JPS5989328A - Manufacture of cation exchange membrane having roughened surface - Google Patents

Manufacture of cation exchange membrane having roughened surface

Info

Publication number
JPS5989328A
JPS5989328A JP57196836A JP19683682A JPS5989328A JP S5989328 A JPS5989328 A JP S5989328A JP 57196836 A JP57196836 A JP 57196836A JP 19683682 A JP19683682 A JP 19683682A JP S5989328 A JPS5989328 A JP S5989328A
Authority
JP
Japan
Prior art keywords
cation exchange
exchange membrane
membrane
silica powder
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57196836A
Other languages
Japanese (ja)
Other versions
JPS6256184B2 (en
Inventor
Michiji Okai
理治 大貝
Toru Kiyota
徹 清田
Kosuke Takeshige
竹重 浩佑
Hideo Akeyama
朱山 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP57196836A priority Critical patent/JPS5989328A/en
Priority to US06/550,338 priority patent/US4537910A/en
Publication of JPS5989328A publication Critical patent/JPS5989328A/en
Publication of JPS6256184B2 publication Critical patent/JPS6256184B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled exchange membrane suitable for electrolytic use, by applying a silica powder layer to the surface of cation exchange membrane substrate, dissolving the silica powder with an aqueous solution of a caustic alkali, and boiling the membrane in an aqueous solution of caustic alkali having a specific concentration. CONSTITUTION:Silica powder is mixed with water to obtain a suspension or pasty mixture, applied to a sheet of coated paper or filter paper, and dried. The obtained silica powder layer is transferred with heat and pressure to the surface of a perfluorocarbon polymer membrane having a cation exchange group and/or a group which can be converted to cation exchange group. The silica powder transferred to the surface of the exchange membrane is dissolved with an aqueous solution of caustic alkali to obtain a cation exchange membrane having roughened surface, which is converted to the objective cation exchange membrane by boiling in an aqueous solution of caustic alkali having a concentration of 1-10wt%.

Description

【発明の詳細な説明】 本発明は、塩化アルカリ水溶液の電解に適した粗面化陽
イオン交換膜を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a roughened cation exchange membrane suitable for electrolysis of aqueous alkali chloride solutions.

陽イオン交換膜により陽極室と陰極室に分割された電解
槽で塩化アルカリ水溶液を電解して、水酸化アルカリを
製造する方法(イオン交換膜法)において、近年、省エ
ネルギー化が盛んに試みられており、特に電解電圧を極
力低(することにより、電解電力を低減しようとする方
法が注目されている。その方法としては、従来、陽極や
陰極の材質1組成及び形状火考慮したり、あるいは用い
る陽イオン交換膜の組成やイオン交換基の種@を特定化
する等、種々の手段が提案されているが、いずれもそれ
なりの効果はあるものの、必ずしも工業的に充分満足し
得るものではなかった。
In recent years, energy conservation has been actively attempted in the method of producing alkali hydroxide by electrolyzing an aqueous alkali chloride solution in an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane (ion exchange membrane method). In particular, methods of reducing the electrolytic power by lowering the electrolytic voltage as low as possible are attracting attention. Conventionally, methods for this include considering the composition and shape of the material of the anode and cathode, or using Various methods have been proposed, such as specifying the composition of the cation exchange membrane and the species of the ion exchange group, but although all of them have some effect, they are not necessarily fully satisfactory industrially. .

一方、近年、陽極と陰極をできる限り近づげ、両極間に
存在する電解液や気泡の抵抗による電解電圧部分を極力
小さくしようという方法が主流となってきている。その
理想的な形態として、陽イオン交換膜と陽・陰極を一体
化し極間抵抗を最小にしようとするSPE電解法と称す
る方法が提案されているが、現在未だ多くの解決すべき
問題を有しており工業化は難しい。
On the other hand, in recent years, a method has become mainstream in which the anode and cathode are brought as close as possible to minimize the electrolytic voltage portion due to the resistance of the electrolytic solution or bubbles existing between the two electrodes. As an ideal method, a method called SPE electrolysis has been proposed, which attempts to minimize the resistance between the electrodes by integrating the cation exchange membrane and the anode and cathode, but there are still many problems that still need to be solved. industrialization is difficult.

そこで、膜と電極を一体化するのではなく、電極と膜ケ
できる限り近づけ、あるいは密接させて電解するために
膜表面を処理することが提案されている。例えば、膜表
面を粗面化する方法(特開昭55−110786.%開
昭56−116891゜特開昭57−70285)、表
面に金属酸化物からなる多孔層を形成させろ方法(特開
昭56−108888 )等である。
Therefore, instead of integrating the membrane and electrode, it has been proposed to bring the electrode and membrane as close as possible or to treat the membrane surface in order to bring them into close contact for electrolysis. For example, a method of roughening the membrane surface (Japanese Patent Laid-Open No. 55-110786, 116891-1989, 70285-1985), a method of forming a porous layer made of metal oxide on the surface (Japanese Patent Laid-Open No. 57-70285), 56-108888) etc.

上記いずれの方法による表面処理膜でも電極と膜ケ近づ
けた。際、通常生じる電解発生気泡による大巾す電圧の
上昇欠切ぐことができろ。
In any of the above-mentioned methods, the electrode and the membrane were brought close to each other. In this case, it is possible to eliminate the large voltage rise caused by the electrolytically generated bubbles that normally occur.

