JPS6316420B2 - - Google Patents

Info

Publication number
JPS6316420B2
JPS6316420B2 JP19769082A JP19769082A JPS6316420B2 JP S6316420 B2 JPS6316420 B2 JP S6316420B2 JP 19769082 A JP19769082 A JP 19769082A JP 19769082 A JP19769082 A JP 19769082A JP S6316420 B2 JPS6316420 B2 JP S6316420B2
Authority
JP
Japan
Prior art keywords
cation exchange
exchange membrane
membrane
group
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19769082A
Other languages
Japanese (ja)
Other versions
JPS5989329A (en
Inventor
Michiji Ookai
Tooru Kyota
Kosuke Takeshige
Hideo Shuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP19769082A priority Critical patent/JPS5989329A/en
Priority to US06/550,338 priority patent/US4537910A/en
Publication of JPS5989329A publication Critical patent/JPS5989329A/en
Publication of JPS6316420B2 publication Critical patent/JPS6316420B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は塩化アルカリ水溶液の電解に適した粗
面化陽イオン交換膜の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a roughened cation exchange membrane suitable for electrolysis of an aqueous alkali chloride solution.

陽イオン交換膜による陽極室と陰極室に分割さ
れた電解槽で塩化アルカリ水溶液を電解して、水
酸化アルカリを製造する方法(イオン交換膜法)
において、近年、省エネルギー化が盛んに試みら
れており、特に、電解電圧を極力低くすることに
より、電解電力を低減しようとする方法が注目さ
れている。
A method for producing alkali hydroxide by electrolyzing an aqueous alkali chloride solution in an electrolytic cell divided into an anode chamber and a cathode chamber using a cation exchange membrane (ion exchange membrane method)
In recent years, many attempts have been made to save energy, and in particular, methods of reducing electrolysis power by lowering the electrolysis voltage as much as possible are attracting attention.

その方法としては、従来、陽極や陰極の材質、
組成及び形状を考慮したり、あるいは、用いる陽
イオン交換基の組成やイオン交換膜の種類を特定
化する等種々の手段が提案されているが、いずれ
もそれなりの効果はあるものの、必ずしも工業的
に充分満足し得るものではなかつた。
Conventionally, this method involves determining the material of the anode and cathode,
Various methods have been proposed, such as considering the composition and shape, or specifying the composition of the cation exchange group used and the type of ion exchange membrane, but although all of these methods have certain effects, they are not necessarily suitable for industrial use. was not completely satisfactory.

一方、近年陽極と陰極をできる限り近づけ、両
極間に存在する電解液や気泡の抵抗による電解電
圧部分を極力小さくしようという方法が主流とな
つてきている。その理想的な形態として、陽イオ
ン交換膜と陽、陰極を一体化し極間抵抗を最小に
しようとするSPE電解法と称する方法が提案され
ているが、現在、まだ多くの解決すべき問題を有
しており、工業化は難しい。
On the other hand, in recent years, a method has become mainstream in which the anode and cathode are brought as close as possible to minimize the electrolytic voltage portion due to the resistance of the electrolytic solution or bubbles existing between the two electrodes. As an ideal form of this, a method called SPE electrolysis has been proposed, which attempts to minimize the resistance between the electrodes by integrating the cation exchange membrane with the anode and cathode, but there are still many problems to be solved. industrialization is difficult.

そこで、膜と電極を一体化するのではなく、電
極と膜をできる限り近づけ、あるいは、密接させ
て電解するために、膜表面を処理することが提案
されている。例えば、膜表面を粗面化する方法
(特開昭55−110786、特開昭56−116891、特開昭
57−70285)、表面に金属酸化物から成る多孔層を
形成させる方法(特開昭56−108888)等である。
Therefore, instead of integrating the membrane and electrode, it has been proposed to treat the membrane surface in order to bring the electrode and membrane as close as possible or in close contact for electrolysis. For example, methods for roughening the membrane surface (Japanese Unexamined Patent Publications No. 55-110786, No. 56-116891, No.
57-70285), a method of forming a porous layer made of a metal oxide on the surface (Japanese Patent Application Laid-Open No. 108888/1983), etc.

上記いずれの方法による表面処理膜でも電極と
膜を近づけた際、通常生じる電解発生気泡による
大巾な電圧の上昇を防ぐことができる。
Surface-treated membranes prepared by any of the above methods can prevent a large voltage increase due to electrolytically generated bubbles that normally occur when the electrode and membrane are brought close to each other.

しかしながら、本発明者らの検討によると、ブ
ラスト法を用いた粗面化処理膜は、ブラストの際
粒子を高速で膜に衝突させて凹凸を形成するため
膜に損傷を与えることが多く、電流効率の低下を
きたし、まだ完成された方法ではない。
However, according to the studies conducted by the present inventors, the roughened film using the blasting method often damages the film because particles collide with the film at high speed during blasting, forming unevenness. This method results in a decrease in efficiency and is not yet a perfected method.

又、アルミニウム、亜鉛、スズ、ニツケル等の
粒状物を加熱、圧着した後かかる粒状物を除去す
ることで粗面化した場合も、電流効率を高く継持
しようとすると、電圧の低減値が、わずかにな
り、まだ満足のいく方法とはなりえない。
Furthermore, even if the surface is roughened by removing granular materials such as aluminum, zinc, tin, or nickel after being heated and crimped, the voltage reduction value will be However, it is still not a satisfactory method.

