海水濃縮にあたっては陰イオン交換膜として徳山
曹達■製 ネオセプタ AFS−4T(商品名)を用い
た。
Table 7 *1 Neocepta AFS-4T (trade name) manufactured by Tokuyama Soda ■ was used as an anion exchange membrane for seawater concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第8図は本発明の複合イオン交換膜を製造する
ときの代表的な原理図である。 図中各数字は次ぎの態様を示す。1は巻取りロール、2
は膜状被覆材、3は高分子膜状物、4は続付けロール、
5はガイドロール、6はエキスパンダーロール、7は浸
債液バットである。 第1図 第2図 第3図 弟ム図 策5図 多6図 第7図 第8理
FIGS. 1 to 8 are typical principle diagrams for manufacturing the composite ion exchange membrane of the present invention. Each number in the figure indicates the following aspect. 1 is a winding roll, 2
is a film-like coating material, 3 is a polymer film-like material, 4 is a follow-on roll,
5 is a guide roll, 6 is an expander roll, and 7 is an immersion liquid vat. Figure 1 Figure 2 Figure 3 Younger brother's plan Figure 5 Figure 6 Figure 7 Figure 8 Theory

Claims (1)

【特許請求の範囲】 1 膜状被覆材とイオン交換膜或は容易にイオン交換基
を導入出来る高分子膜状物とを別々の保持具に保持し、
膜状被覆材及び/又はイオン交換膜或は容易にイオン交
換基を導入出来る高分子膜状物にビニル基及び/又はア
リール基を有する単量体或は該単量体混合物を連続的に
付着させたのち、膜状被覆材とイオン交換膜或いは容易
にイオン交換基を導入出来る高分子膜状物とを積層し、
次いで該単量体を重合し、必要に応じイオン交換基を導
入することを特徴とする複合イオン交換膜の製造方法。 2 複合イオン交換膜が、該イオン交換膜の少くとも片
面の表層部に固定イオン濃度が高い薄層を形成したもの
である特許請求の範囲1記載の複合イオン交換膜の製造
方法。3 複合イオン交換膜がバイポーラー膜である特
許請求の範囲1記載の複合イオン交換膜の製造方法。 4 膜状被覆材がポリビニルアルコール、ポリエステル
及びセルローズよりなる群から選ばれた1種の膜状被覆
材である特許請求の範囲1記載の複合イオン交換膜の製
造方法。 5 単量体がポリビニル化合物である特許請求の範囲1
記載の複合イオン交換膜の製造方法。
[Claims] 1. Holding a membrane-like coating material and an ion-exchange membrane or a polymer membrane-like material into which ion-exchange groups can be easily introduced in separate holders,
Continuously attaching a monomer having a vinyl group and/or an aryl group, or a mixture of the monomers, to a membrane coating material, an ion exchange membrane, or a polymer membrane into which ion exchange groups can be easily introduced. After that, the membrane coating material and an ion exchange membrane or a polymer membrane into which ion exchange groups can be easily introduced are laminated,
A method for producing a composite ion exchange membrane, which comprises subsequently polymerizing the monomer and introducing an ion exchange group as necessary. 2. The method for producing a composite ion exchange membrane according to claim 1, wherein the composite ion exchange membrane has a thin layer with a high concentration of fixed ions formed on the surface layer of at least one side of the ion exchange membrane. 3. The method for producing a composite ion exchange membrane according to claim 1, wherein the composite ion exchange membrane is a bipolar membrane. 4. The method for producing a composite ion exchange membrane according to claim 1, wherein the membrane coating material is one type of membrane coating material selected from the group consisting of polyvinyl alcohol, polyester, and cellulose. 5 Claim 1 in which the monomer is a polyvinyl compound
A method for manufacturing the composite ion exchange membrane described above.
JP54035029A 1979-03-27 1979-03-27 Manufacturing method of composite ion exchange membrane Expired JPS6028849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54035029A JPS6028849B2 (en) 1979-03-27 1979-03-27 Manufacturing method of composite ion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54035029A JPS6028849B2 (en) 1979-03-27 1979-03-27 Manufacturing method of composite ion exchange membrane

Publications (2)

Publication Number Publication Date
JPS55127437A JPS55127437A (en) 1980-10-02
JPS6028849B2 true JPS6028849B2 (en) 1985-07-06

Family

ID=12430628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54035029A Expired JPS6028849B2 (en) 1979-03-27 1979-03-27 Manufacturing method of composite ion exchange membrane

Country Status (1)

Country Link
JP (1) JPS6028849B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105336U (en) * 1989-02-10 1990-08-22
JPH0550121U (en) * 1991-12-09 1993-07-02 三洋工業株式会社 Pipe cross connector
CN108786482A (en) * 2018-06-05 2018-11-13 福州大学 A kind of quaternary anion-exchange membrane based on photocuring 3D printing technique

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439800B2 (en) 2014-08-29 2018-12-19 株式会社村田製作所 Oscillation circuit and driving method of oscillation circuit
CN104593819A (en) * 2015-01-06 2015-05-06 山东天维膜技术有限公司 Bipolar membrane and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105336U (en) * 1989-02-10 1990-08-22
JPH0550121U (en) * 1991-12-09 1993-07-02 三洋工業株式会社 Pipe cross connector
CN108786482A (en) * 2018-06-05 2018-11-13 福州大学 A kind of quaternary anion-exchange membrane based on photocuring 3D printing technique

Also Published As

Publication number Publication date
JPS55127437A (en) 1980-10-02

Similar Documents

Publication Publication Date Title
US3945927A (en) Ion-exchange group bearing composite membranes
Mizutani Structure of ion exchange membranes
US3737045A (en) Membrane for use in dialysis and ultrafiltration and the production of such member
Tanaka et al. Preparation of aliphatic-hydrocarbon-based anion-exchange membranes and their anti-organic-fouling properties
JP2604734B2 (en) Ion-permeable membrane and method for producing the same
Jin et al. A durable and antifouling monovalent selective anion exchange membrane modified by polydopamine and sulfonated reduced graphene oxide
CA2772306A1 (en) Ion exchange membranes featuring polymer-filled microporous supports
JPH11501964A (en) Composite membrane consisting of partial elements
US11511237B2 (en) Ion-exchange membrane
CA2353378C (en) Anion exchange membrane, process for its production and solution treating apparatus
US6379551B1 (en) Method of removing metal ions using an ion exchange membrane
JPH08506613A (en) Single film membrane, its manufacturing method and its use
JPS6028849B2 (en) Manufacturing method of composite ion exchange membrane
EP1005503B1 (en) Ion exchange membrane
US4806219A (en) Method of double decomposition of neutral salt
CN114699935B (en) Cation exchange membrane modified by polycation composite structure functional layer and preparation method thereof
US2972586A (en) Process for the preparation of permselective membranes from vinyl chloride polymers
JPH04228591A (en) Bipolar membrane and its production
Sata et al. Preparation and transport properties of anion-exchange membranes containing viologen moieties as anion-exchange groups in the presence or absence of photoirradiation
JP7361174B1 (en) Efficient method for producing iodine component-containing aqueous solution using anion exchange membrane
JP2624424B2 (en) Bipolar membrane
Sata et al. Preparation and properties of anion exchange membranes with various pyridinium groups as anion exchange groups
JP2801469B2 (en) Bipolar membrane
US3230273A (en) Selective membranes from rubber hydrochloride and chlorinated rubber
JPS6395235A (en) Production of composite ion exchange membrane