しかしながら、不発明者らの検討によると、ブラスト法
を用いた粗面化処理膜は、ブラストの際粒子を高速で膜
に衝突させて凹凸乞形成するため寝に損傷を与えろこと
が多く、電極効率の低下をきたし、まだ完成された方法
ではない。父、アル熱、圧着した後、かかる粒状物を除
去することで粗面化した場合も、電流効率を高く継持し
ようとすると電圧の低減値がわずかになり、まだ満足の
いく方法とはなり得ない。
However, according to studies conducted by the inventors, the surface-roughening treatment film using the blasting method causes particles to collide with the film at high speed during blasting, forming unevenness, which often causes damage to the surface of the film, which can cause damage to the electrode. This method results in a decrease in efficiency and is not yet a perfected method. Even if the surface is roughened by removing such particulate matter after aluminum heating and crimping, the voltage reduction value will be small if you try to maintain high current efficiency, and this is still not a satisfactory method. I don't get it.

父、プラスチックフィルムの表面加工法として一般的な
エンボス加工は、望ましい凹凸が形成できず電極と膜を
近づけた除虫じる電圧の上昇を完全に防ぐことが難しい
場合が多い。このように、例えば、英国特許851.0
21にみもれるように古くから知られているフィルム表
面の親水化方法であろ粗面化を陽イオン交換膜に単純に
応用するのは難しい。
However, embossing, which is a common surface treatment method for plastic films, does not create the desired unevenness, and it is often difficult to completely prevent the rise in voltage that kills insects when the electrode and membrane are brought close together. Thus, for example, British Patent 851.0
It is difficult to simply apply surface roughening, which is a long-known method of making a film surface hydrophilic, as seen in No. 21, to cation exchange membranes.

一方、金属酸化物からなる多孔層を表面に形成する場合
は、付着多孔層の経時的な剥離という問題が常に残って
いる。
On the other hand, when a porous layer made of metal oxide is formed on the surface, there always remains the problem of peeling off of the attached porous layer over time.

本発明者らは、これらの不利益ン有さす、しかも電解電
圧を極力低下した膜?製造する方法について研究を続け
たところ、特定の粉末粒子乞選択して基材陽イオン交換
膜表面に粒子層を加熱、圧着した後、かかる粒子層を除
去することで電極と膜を近づけても電圧の上昇をきたす
ことなく、シかも高い電流効率を維持できる経済的に大
型化可能な方法を見い出した。かかる方法により、再現
性良く陽イオン交換膜の表面処理を行うことができるよ
うになったが、更に改良研究を続ける中で、もう一段電
圧を低減、できる方法を見い出し本発明を完成したので
ある。
The present inventors have developed a membrane that does not have these disadvantages and also has a reduced electrolytic voltage as much as possible. Continuing research into manufacturing methods, we found that by selecting specific powder particles, heating and pressing a particle layer onto the surface of the base cation exchange membrane, and then removing the particle layer, the electrode and membrane could be brought close together. We have found a method that can be economically scaled up and maintains high current efficiency without causing a voltage increase. Using this method, it became possible to perform surface treatment on cation exchange membranes with good reproducibility, but while continuing research for further improvements, they discovered a method that could further reduce the voltage and completed the present invention. .

即ち、本発明は塩化アルカリ水溶液電解に用いる基材陽
イオン交換膜の表面にシリカ粉末を加熱。
That is, in the present invention, silica powder is heated on the surface of a base cation exchange membrane used for aqueous alkali chloride electrolysis.

圧着した後、該シリカ粉末乞苛性アルカリ水溶液で溶出
することにより得た粗面化陽イオン交換膜乞1〜10貞
量%苛性アルカリ水溶液中で沸騰処理すること乞特徴と
する粗面化陽イオン交換膜な製造する方法であり、電極
と膜を近づけた時の電圧の大巾な上昇を防ぐのみでな(
、電解電圧を効果的に低減し、しかも高品質の苛性アル
カリを製造する表面処理陽イオン交換膜を提供するもの
である。
After the silica powder is crimped, the roughened cation exchange membrane obtained by eluting the silica powder with a caustic alkali aqueous solution is boiled in a 1-10% caustic alkali aqueous solution. This is a method of manufacturing an exchange membrane, which not only prevents a large increase in voltage when the electrode and membrane are brought close together.
The present invention provides a surface-treated cation exchange membrane that effectively reduces electrolysis voltage and produces high quality caustic alkali.

本発明に用いる基材陽イオン交換膜には、通常、耐熱性
、耐薬品性9機械的強度等に優れたパーフルオロカーボ
ン重合体が用いられろ。
For the base cation exchange membrane used in the present invention, a perfluorocarbon polymer having excellent heat resistance, chemical resistance, mechanical strength, etc. is usually used.

パーフルオロカーボン重合体は、陽イオン交換基及び/
又は陽イオン交換基になり得る基を有するものであり、
これら基としては、スルホン酸基(505M但しMは水
素原子あるいは金属原子)。
Perfluorocarbon polymers have cation exchange groups and/or
or has a group that can become a cation exchange group,
These groups include sulfonic acid groups (505M, where M is a hydrogen atom or a metal atom).