又、プラスチツクフイルムの表面加工法として
一般的なエンボス加工は、望ましい凹凸が形成で
きず、電極と膜を近づけた際生じる電圧の上昇を
完全に防ぐことが難しい場合が多い。
Furthermore, embossing, which is a common surface processing method for plastic films, cannot form desired irregularities, and it is often difficult to completely prevent voltage increases that occur when the electrode and film are brought close to each other.

このように、例えば英国特許851021にみられる
ように古くから知られているフイルム表面の親水
化方法である粗面化を陽イオン交換膜に単純に応
用するのは難しい。
As described above, it is difficult to simply apply surface roughening, which is a long-known method for making a film surface hydrophilic, as seen in British Patent No. 851021, to cation exchange membranes.

一方、金属酸化物から成る多孔層を表面に形成
する場合は、付着多孔層の経時的な剥離という問
題が常に残つている。
On the other hand, when a porous layer made of metal oxide is formed on the surface, there always remains the problem that the attached porous layer peels off over time.

本発明者らは、これらの不利益を有さずしかも
電解電圧を極力低下した膜を製造する方法につい
て、研究を続けたところ特定の粉末粒子を選択し
て陽イオン交換膜表面に粒子層を加熱、圧着した
後、かかる粒子層を除去することで、電極と膜を
近づけても電圧の上昇をきたすことなく、しかも
高い電流効率を維持できる経済的に大型化可能な
方法を見い出した。
The present inventors continued their research into a method for manufacturing a membrane that does not have these disadvantages and has the electrolytic voltage as low as possible, and found that by selecting specific powder particles, a particle layer was formed on the surface of the cation exchange membrane. By removing this particle layer after heating and pressure bonding, we have found an economically viable method for increasing the size of the membrane without causing a voltage increase even when the electrode and membrane are brought close to each other, while maintaining high current efficiency.

かかる方法により、再現性良く陽イオン交換膜
の表面処理を行うことができるようになつたが、
更に改良研究を続ける中で、もう一段電圧を低減
できる方法を見い出し、本発明を完成したのであ
る。
This method has made it possible to perform surface treatment on cation exchange membranes with good reproducibility;
As they continued their improvement research, they discovered a method that could further reduce the voltage, and completed the present invention.

即ち、本発明は、陽イオン交換基及び/又は陽
イオン交換基になりうる基を有するパーフルオロ
カーボン重合体表面にシリカ粉末より成る粉末粒
子層を加熱、圧着した後、該シリカ粉末を苛性ア
ルカリ水溶液で溶出し、更に、苛性アルカリ水溶
液とC1〜C3の低級アルコールとの混合液中で、
40℃以上から、C1〜C3の低級アルコールの沸点
までの温度に加熱することを特徴とする粗面化陽
イオン交換膜の製法であり、電極と膜を近づけた
時の電圧の大巾な上昇を防ぐのみでなく、電解電
圧を効果的に低減し、しかも、高品質の苛性アル
カリを製造する表面処理陽イオン交換膜を提供す
るものである。
That is, the present invention heats and presses a powder particle layer made of silica powder on the surface of a perfluorocarbon polymer having a cation exchange group and/or a group that can become a cation exchange group, and then injects the silica powder into a caustic aqueous solution. Further, in a mixture of a caustic aqueous solution and a C 1 to C 3 lower alcohol,
This is a method for producing roughened cation exchange membranes that is characterized by heating from 40℃ or higher to the boiling point of C1 to C3 lower alcohols, and the voltage range when the electrode and membrane are brought close together. The purpose of the present invention is to provide a surface-treated cation exchange membrane that not only prevents the electrolysis voltage from increasing, but also effectively reduces the electrolytic voltage and produces high-quality caustic alkali.

本発明に用いる陽イオン交換膜は、耐熱性、耐
薬品性、機械的強度等を考え、パーフルオロカー
ボン重合体を用いる。
For the cation exchange membrane used in the present invention, a perfluorocarbon polymer is used in consideration of heat resistance, chemical resistance, mechanical strength, etc.

パーフルオロカーボン重合体は、陽イオン交換
基及び/又は陽イオン交換基になり得る基を有す
るものであり、これら基としては、スルホン酸基
(−SO3M但しMは水素原子あるいは金属原子)、
スルホン酸基の前駆体であるところの−SO2F、−
SO2Cl、カルボン酸基(−COOM但しMは水素原
子あるいは金属原子)、カルボン酸基の前駆体で
あるところの−COF、−COOR(Rは炭素数1〜
5のアルキル基)及び−CNを挙げることができ
る。更に該重合体としては、例えば、下記一般式
で示す重合体が挙げられる。
The perfluorocarbon polymer has a cation exchange group and/or a group that can become a cation exchange group, and these groups include a sulfonic acid group (-SO 3 M, where M is a hydrogen atom or a metal atom),
-SO 2 F, which is a precursor of sulfonic acid group, -
SO 2 Cl, carboxylic acid group (-COOM, where M is a hydrogen atom or metal atom), -COF, which is a precursor of a carboxylic acid group, -COOR (R has 1 to 1 carbon atoms)
5) and -CN. Furthermore, examples of the polymer include polymers represented by the following general formula.

〔ただし、 R′=−CF3、−CF2−O−CF3 n=0又は1〜5 m=0又は1 o=0又は1、p=1〜6 X=−SO3M(Mは水素原子あるいは金属原
子)、 −SO2F、−SO2Cl −COOM(Mは水素原子あるいは金属原子)、 −COOR1(R1=1〜5のアルキル基)、 −CN、−COF〕 又、上記二成分系に第三成分あるいは第四成分
を加えて重合した重合体も使用できる。
[However, R' = -CF 3 , -CF 2 -O-CF 3 n = 0 or 1 to 5 m = 0 or 1 o = 0 or 1, p = 1 to 6 X = -SO 3 M (M is hydrogen atom or metal atom), -SO 2 F, -SO 2 Cl -COOM (M is a hydrogen atom or metal atom), -COOR 1 (R 1 = alkyl group of 1 to 5), -CN, -COF] or A polymer obtained by adding a third component or a fourth component to the above two-component system can also be used.

具体的には、例えば以下のものを示すことがで
きる。
Specifically, the following can be shown, for example.

これら重合体においてイオン交換容量が
0.5meq/g乾燥樹脂〜1.5meq/g乾燥樹脂にな
るように調節するのが好ましい。
The ion exchange capacity of these polymers is
It is preferable to adjust the amount to 0.5 meq/g dry resin to 1.5 meq/g dry resin.

本発明では、膜状に成形したこれら重合体を単
独で用いることができるのはもちろんであるが、
スルホン酸基もしくは該基に変換できる基とカル
ボン酸基もしくは該基に変換できる基とが混在す
る形、好ましくはスルホン酸基もしくは該基に変
換できる基を有する重合体と、カルボン酸基もし
くは該基に変換できる基を有する重合体が片側ず
つに層状となつた形のものも用いることができ
る。
In the present invention, these polymers molded into a membrane can of course be used alone, but
A polymer having a mixture of a sulfonic acid group or a group that can be converted into this group and a carboxylic acid group or a group that can be converted into this group, preferably a polymer having a sulfonic acid group or a group that can be converted into this group, and a carboxylic acid group or a group that can be converted into this group. A polymer having a group that can be converted into a group formed in a layer on each side can also be used.

このような膜状物は、スルホン酸基もしくは該
基に変換できる基を有する重合体(例えば(A)群の
重合体)と、カルボン酸基もしくは該基に変換で
きる基をもつ重合体(例えば(B)群の重合体)とを
各々膜状に成形したのち、両者をはり合せること
によつて得ることができるし、又、スルホン酸基
もしくは該基に変換できる基のみをもつ重合体の
膜状物の片側のみを化学処理し、これら基をカル
ボン酸基もしくは該基に変換することのできる基
に変えることによつても得ることができる。
Such a film-like material is composed of a polymer having a sulfonic acid group or a group that can be converted into this group (for example, a group (A) polymer), and a polymer having a carboxylic acid group or a group that can be converted to this group (for example, (B) group polymers) can be obtained by forming them into a membrane and then gluing them together.Also, it is possible to obtain polymers having only sulfonic acid groups or groups that can be converted into sulfonic acid groups. It can also be obtained by chemically treating only one side of the membrane and converting these groups into carboxylic acid groups or groups that can be converted into carboxylic acid groups.

更に又、カルボン酸基もしくは該基に変換でき
る基のみをもつ重合体の膜状物の片側のみを化学
処理し、これら基をスルホン酸基もしくは該基に
変換することのできる基に変えることによつても
得ることができる。又、用いる膜の厚さは、50μ
〜500μが一般的に用いられ、膜の比電導度、電
流効率を考慮して適当な厚みを選択する。
Furthermore, by chemically treating only one side of the polymer film having only carboxylic acid groups or groups that can be converted into such groups, these groups can be converted into sulfonic acid groups or groups that can be converted into such groups. You can get it even if you twist it. Also, the thickness of the membrane used is 50μ
~500μ is generally used, and an appropriate thickness is selected by considering the specific conductivity and current efficiency of the film.

陽イオン交換膜の粗面化に際しては粉末粒子の
種類、粉末の担体である紙を選択することが最も
重要である。
When roughening the surface of a cation exchange membrane, it is most important to select the type of powder particles and the paper that is the carrier for the powder.

粉末粒子としては、平均粒径0.01〜20μ好まし
くは0.1〜10μ以下のシリカを用いる。該シリカ粉
末は、一旦担体上に粒子層として形成される。シ
リカ粉末を直接陽イオン交換膜上に塗布等の手段
で形成すると陽イオン交換膜にシワが発生したり
粒子層がヒビ割れたりして、望ましい粗面化が得
られない。
As the powder particles, silica having an average particle diameter of 0.01 to 20 μm, preferably 0.1 to 10 μm or less is used. The silica powder is once formed as a particle layer on the carrier. If silica powder is directly formed on the cation exchange membrane by means such as coating, the cation exchange membrane will wrinkle or the particle layer will crack, making it impossible to obtain the desired surface roughening.

担体としては、紙あるいはアート紙(商品
名)を用いるのが好ましい。その他の紙では、均
一なシリカ粒子層が得られにくいし、粒子層を乾
燥して取り扱うと粒子の脱落が生じたり、粒子層
がヒビ割れるなど好ましくない。
As the carrier, it is preferable to use paper or art paper (trade name). With other types of paper, it is difficult to obtain a uniform silica particle layer, and if the particle layer is handled after drying, the particles may fall off or the particle layer may crack, which is undesirable.