スルホン酸基の前駆体であるところの一8o2F。18o2F, which is a precursor of sulfonic acid groups.

−5o2at 、  カルボン酸基(−000M  但
しMは水素原子あるいは金属原子)、カルボン酸基の前
駆体であるところの一00F、  −00OR(Rは炭
素数1〜5のアルキル基)及び−CNヲ挙げることがで
きる。
-5o2at, carboxylic acid group (-000M, where M is a hydrogen atom or a metal atom), 100F, which is a precursor of a carboxylic acid group, -00OR (R is an alkyl group having 1 to 5 carbon atoms), and -CNwo can be mentioned.

更に該重合体としては、例えば、下記一般式で示す重合
体が挙げられる。
Furthermore, examples of the polymer include polymers represented by the following general formula.

CF2 1 小 F2 「 0F−R’ 〔但し、R’ =  −CF3. −0F2−0−01
7’。
CF2 1 Small F2 "0F-R' [However, R' = -CF3. -0F2-0-01
7'.

n=0又は1〜5 m=o又は1 0 = 0又は1 p=1〜6 X  =  −80,M(Mは水素原子あるいは金属原
子)、−8o、F、  −6o20A−OOOM(Mは
水素原子あるいは金属原子)。
n=0 or 1-5 m=o or 1 0 = 0 or 1 p=1-6 X = -80, M (M is a hydrogen atom or a metal atom), -8o, F, -6o20A-OOOM (M hydrogen atoms or metal atoms).

一0OOR,(F、1=1〜5のアルキル基−aN、−
00F  ] 父、上記二成分系に第三成分あるいは第四成分を加えて
重合した重合体も使用できる。
10OOR, (F, 1=1-5 alkyl group -aN, -
00F] A polymer obtained by adding a third component or a fourth component to the above two-component system can also be used.

具体的には、例えば以下のものを示すことができろ。Specifically, for example, be able to show the following:

(A′n) CIl +CF2−C!F’2ザー十〇F2−0Fナー
nl    、  ml 【 OF、−0F−QC!F2−CF2−8o3HOF。
(A'n) CIl +CF2-C! F'2 ther 10 F2-0F na nl, ml [OF, -0F-QC! F2-CF2-8o3HOF.

+2l−(−0’E’2−OF’2→→0F2−CF←
n2    、 〜2 区 0F2−OF−00F2−OF2−8o2FOF。
+2l-(-0'E'2-OF'2→→0F2-CF←
n2, ~2 Ward 0F2-OF-00F2-OF2-8o2FOF.

ン 斗 F2 0F−OF。hmm Doo F2 0F-OF.

OF2−0F2−8o□F (J2 0F−OF’2−0−OF。OF2-0F2-8o□F (J2 0F-OF'2-0-OF.

【 0F2−OF2−8o2F F2 0F2−8o2F (B群) F2 (J−C!F3 0−(3F2−(1!00H C′P2 F2 0F2−0000H。[ 0F2-OF2-8o2F F2 0F2-8o2F (Group B) F2 (JC!F3 0-(3F2-(1!00H C'P2 F2 0F2-0000H.

CF2−CF2−0F2−C!F2−(3000H30
F、、−OF2−00F 1 CF’2−OF−QC!F2−CF2−00C’OH3
CF3 000H3 C!F30′P2−OF2−C!F2−C0FCF3 
   0F2−CF、−0F2−C000H3十 000H3 ○         0 CF3    0F2−OF2−00FOF、    
  OF2 「 CF−CF3 0−0F2−CF2(30F 0       0000H3 CF3 これら重合においてイオン父換容量が0.5 meq/
9乾燥樹脂〜t 5 meq/?乾燥樹脂になるように
調節するのが好ましい。
CF2-CF2-0F2-C! F2-(3000H30
F,,-OF2-00F 1 CF'2-OF-QC! F2-CF2-00C'OH3
CF3 000H3 C! F30'P2-OF2-C! F2-C0FCF3
0F2-CF, -0F2-C000H3 ○ 0 CF3 0F2-OF2-00FOF,
OF2 CF-CF3 0-0F2-CF2 (30F 0 0000H3 CF3 In these polymerizations, the ion father exchange capacity is 0.5 meq/
9 dry resin ~t 5 meq/? It is preferable to adjust the resin so that it becomes a dry resin.

本発明では、膜状に成形したこれら重合体を単独で用い
ることができるのはもちろんであるが、スルホン酸基も
しくは数基に変換できる基とカルボン酸基もしくは数基
に変換できる基とが混在する形、好ましくはスルホン酸
基もしくは数基に変換できる基暑有する重合体と、カル
ボン酸基もしくは数基に変換できる基を有する重合体が
片側づつに層状となった形のものも用いることができる
In the present invention, it is of course possible to use these polymers formed into a membrane alone, but a group that can be converted into a sulfonic acid group or several groups and a group that can be converted into a carboxylic acid group or several groups are mixed. A polymer having a sulfonic acid group or a group that can be converted into several groups and a polymer having a group that can be converted into a carboxylic acid group or several groups can be layered on each side. can.