又、シリカ以外の粉末例えば、アルミニウム、
亜鉛、ニツケル、スズ等の粉末粒子を用いた場合
は、紙あるいはアート紙を用いても粒子層を乾
燥して取り扱うと粒子の脱落が生じたり、粒子層
がヒビ割れるなど粗面化材料としてふさわしくな
い。
In addition, powders other than silica, such as aluminum,
When powder particles such as zinc, nickel, tin, etc. are used, even if paper or art paper is used, if the particle layer is dried and handled, the particles may fall off or the particle layer may crack, making it unsuitable as a surface roughening material. do not have.

以上のように、シリカと紙あるいはシリカと
アート紙の組合せの場合最適な粗面化用粒子層を
形成できる。
As described above, an optimal surface roughening particle layer can be formed when using a combination of silica and paper or silica and art paper.

担体上に形成する粒子層の厚さは5μ〜250μが
好ましい。5μ以下の場合、陽イオン交換膜の表
面を均一に粗面化することは難しく、又250μ以
上では、シリカ粒子層にヒビ割れが生じ好ましく
ない。この範囲内であれば凹凸の深さは異なつて
も十分な表面処理効果を示す。担体上に形成した
粒子層は、水を含んだ状態であれば、加熱、圧着
の際、水蒸気を発生し、粒子層を壊す恐れがある
ので、あらかじめ乾燥することが必要である。
The thickness of the particle layer formed on the carrier is preferably 5μ to 250μ. If it is less than 5μ, it is difficult to uniformly roughen the surface of the cation exchange membrane, and if it is more than 250μ, cracks will occur in the silica particle layer, which is not preferable. Within this range, a sufficient surface treatment effect can be obtained even if the depth of the unevenness is different. If the particle layer formed on the carrier contains water, it may generate water vapor during heating and pressure bonding, which may destroy the particle layer, so it is necessary to dry it beforehand.

紙あるいはアート紙上に形成したシリカ粉末
粒子層を基材陽イオン交換膜に加熱、圧着し、か
かる粒子層を陽イオン交換膜表面上に形成させ
る。
A silica powder particle layer formed on paper or art paper is heated and pressed onto a base cation exchange membrane to form such a particle layer on the surface of the cation exchange membrane.

圧着方法としては、プレスあるいはロール法い
ずれでも良く、基材陽イオン交換膜の膜形態に応
じて適宜選択する。
The pressure bonding method may be either a press method or a roll method, which is appropriately selected depending on the membrane form of the base cation exchange membrane.

圧着条件は温度100〜200℃、圧力5〜100Kg/
cm2が好ましい。
Crimping conditions are temperature 100~200℃, pressure 5~100Kg/
cm2 is preferred.

陽イオン交換膜表面上に形成したシリカ粒子層
は、濃度1〜30重量%苛性ソーダ水溶液中、温度
20〜90℃の条件で溶解除去する。
The silica particle layer formed on the surface of the cation exchange membrane is heated in a caustic soda aqueous solution with a concentration of 1 to 30% by weight.
Dissolve and remove at 20-90℃.

上記方法で粗面化した陽イオン交換膜を次の工
程で、更に処理することにより、電圧の絶対値を
も低減した高性能の表面処理イオン交換膜が得ら
れる。
By further treating the cation exchange membrane whose surface has been roughened by the above method in the next step, a high-performance surface-treated ion exchange membrane with a reduced absolute value of voltage can be obtained.

かかる工程とは、粗面化陽イオン交換膜を苛性
アルカリ水溶液とC1〜C3の低級アルコールとの
混合液中で40℃以上からC1〜C3の低級アルコー
ルの沸点までの温度に加熱することである。
This process involves heating a roughened cation exchange membrane in a mixture of a caustic aqueous solution and a C 1 to C 3 lower alcohol to a temperature from 40°C or higher to the boiling point of the C 1 to C 3 lower alcohol. It is to be.

本発明以外の有機溶剤は、電圧低減効果が発現
しないこと、取り扱いの難易性、価格等の点で好
ましくない。
Organic solvents other than those of the present invention are not preferred because they do not exhibit a voltage reduction effect, are difficult to handle, are expensive, and the like.

苛性アルカリ水溶液を存在させず、低級アルコ
ールのみで、加熱をした場合も、陽イオン交換膜
の膨潤度が大きくなり、含水率も大きく、電流効
率の低下をきたし好ましくない。
Even when heating is performed using only a lower alcohol without the presence of an aqueous caustic alkali solution, the degree of swelling of the cation exchange membrane increases, the water content increases, and the current efficiency decreases, which is not preferable.

つまり本発明の混合液による処理のみが効果的
に、電圧を低減することができる。
In other words, only the treatment using the liquid mixture of the present invention can effectively reduce the voltage.

混合液中の苛性アルカリ及び低級アルコールの
濃度は溶解度及び処理効果から判断して決める
が、苛性アルカリの濃度は5〜20重量%が好まし
く、低級アルコールは20〜80容量%が好ましい。
The concentration of caustic alkali and lower alcohol in the mixed solution is determined based on solubility and processing effect, but the concentration of caustic alkali is preferably 5 to 20% by weight, and the concentration of lower alcohol is preferably 20 to 80% by volume.

上記条件をはずれると例えば、苛性アルカリの
濃度が高くなると電圧低減効果が小さくなるし、
低級アルコールの比率が高くなると陽イオン交換
膜が膨潤しすぎて、特に、電解開始直後の電流効
率が低くなり、陽極を損傷する恐れがあるなど好
ましくない。
If the above conditions are exceeded, for example, if the concentration of caustic alkali increases, the voltage reduction effect will decrease,
If the proportion of lower alcohol becomes too high, the cation exchange membrane will swell too much, which is undesirable, especially since the current efficiency immediately after the start of electrolysis may become low and the anode may be damaged.

加熱温度が40℃に満たない場合は、電圧低減効
果が現われず、又、C1〜C3の低級アルコールの
沸点以上の温度に加熱した場合は、電流効率の低
下をきたし好ましくない。
If the heating temperature is less than 40° C., no voltage reduction effect will be obtained, and if the heating temperature is higher than the boiling point of the C 1 -C 3 lower alcohol, the current efficiency will decrease, which is not preferable.

本発明の条件で加熱処理を行つた後、陽イオン
交換膜を取り出し、水洗後空気中で、温度5〜50
℃の温和な条件下で乾燥することは更に、好まし
い。
After heat treatment under the conditions of the present invention, the cation exchange membrane was taken out, washed with water, and placed in the air at a temperature of 5 to 50℃.
It is further preferable to dry under mild conditions at .degree.

かかる乾燥処理を加えると、電解開始直後より
安定した性能を発揮することができるようにな
る。
By adding such drying treatment, stable performance can be exhibited immediately after the start of electrolysis.

なお、粗面化処理を行つていない膜を苛性アル
カリ水溶液とC1〜C3の低級アルコールとの混合
液中で加熱処理しても電圧低減効果は期待できな
い。
Note that even if a membrane that has not been subjected to surface roughening treatment is heat treated in a mixed solution of a caustic alkali aqueous solution and a C 1 to C 3 lower alcohol, no voltage reduction effect can be expected.

以上の処理により陽イオン交換膜の表面に施さ
れる粗面とは、膜面からの深さ、又は、高さが平
均0.1〜20μであり、膜面1cm2あたり平均103〜1015
個の微細な凹凸から成り、その断面形状は、不規
則な円形状である。
The rough surface formed on the surface of the cation exchange membrane by the above treatment has an average depth or height of 0.1 to 20 μ from the membrane surface, and an average of 10 3 to 10 15 per cm 2 of the membrane surface.
The cross-sectional shape is an irregular circle.

これら表面の凹凸は表面形状測定器(ラフネ
ス・メーター)で、およそ測定できるが、効果の
程度を正確に判断するためには電子顕微鏡の表面
及び断面写真から深さ又は高さと密度を求める方
法を採用した方が良い。
These surface irregularities can be roughly measured using a surface profile measuring device (roughness meter), but in order to accurately judge the extent of the effect, there is a method of determining the depth or height and density from surface and cross-sectional photographs taken using an electron microscope. It is better to adopt it.

本発明の粗面化は膜の片面だけに施しても良い
し又、両面に施すこともできる。片面だけを粗面
化する場合は、粗面化面が陰極側に向くように配
置して用いる。
The surface roughening of the present invention can be applied to only one side of the membrane, or can be applied to both sides. When only one side is roughened, it is used by arranging it so that the roughened side faces the cathode side.

以上のようにして得られる表面処理陽イオン交
換膜は塩化アルカリ水溶液の電解プロセスにおい
て陽極室と陰極室とを分割する隔膜として用いら
れる。この場合用いる陰極としては、使用環境に
耐え、反応に対して充分な触媒作用を有するもの
で、かつ、生成ガスの抜けを妨げることのない構
造のものであればよく、通常用いられる陰極であ
ればよい。例えば、鉄、軟鋼、ニツケル、ステン
レススチール等の材質で、金網、エキスパンデツ
ドメタル、格子状、縦棧型、パンチドメタル等の
多孔性のものが挙げられるが、何らこれに限定さ
れるものではない。
The surface-treated cation exchange membrane obtained as described above is used as a diaphragm for dividing an anode chamber and a cathode chamber in an electrolysis process of an aqueous alkali chloride solution. The cathode used in this case may be one that can withstand the operating environment, has a sufficient catalytic effect for the reaction, and has a structure that does not hinder the escape of the produced gas, and may be any commonly used cathode. Bye. Examples include, but are not limited to, materials such as iron, mild steel, nickel, and stainless steel, and porous materials such as wire mesh, expanded metal, lattice, vertical rail, and punched metal. isn't it.

又、陽極についても、使用環境に耐え、目的と
する反応に対して充分な触媒作用を有する通常の
陽極が使用され、例えば、黒鉛又はチタン、タン
タル、タングステン、ジルコニウム、ニオブ等の
バルブ金属の表面に白金、パラジウム、ルテニウ
ム、イリジウム等の白金族金属、白金族金属の酸
化物又は白金族金属の酸化物とバルブ金属の酸化
物を混合して被覆した多孔性陽極が使用される。
電解に際し、これら電極は、膜面に接触してても
よいし、又、離れていてもよい。
As for the anode, a normal anode that can withstand the usage environment and has sufficient catalytic activity for the desired reaction is used. A porous anode coated with a platinum group metal such as platinum, palladium, ruthenium, or iridium, an oxide of a platinum group metal, or a mixture of an oxide of a platinum group metal and an oxide of a valve metal is used.
During electrolysis, these electrodes may be in contact with the membrane surface or may be apart.