このような膜状物は、スルホン酸基もしくは数基に変換
できる基を有する重合体(例えば(A、1群の重合体)
と、カルボ/酸基もしくは数基に変換できる基をもつ重
合体(例えば(B)群の重合体ンと乞各々膜状に成形し
たのち、両者をはり合せることによって得ることができ
る、し又、スルホン酸基もしくは数基に変換できる基の
みをもつ重合体の膜状物の片側のみを化学処理し、これ
ら基をカルボン酸基もしくは数基に変換することができ
る基に変えろことによっても得ることができる。
Such a film-like material is a polymer having a sulfonic acid group or a group that can be converted into several groups (for example, (A, polymers of group 1)
and a polymer having a carboxyl/acid group or a group that can be converted into several groups (for example, a polymer of group (B)) can be obtained by forming each into a film shape and then gluing the two together. It can also be obtained by chemically treating only one side of a polymer film having only sulfonic acid groups or groups that can be converted into several groups, and converting these groups into carboxylic acid groups or groups that can be converted into several groups. be able to.

更に又、カルボン酸基もしくは数基に変換できる基のみ
をもつ重合体の膜状物の片側のみを化学処理し、これら
基をスルホン酸基もしくは数基に変換することのできる
基に変えることによっても得ることができる。又、用い
る膜の厚さは、50μ〜500μか一般的に用いられ、
膜の比電導度。
Furthermore, by chemically treating only one side of the polymer film having only carboxylic acid groups or groups that can be converted into several groups, and converting these groups into sulfonic acid groups or groups that can be converted into several groups. You can also get In addition, the thickness of the membrane used is generally 50μ to 500μ,
Specific electrical conductivity of the membrane.

電流効率を考慮して適当な厚みを選択する。Select an appropriate thickness considering current efficiency.

陽イオン交換膜の粗面化に際しては、粉末粒子の種類、
粉末の担体である紙を選択することが最も重要である。
When roughening the surface of a cation exchange membrane, the type of powder particles,
The choice of paper as a carrier for the powder is most important.

粉末粒子としては、平均粒径0.01〜20μ、好まし
くはQ、1〜10μのシリカを用いる。該シリカ粉末は
、一旦担体上に粒子層として形成される。シリカ粉末ン
直接基材陽イオン交換膜上に塗布等の手段で形成すると
陽イオン交換膜にシワが発生したり、粒子層がヒビ割れ
たりして望ましい粗面化が得られない。担体としては、
濾紙あるいはアート紙(商品名)を用いるのが好ましい
。その他の紙では均一なシリカ粒子層が得られにくいし
、粒子層を乾燥して取扱うと粒子の脱落が生じたり、粒
子層がヒビ割れるなど好ましくない。
As the powder particles, silica having an average particle size of 0.01 to 20 μm, preferably Q, 1 to 10 μm is used. The silica powder is once formed as a particle layer on the carrier. If silica powder is directly formed on the base cation exchange membrane by means such as coating, the cation exchange membrane will wrinkle or the particle layer will crack, making it impossible to obtain the desired surface roughening. As a carrier,
It is preferable to use filter paper or art paper (trade name). With other papers, it is difficult to obtain a uniform silica particle layer, and if the particle layer is dried and handled, the particles may fall off or the particle layer may crack, which is undesirable.

又、シリカ以外の粉末、例えば、アルミニウム。Also, powders other than silica, such as aluminum.

亜鉛、ニッケル、スズ等の粉末粒子を用いた場合は、濾
紙あるいはアート紙を用いても粒子層を乾燥して取扱う
と粒子の脱落が生じたり、粒子層がヒビ割れるなど粗面
化材料としてふされしくない。
When powder particles of zinc, nickel, tin, etc. are used, even if filter paper or art paper is used, if the particle layer is dried and handled, the particles may fall off or the particle layer may crack, resulting in a roughening material. It's not nice.

以上のように、シリカと濾紙あるいはシリカとアート紙
の組合せの場合、最適な粗面化用粒子層ケ形成できる。
As described above, in the case of a combination of silica and filter paper or silica and art paper, an optimal particle layer for surface roughening can be formed.

担体上に形成する粒子層の厚さは、5μ〜250μが好
ましい。5μ以下の場合、陽イオン交換膜の表面を均一
に粗面化することは難しく、又、250μ以上ではシリ
カ粒子層にヒビ割れが生じ好ましくない。この範囲であ
れば凹凸の深さは異なっても十分な表面処理効果を示す
The thickness of the particle layer formed on the carrier is preferably 5μ to 250μ. If it is less than 5μ, it is difficult to uniformly roughen the surface of the cation exchange membrane, and if it is more than 250μ, cracks will occur in the silica particle layer, which is not preferable. Within this range, a sufficient surface treatment effect can be obtained even if the depth of the unevenness is different.

担体上に形成した粒子層は、水を含んだ状態であれば加
熱、圧着の際、水蒸気ケ発生し粒子層を壊す恐れがある
ので、あらかじめ乾燥することが必要である。
If the particle layer formed on the carrier contains water, there is a risk that water vapor will be generated and the particle layer will be destroyed during heating and compression bonding, so it is necessary to dry it beforehand.