以下、具体例によつて本発明の方法を説明す
る。尚、本発明はこれら具体例によつて何ら限定
されるものではない。
The method of the present invention will be explained below using specific examples. Note that the present invention is not limited to these specific examples.

実施例 1 とを1,1,2−トリクロロ−1,2,2トリフ
ルオロエタン中、パーフルオロプロピオニルペル
オキシドを開始剤として共重合し、重合体を得た
(スルホン酸基としての交換容量は0.91meq/g
乾燥樹脂)。これをAポリマーとする。
Example 1 were copolymerized in 1,1,2-trichloro-1,2,2-trifluoroethane using perfluoropropionyl peroxide as an initiator to obtain a polymer (exchange capacity as sulfonic acid group was 0.91meq/g).
dry resin). This is called Polymer A.

同様にして との共重合体を得た(カルボン酸基としての交換
容量は1.1meq/g)。これをBポリマーとする。
in the same way (exchange capacity as carboxylic acid group was 1.1 meq/g). This will be referred to as B polymer.

次にAポリマーを100μの厚さで、Bポリマー
を75μの厚さで各々フイルムに成型したのち、こ
れらフイルムを2枚重ね合せ熱圧着し、1枚のフ
イルムとし基材陽イオン交換膜とする。
Next, polymer A is formed into a film with a thickness of 100μ and polymer B with a thickness of 75μ, respectively.Then, these two films are stacked and thermocompressed to form a single film, which is used as a base cation exchange membrane. .

平均粒径約5μのシリカ微粉末を水で練り15重
量%のペースト状にした後、アート紙上に塗布
し、厚さ約50μのシリカ粒子層を得た。
Fine silica powder with an average particle size of about 5 μm was kneaded with water to form a paste of 15% by weight, and then applied onto art paper to obtain a silica particle layer with a thickness of about 50 μm.

該シリカ粒子層を担持したアート紙を基材陽イ
オン交換膜の両面に当て160℃、30Kg/cm2の条件
で加熱、圧着した。その後5重量%苛性ソーダ水
溶液中、温度80℃の条件で陽イオン交換膜の表面
に圧着されたシリカ粉末を溶解除去すると同時に
加水分解を行つた。
The art paper carrying the silica particle layer was applied to both sides of the base cation exchange membrane and heated and pressed at 160° C. and 30 kg/cm 2 . Thereafter, in a 5% by weight aqueous sodium hydroxide solution at a temperature of 80° C., the silica powder pressed onto the surface of the cation exchange membrane was dissolved and removed, and at the same time hydrolysis was carried out.

次に、かかる陽イオン交換膜を、20重量%苛性
ソーダ水溶液とメタノール等量混合液中、60℃、
5時間加熱処理した後空気中、25℃の条件下で2
日間乾燥した。
Next, the cation exchange membrane was placed in a mixture of 20% by weight aqueous caustic soda and methanol at 60°C.
After heat treatment for 5 hours, it was heated in air at 25℃ for 2 hours.
Dry for days.

得られた粗面化陽イオン交換膜を2重量%苛性
ソーダ水溶液に1夜浸漬して、該陽イオン交換膜
のBポリマー側を陰極に向けて電解槽に組み込み
陽極としてルテニウム酸化物を被覆したチタンエ
キスパンドメタル、陰極として鉄製のエキスパン
ドメタルを用い、陽、陰極間距離を1mmとし陰極
室の苛性ソーダ水溶液の抜き出しレベルを陽極室
のレベルに対して20cm高くし膜を陽極に接触させ
た状態で電解した。
The obtained roughened cation exchange membrane was immersed in a 2% by weight aqueous sodium hydroxide solution overnight, and the cation exchange membrane was placed in an electrolytic cell with the B polymer side facing the cathode, and titanium coated with ruthenium oxide was used as the anode. An expanded metal made of iron was used as the cathode, the distance between the anode and cathode was 1 mm, the extraction level of the caustic soda aqueous solution in the cathode chamber was 20 cm higher than the level in the anode chamber, and electrolysis was carried out with the membrane in contact with the anode. .

陽極室に飽和食塩水、陰極室に水を供給して、
陰極室の苛性ソーダ濃度を33重量%に保ち、温度
90℃、電流密度40A/dm2で電解したところ電圧
は3.25V、電流効率は96.5%であつた。
Supply saturated saline to the anode chamber and water to the cathode chamber.
The caustic soda concentration in the cathode chamber was maintained at 33% by weight, and the temperature
When electrolyzed at 90° C. and a current density of 40 A/dm 2 , the voltage was 3.25 V and the current efficiency was 96.5%.

比較例 1 平均粒径7μの亜鉛粉末を2重量%になるよう
に水に懸濁し、過法により紙上に亜鉛粉末粒
子層を形成させ、実施例1で用いた基材陽イオン
交換膜の両面に加熱、圧着させた。
Comparative Example 1 Zinc powder with an average particle size of 7 μm was suspended in water to a concentration of 2% by weight, and a layer of zinc powder particles was formed on paper by the filtration method, and both sides of the base cation exchange membrane used in Example 1 were suspended. was heated and crimped.

次に、80℃、20重量%の苛性ソーダ水溶液中で
亜鉛粉末を溶解除去し、90℃、10重量%の苛性ソ
ーダ水溶液中24時間処理して、加水分解した。
Next, the zinc powder was dissolved and removed in a 20% by weight aqueous sodium hydroxide solution at 80°C, and then treated for 24 hours in a 10% by weight aqueous sodium hydroxide solution at 90°C for hydrolysis.

実施例1と全く同様な条件で電解を行い、電流
密度40A/dm2で、電圧3.30V、電流効率94.0%
の結果を得た。
Electrolysis was carried out under exactly the same conditions as in Example 1, with a current density of 40 A/dm 2 , a voltage of 3.30 V, and a current efficiency of 94.0%.
I got the result.

比較例 2 実施例1において、陽イオン交換膜の両面を全
く何も処理せず、実施例1と全く同様に電解を行
い、電流密度40A/dm2で、電圧は3.65V、電流
効率96.0%の結果を得た。
Comparative Example 2 In Example 1, both sides of the cation exchange membrane were not treated in any way, and electrolysis was carried out in exactly the same manner as in Example 1, with a current density of 40 A/dm 2 , a voltage of 3.65 V, and a current efficiency of 96.0%. I got the result.

実施例 2 米国デユポン社より市販されているナフイオ
ン117陽イオン交換膜の片面を化学処理して作製
した厚さ約40μのカルボン酸層を有する、
SO3H/COOH2層構造の陽イオン交換膜を得た。
Example 2 A membrane having a carboxylic acid layer with a thickness of about 40μ was prepared by chemically treating one side of a Nafion 117 cation exchange membrane commercially available from DuPont, USA.
A cation exchange membrane with a SO 3 H/COOH two-layer structure was obtained.

かかる膜を用い、実施例1と全く同様の方法で
粗面化処理し、実施例1と同じ条件で電解を行
い、電圧3.30V、電流効率96.5%の結果を得た。
Using this membrane, the surface was roughened in exactly the same manner as in Example 1, and electrolysis was performed under the same conditions as in Example 1, resulting in a voltage of 3.30 V and a current efficiency of 96.5%.

実施例 3 平均粒径3μ以下のシリカ微粉末を0.3重量%に
なるように水に懸濁し、過法により、紙上に
厚さ約70μのシリカ粒子層を形成した。
Example 3 Fine silica powder with an average particle size of 3 μm or less was suspended in water to a concentration of 0.3% by weight, and a layer of silica particles with a thickness of about 70 μm was formed on paper by a filtration method.

該シリカ粒子層を担持した紙を実施例1と同
じ基材陽イオン交換膜の両面に当て、160℃、60
Kg/cm2の条件で加熱、圧着した。その後5重量%
苛性ソーダ水溶液中、温度80℃の条件で、陽イオ
ン交換膜の表面に圧着されたシリカ粒子を溶解除
去した。
The paper carrying the silica particle layer was applied to both sides of the same base cation exchange membrane as in Example 1, and heated at 160°C and 60°C.
Heating and compression bonding was carried out under conditions of Kg/cm 2 . then 5% by weight
The silica particles pressed onto the surface of the cation exchange membrane were dissolved and removed in a caustic soda aqueous solution at a temperature of 80°C.

次に、かかる陽イオン交換膜を20重量%苛性ソ
ーダ水溶液とエタノールの等量混合液中、60℃、
5時間加熱処理した。
Next, the cation exchange membrane was placed in a mixture of equal amounts of 20% by weight caustic soda aqueous solution and ethanol at 60°C.
Heat treatment was performed for 5 hours.

得られた粗面化陽イオン交換膜を用い、実施例
1と同じ条件で電解を行つた。初期は電圧、電流
効率共に低く、性能回復に約1週間を要したが、
その後は安定した性能を維持した。7日目の電解
性能は、電圧3.23V、電流効率96.0%であつた。
Electrolysis was performed under the same conditions as in Example 1 using the obtained roughened cation exchange membrane. Initially, both voltage and current efficiency were low, and it took about a week for performance to recover.
After that, stable performance was maintained. The electrolysis performance on the seventh day was a voltage of 3.23V and a current efficiency of 96.0%.

比較例 3 実施例1において、陽イオン交換膜の表面に圧
着されたシリカ粉末を溶解除去すると同時に加水
分解を行つた後、該陽イオン交換膜を電解槽に組
み込み実施例1と同様に電解を行つた。
Comparative Example 3 In Example 1, the silica powder pressed onto the surface of the cation exchange membrane was dissolved and removed and hydrolyzed at the same time, and then the cation exchange membrane was placed in an electrolytic cell and electrolysis was carried out in the same manner as in Example 1. I went.

電流密度40A/dm2で電圧は3.33V、電流効率
96.5%と電圧が高くなつた。
Current density 40A/ dm2 , voltage 3.33V, current efficiency
The voltage increased to 96.5%.