沖紙あるいはアート紙上に形成したシリカ粉末粒子層を
基材陽イオン交換膜に加熱、圧着し、かかる粒子層な基
材陽イオン交換膜表面上に形成させる。圧着方法として
は、プレスあるいはロール法いずれでも良く、基材陽イ
オン交換膜の膜形態に応じて適宜選択する。圧着条件は
、陽イオン交換基の形態によって適宜選択されるが、温
度100〜200℃、圧カ5〜100kg/匁2が好ま
しい。
The silica powder particle layer formed on Oki paper or art paper is heated and pressed onto the base cation exchange membrane, and the particle layer is formed on the surface of the base cation exchange membrane. The pressure bonding method may be either a press method or a roll method, which is appropriately selected depending on the membrane form of the base cation exchange membrane. The compression conditions are appropriately selected depending on the form of the cation exchange group, but preferably a temperature of 100 to 200° C. and a pressure of 5 to 100 kg/momme 2.

陽イオン交換膜表面上に形成したシリカ粒子層は、濃度
1〜30重量%苛性アルカリ水溶液中、温度20〜90
℃の条件で溶解除去する。
The silica particle layer formed on the surface of the cation exchange membrane is heated in a caustic aqueous solution with a concentration of 1 to 30% by weight at a temperature of 20 to 90°C.
Dissolve and remove at ℃.

上記方法で粗面化した陽イオン交換膜を次の工程で、史
に処理することにより、電圧の絶対値をも低減した高性
能の表面処理イオン交換膜が得られる。
By treating the cation exchange membrane roughened by the above method in the next step, a high-performance surface-treated ion exchange membrane with a reduced absolute value of voltage can be obtained.

かかる工程とは、粗面化陽イオン交換膜Z濃度1〜10
fi量%の希薄苛性アルカリ水溶液中、常圧下で沸騰処
理することである。処理時間はa5〜10時間が望まし
い。希薄苛性アルカリ水溶液の代りに、水中で沸騰処理
すると粗面化陽イオン交換膜が膨潤しすぎて含水率が高
くなり、特に電解開始直後の電流効率が低(なり、陽極
を損傷する恐れがあるし、又、なかなか電流効率が回復
しない。
Such a step means that the roughened cation exchange membrane Z concentration is 1 to 10.
It is a boiling treatment under normal pressure in a dilute aqueous caustic alkaline solution containing % fi. The processing time is preferably 5 to 10 hours. If boiling in water instead of a dilute caustic aqueous solution causes the roughened cation exchange membrane to swell too much, resulting in high water content, the current efficiency will be low (especially immediately after the start of electrolysis), and there is a risk of damaging the anode. However, the current efficiency does not recover easily.

希薄苛性アルカリ水溶液の濃度が10%を越えると、処
理効果がなく電圧低減効果が期待できなくなる。又、処
理温度を例えば常圧下で80〜9゜℃と低下した場合も
、電圧低減効果が得られず好ましくない。更に、該沸騰
処理した膜を取り出し空気中で湖度10〜50℃の温和
な条件下で乾燥することが好ましい。かかる乾燥工程ケ
行うと電解開始直後から高い電流効率が得られる。
If the concentration of the dilute aqueous caustic solution exceeds 10%, there will be no treatment effect and no voltage reduction effect can be expected. Further, if the treatment temperature is lowered to, for example, 80 to 9°C under normal pressure, the voltage reduction effect cannot be obtained, which is not preferable. Furthermore, it is preferable to take out the boiling-treated membrane and dry it in the air under mild conditions at a lake temperature of 10 to 50°C. If such a drying step is performed, high current efficiency can be obtained immediately after the start of electrolysis.

以上の処理により、陽イオン交換膜の表面に施される粗
面化とは、膜面からの深さ、又は高さが平均0.1〜2
0μであり、膜面1CIrL2あたり平均103〜10
′5個の微細な凹凸からなり、その断面形状は、不規則
な円形状である。
The roughening applied to the surface of the cation exchange membrane through the above treatment means that the depth or height from the membrane surface is on average 0.1 to 2.
0 μ, average 103 to 10 per 1 CIrL2 membrane surface
It consists of 5 minute concavities and convexities, and its cross-sectional shape is irregularly circular.

これら表面の凹凸は、表面形状測定器(ラフネス・メー
ター)でおよそ測定できるが、効果の程度を正確に判断
するためには電子顕微鏡の表面及び断面写真から深さ又
は高さと密度を求める方法を採用した方が良い。
These surface irregularities can be approximately measured using a surface profile measuring device (roughness meter), but in order to accurately judge the extent of the effect, there is a method to determine the depth or height and density from surface and cross-sectional photographs taken using an electron microscope. It is better to adopt it.

本発明の粗面化は、膜の片面だけに施しても良いし、又
、両面に施すこともできる。両面に施す場合は、両面同
時にシリカ粉末層を加熱、圧着した方が好ましい。片面
だけを粗面化する場合は、粗面化面が陰極側に向(よう
に配置して用いる。
The surface roughening of the present invention may be applied to only one side of the membrane, or may be applied to both sides. When applying to both sides, it is preferable to heat and press the silica powder layer on both sides at the same time. When only one side is roughened, the roughened side is used facing toward the cathode.