比較例 4 実施例2において、陽イオン交換膜の表面に圧
着されたシリカ粉末を溶解除去すると同時に加水
分解を行つた後、該陽イオン交換膜を電解槽に組
み込み、実施例2と同様に電解を行つた。
Comparative Example 4 In Example 2, the silica powder pressed onto the surface of the cation exchange membrane was dissolved and removed and simultaneously hydrolyzed, and then the cation exchange membrane was incorporated into an electrolytic cell and electrolyzed in the same manner as in Example 2. I went to

電流密度40A/dm2で電圧3.38V、電流効率
96.5%と電圧が高くなつた。
Current density 40A/ dm2 , voltage 3.38V, current efficiency
The voltage increased to 96.5%.

比較例 5 実施例3において、陽イオン交換膜の表面に圧
着されたシリカ粒子を溶解除去した後、該陽イオ
ン交換膜を電解槽に組み込み、実施例3と同様に
電解を行つた。
Comparative Example 5 In Example 3, after dissolving and removing the silica particles pressed onto the surface of the cation exchange membrane, the cation exchange membrane was incorporated into an electrolytic cell, and electrolysis was performed in the same manner as in Example 3.

初期から安定した電圧、電流効率を示したが、
電解性能は電圧3.31V、電流効率96.0%と電圧が
高くなつた。
Although it showed stable voltage and current efficiency from the beginning,
The electrolytic performance was higher at voltage 3.31V and current efficiency 96.0%.

Claims (1)

【特許請求の範囲】 1 シリカ粉末と水とを混合し、懸濁あるいはペ
ースト状の混合物となし、該混合物をアート紙あ
るいは紙上に担持せしめ、乾燥することで形成
したシリカ粉末層を、陽イオン交換基及び/又は
陽イオン交換基になりうる基を有するパーフルオ
ロカーボン重合体膜の表面に加熱、圧着し、かか
る膜表面に形成されたシリカ粉末を苛性アルカリ
水溶液で溶出することにより得た粗面化陽イオン
交換膜を、苛性アルカリ水溶液とC1〜C3の低級
アルコールとの混合液中で、40℃以上からC1
C3の低級アルコールの沸点までの温度に加熱す
ることを特徴とする粗面化陽イオン交換膜の製
法。 2 苛性アルカリ水溶液とC1〜C3の低級アルコ
ールとの混合液中で、加熱した後、水洗し、乾燥
する特許請求の範囲1項記載の製法。
[Claims] 1. A silica powder layer formed by mixing silica powder and water to form a suspension or paste mixture, supporting the mixture on art paper or paper, and drying the silica powder layer. A rough surface obtained by heating and pressing the surface of a perfluorocarbon polymer membrane having an exchange group and/or a group capable of becoming a cation exchange group, and eluting the silica powder formed on the membrane surface with a caustic aqueous solution. The chemical cation exchange membrane is heated from 40°C or higher to C 1 - C 3 in a mixture of aqueous caustic alkaline solution and C 1 - C 3 lower alcohol.
A method for producing a roughened cation exchange membrane characterized by heating to a temperature up to the boiling point of a C3 lower alcohol. 2. The manufacturing method according to claim 1, which comprises heating in a mixed solution of a caustic alkali aqueous solution and a C1 to C3 lower alcohol, followed by washing with water and drying.
JP19769082A 1982-11-10 1982-11-12 Manufacture of cation exchange membrane having roughened surface Granted JPS5989329A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19769082A JPS5989329A (en) 1982-11-12 1982-11-12 Manufacture of cation exchange membrane having roughened surface
US06/550,338 US4537910A (en) 1982-11-10 1983-11-09 Method of producing cation-exchange membrane having roughed surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19769082A JPS5989329A (en) 1982-11-12 1982-11-12 Manufacture of cation exchange membrane having roughened surface

Publications (2)

Publication Number Publication Date
JPS5989329A JPS5989329A (en) 1984-05-23
JPS6316420B2 true JPS6316420B2 (en) 1988-04-08

Family

ID=16378726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19769082A Granted JPS5989329A (en) 1982-11-10 1982-11-12 Manufacture of cation exchange membrane having roughened surface

Country Status (1)

Country Link
JP (1) JPS5989329A (en)

Also Published As

Publication number Publication date
JPS5989329A (en) 1984-05-23

Similar Documents

Publication Publication Date Title
CA1147291A (en) Ion exchange membrane type electrolytic cell
EP0045603B1 (en) Ion exchange membrane cell and electrolytic process using the same
JPH0770782A (en) Structure of film and electrode
WO1980002162A1 (en) Process for producing hydrogen
CA1171026A (en) Method of bonding electrode to cation exchange membrane
US4604323A (en) Multilayer cation exchange membrane
JPH0248632B2 (en)
US4686120A (en) Multilayer cation exchange membrane
JPS621652B2 (en)
JPS6316420B2 (en)
JPS6256184B2 (en)
JPS6317913B2 (en)
EP0066102B1 (en) Ion exchange membrane cell and electrolysis with use thereof
JPS6256183B2 (en)
EP0045147B1 (en) Process for producing a membrane for electrolysis
US4537910A (en) Method of producing cation-exchange membrane having roughed surface
JP3192763B2 (en) How to reuse an electrolytic cell
JPS631391B2 (en)
JPS6258622B2 (en)
JPS5925989A (en) Electrolyzing method
JPH0237433B2 (en)
EP0066101B1 (en) Ion exchange membrane cell and electrolysis with use thereof
JPS6040515B2 (en) Ion exchange membrane electrolyzer
JPS6214036B2 (en)
JPS6154116B2 (en)