以上のようにして得られる表面処理陽イオン交換膜は、
塩化アルカリ水溶液の電解プロセスにおいて陽極室と陰
極室とを分割する隔膜として用いられる。この場合、用
いる陰極としては使用環境に耐え、反応に対して充分な
触媒作用ビ有するもので、かつ、生成ガスの抜けを妨げ
ることのない構造のものであればよ(、通常用いられる
陰極であればよい。例えば、鉄、軟鋼、ニッケル、ステ
ンレススチール等の材質で、金網、エキスパンデッドメ
タル、格子状、縦棧型、パンチトメタル等の多孔性のも
のが挙げられるが、何らこれに限定されるものではない
The surface-treated cation exchange membrane obtained as described above is
It is used as a diaphragm to separate an anode chamber and a cathode chamber in the electrolysis process of aqueous alkali chloride solutions. In this case, the cathode used should be one that can withstand the operating environment, has sufficient catalytic activity for the reaction, and has a structure that does not impede the escape of the produced gas. For example, materials such as iron, mild steel, nickel, stainless steel, etc., and porous materials such as wire mesh, expanded metal, lattice shape, vertical rail shape, punched metal, etc. may be mentioned. It is not limited.

又、陽極についても、使用環境に耐え、目的とする反応
に対して充分な触媒作用を有する通常の陽極が使用され
、例えば、黒鉛又はチタン、タンタル、タングステン、
ジルコニウム、ニオフ等ノバルブ金属の表面に白金、パ
ラジウム、ルテニウム、イリジウム等の白金族金属、白
金族金属の酸化物又は白金族金属の酸化物とパルプ金属
の酸化物を混合して被覆した多孔性陽極が使用される。
As for the anode, a normal anode that can withstand the operating environment and has sufficient catalytic activity for the desired reaction is used, such as graphite, titanium, tantalum, tungsten,
A porous anode in which the surface of a metal such as zirconium or niobium is coated with a platinum group metal such as platinum, palladium, ruthenium, or iridium, an oxide of a platinum group metal, or a mixture of an oxide of a platinum group metal and an oxide of a pulp metal. is used.

電解に際しこれら電極は、膜面に接触しててもよいし、
又、離れていてもよい。
During electrolysis, these electrodes may be in contact with the membrane surface,
Also, they can be apart.

以下、具体例によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using specific examples.

尚、本発明はこれら具体例にぶって何ら限定されるもの
も工ない。
It should be noted that the present invention is not limited in any way to these specific examples.

実施例1 0F2=OF2と0F2=CF−0−C!F、−CF−
0−OF2−OF2−EI02FFs とを1.1.2−)リクロロ−1,2,2トリフルオロ
エタン中、パーフルオロプロピオニルペルオキシドを開
始剤として共重合し重合体を得た(スルホン酸基として
の交換容量は0.91 meq/を乾燥樹脂)。
Example 1 0F2=OF2 and 0F2=CF-0-C! F, -CF-
0-OF2-OF2-EI02FFs was copolymerized in 1.1.2-)lichloro-1,2,2 trifluoroethane using perfluoropropionyl peroxide as an initiator to obtain a polymer (as a sulfonic acid group). Exchange capacity is 0.91 meq/dry resin).

これ乞Aポリマーとする。Let's call this polymer A.

同様にして OF、、 =OF、とOF、=OF’−0−OF’2−
OF−0−OF、、−cF2−coocn3CF3 との共重合体を得た(カルボン酸基としての交換容量は
1.1 meq7’? )。これをBポリマーとする。
Similarly, OF,, =OF, and OF, =OF'-0-OF'2-
A copolymer with OF-0-OF, -cF2-coocn3CF3 was obtained (exchange capacity as carboxylic acid group was 1.1 meq7'?). This will be referred to as B polymer.

次にAポリマーを100μの厚さで、Bポリマー乞75
μの厚さで各々フィルムに成型したのち、これらフィル
ムを2枚重ね合せ熱圧着し1枚のフィルムとし、基材陽
イオン交換膜とする。
Next, add polymer A to a thickness of 100 μm and polymer B to a thickness of 75 μm.
After forming each film into a film with a thickness of μ, two of these films are stacked and thermocompressed to form a single film, which is used as a base cation exchange membrane.

平均粒径約5μのシリカ微粉末を水で練り15重量%の
ペースト状にした後、アート紙上に塗布し、厚さ約50
μのシリカ粒子層乞得た。該シリカ粒子層を担持したア
ート紙を基材陽イオン交換膜ノ両面ニ当て、160℃+
 20kl?/cTt2の条件で加熱、圧着した。その
後、5重量%苛性ソーダ水溶液中、温度80℃の条件で
陽イオン交換膜の表面に圧着されたシリカ粉末を溶解除
去すると同時に加水分解を行った。
Fine silica powder with an average particle size of approximately 5 μm was kneaded with water to form a paste of 15% by weight, and then applied onto art paper to a thickness of approximately 50 μm.
A layer of μ silica particles was obtained. The art paper carrying the silica particle layer was applied to both sides of the base cation exchange membrane at 160°C.
20kl? Heating and compression bonding were carried out under the conditions of /cTt2. Thereafter, in a 5% by weight aqueous sodium hydroxide solution at a temperature of 80° C., the silica powder pressed onto the surface of the cation exchange membrane was dissolved and removed, and at the same time hydrolysis was performed.

次にかかる陽イオン交換膜を2重量%苛性ソーダ水溶液
中で6時間沸騰処理した後、水洗し、空気中、25℃の
条件下で2日間乾燥した。
Next, the cation exchange membrane was boiled in a 2% by weight aqueous sodium hydroxide solution for 6 hours, washed with water, and dried in air at 25° C. for 2 days.

得られた粗面化陽イオン交換膜を2重量%苛性ソーダ水
溶液に一夜浸漬して、該陽イオン交換膜のBポリマー側
音陰極に向げて電解槽に組込み、陽極としてルテニウム
酸化物を被覆したチタンエキスバンドメタル、陰極とし
て鉄製のエキスバンドメタルを用い、陽・陰極間距離’
i 11mとし、陰極室の苛性ソーダ水溶液の抜き出し
レベルを陽極室のレベルに対して2OcIrL高<シ、
膜を陽極に接触させた状態で電解した。
The obtained roughened cation exchange membrane was immersed in a 2% by weight aqueous sodium hydroxide solution overnight, and the cation exchange membrane was assembled into an electrolytic cell toward the B polymer side cathode, and coated with ruthenium oxide as an anode. Using titanium extracted band metal and iron extracted band metal as the cathode, the distance between the anode and cathode is
i 11 m, and the extraction level of the caustic soda aqueous solution in the cathode chamber is 2OcIrL higher than the level in the anode chamber.
Electrolysis was performed with the membrane in contact with the anode.

陽極室に飽和食塩水、陰極室に水を供給して陰極室の苛
性ソーダ濃度を66重量%に保ち、温度90℃、電流密
度40A/dm2で電解したところ、電圧は3.25 
V 、電流効率は96.5%であった。
When saturated saline was supplied to the anode chamber and water was supplied to the cathode chamber to maintain the caustic soda concentration in the cathode chamber at 66% by weight, electrolysis was carried out at a temperature of 90°C and a current density of 40 A/dm2, the voltage was 3.25.
V, the current efficiency was 96.5%.

比較例1 平均粒径7μの亜鉛粉末を2重量%になるように水に懸
濁し、沖過法により沢紙上に亜鉛粉末粒子層を形成させ
、実施例1で用いた基材陽イオン交換膜の両面に加熱、
圧着させた。
Comparative Example 1 Zinc powder with an average particle size of 7 μm was suspended in water to a concentration of 2% by weight, and a layer of zinc powder particles was formed on the paper by the Okinawa method to form the base cation exchange membrane used in Example 1. heating on both sides of the
It was crimped.

次に80℃、20重量%の苛性ソーダ水溶液中で亜鉛粉
末を溶解除去し、90℃、1ON量%の苛性ソーダ水溶
液中、24時間処理して加水分解した。
Next, the zinc powder was dissolved and removed in a 20% by weight aqueous sodium hydroxide solution at 80°C, and hydrolyzed by treatment for 24 hours in a 1ON aqueous sodium hydroxide solution at 90°C.

実施例1と全(同様な条件で電解を行い、電流密度40
A/血2で電圧430V、電流効率94.0%の結果を
得た。
Example 1 and all (electrolysis was carried out under the same conditions, current density 40
With A/Blood 2, a voltage of 430 V and a current efficiency of 94.0% were obtained.

比較例2 実施例1で粗面化陽イオン交換膜を2重量%苛性ソーダ
水溶液の代りに水中で3時間沸騰処理した以外は全く同
様な方法で処理し、実施例1と同じ条件で電解を行い、
電流密度40 A /lbn”で電圧3.24V、電流
効率95.0%の結果を得た。
Comparative Example 2 The roughened cation exchange membrane was treated in exactly the same manner as in Example 1, except that it was boiled in water for 3 hours instead of the 2% by weight aqueous caustic soda solution, and electrolysis was carried out under the same conditions as in Example 1. ,
At a current density of 40 A/lbn'', a voltage of 3.24 V and a current efficiency of 95.0% were obtained.

比較例6 実施例1で粗面化陽イオン交換膜72重量%苛性ソーダ
水溶液の代りに20重量%苛性ソーダ水溶液中で6時間
沸騰処理した以外は全く同様の方法で処理し、実施例1
と同じ条件で電解を行い、電流@度40A/血2で電圧
154V、電流効率96.5%の結果を得た。
Comparative Example 6 The roughened cation exchange membrane 7 was treated in the same manner as in Example 1 except that it was boiled for 6 hours in a 20% by weight caustic soda aqueous solution instead of the 72% by weight caustic soda aqueous solution.
Electrolysis was performed under the same conditions as above, and results were obtained with a current of 40 A/blood 2, a voltage of 154 V, and a current efficiency of 96.5%.

実施例2 平均粒径3μ以下のシリカ微粉末70.3重量%になる
ように水に懸濁し、濾過法により渥紙上に厚さ約70μ
のシリカ粒子層乞形成した。該シリカ粒子層を担持した
涙紙を、実施例1と同じ基材陽イオン交換膜の両面に当
て、160℃、100kg/CrrL2の条件で加熱、
圧着した。その後、5重量%苛性ソーダ水溶液中、温度
80℃の条件で陽イオン交換膜の表面に圧着されたシリ
カ粉末乞溶解除去した。
Example 2 Fine silica powder with an average particle size of 3 μm or less was suspended in water to a concentration of 70.3% by weight, and was spread on paper to a thickness of about 70 μm using a filtration method.
A layer of silica particles was formed. The tear paper carrying the silica particle layer was applied to both sides of the same base cation exchange membrane as in Example 1, heated at 160 ° C. and 100 kg/CrrL2,
It was crimped. Thereafter, the silica powder pressed onto the surface of the cation exchange membrane was dissolved and removed in a 5% by weight aqueous sodium hydroxide solution at a temperature of 80°C.

次にかかる陽イオン交換膜75重量%苛性ソーダ水溶液
中で6時間沸騰処理した後、空気中、25℃の条件下で
2日間乾燥した。得られた粗面化陽イオン交換膜な2重
量%苛性ソーダ水溶液に一夜浸漬した後、実施例1と同
じ条件で電解を行い、電流密度40A/血2で電圧は3
.21V、電流効率96.0%の結果を得た。
Next, the cation exchange membrane was boiled in a 75% by weight aqueous sodium hydroxide solution for 6 hours, and then dried in air at 25° C. for 2 days. The obtained roughened cation exchange membrane was immersed overnight in a 2% by weight aqueous solution of caustic soda, and then electrolyzed under the same conditions as in Example 1, with a current density of 40 A/blood 2 and a voltage of 3.
.. A result of 21 V and a current efficiency of 96.0% was obtained.

実施例3 米国デーボン社より市販されている■ナフィオン117
陽イオン交換膜の片面を化学処理して作製した厚さ約4
0μのカルボン酸層を有する5o3H/C0OH2層構
造の陽イオン交換膜を得た。該膜を用い実施例2と全く
同様な方法で粗面化処理し、実施例2と同じ条件で電解
2行い、電流密度4゜A/血2で電圧3.28 v 、
電流効率9Zo%ヲ得た。
Example 3 ■Nafion 117 commercially available from Devon, USA
Approximately 4cm thick, made by chemically treating one side of a cation exchange membrane.
A cation exchange membrane having a 5o3H/C0OH two-layer structure having a 0μ carboxylic acid layer was obtained. The membrane was subjected to surface roughening treatment in exactly the same manner as in Example 2, and electrolysis 2 was performed under the same conditions as in Example 2, at a current density of 4°A/blood 2 and a voltage of 3.28 V.
A current efficiency of 9Zo% was obtained.

実施例4 沸騰処理後の乾燥工程を除いた以外は実施例1と全く同
様な方法で粗面化処理し、実施例1と同じ条件で電解し
た。初期は電圧、電流効率ともに低く、性能回復((約
1週間を要した。7日間の電解性能は、電圧3.24V
、電流効率96%であり、6ケ月間の長期にわたりこの
性能が維持された。
Example 4 The surface was roughened in the same manner as in Example 1 except that the drying step after the boiling treatment was omitted, and electrolyzed under the same conditions as in Example 1. Initially, both voltage and current efficiency were low, and it took about a week to recover the performance.The electrolysis performance for 7 days was at a voltage of 3.24V
, the current efficiency was 96%, and this performance was maintained over a long period of 6 months.

比較例4 実施例1において陽イオン交換膜の両面を全く伺も処理
せず、実施例1と全く同様に電解を行い電流密度40A
/血2で電圧は3.65V、電流効率96.0%の結果
を得た。
Comparative Example 4 Electrolysis was carried out in exactly the same manner as in Example 1, without any treatment on both sides of the cation exchange membrane, and the current density was 40A.
/Blood 2, the voltage was 3.65V and the current efficiency was 96.0%.

特許出願人 東洋曹達工業株式会社Patent applicant: Toyo Soda Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 (1:  シリカ粉末と水とを混合し、懸濁あるいはペ
ース[・状の混合物となし、該混合物乞アート紙あるい
は沢紙上に相持せしめ乾燥することで形成したシリカ粉
末層を陽イオン交換基及び/又は陽イオン交換基になり
うる基を有するパーフルオロカーボン重合体膜の表面に
加熱・圧着し、かかる膜表面に形成されたシリカ粉末ケ
苛性アルカリ水溶液で溶出することにより得た粗面化陽
イオン交換膜を1〜10重f1′%苛性アルカリ水溶液
中で沸騰処理することを特徴とする粗面化陽イオン交換
膜を製造する方法。 (2)沸騰処理後、水洗し乾燥する特許請求の範囲(1
)項記載の方法。
[Claims] (1: A silica powder layer formed by mixing silica powder and water to form a suspension or paste-like mixture, allowing the mixture to be supported on art paper or plain paper, and drying. The silica powder formed on the membrane surface is heated and pressed onto the surface of a perfluorocarbon polymer membrane having a cation exchange group and/or a group that can become a cation exchange group, and the silica powder formed on the membrane surface is eluted with a caustic alkali aqueous solution. A method for producing a roughened cation exchange membrane, characterized in that the roughened cation exchange membrane is boiled in a 1 to 10 wt/f1'% caustic alkali aqueous solution. (2) After the boiling treatment, washing with water Claims that dry (1)
) method described in section.
JP57196836A 1982-11-10 1982-11-11 Manufacture of cation exchange membrane having roughened surface Granted JPS5989328A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57196836A JPS5989328A (en) 1982-11-11 1982-11-11 Manufacture of cation exchange membrane having roughened surface
US06/550,338 US4537910A (en) 1982-11-10 1983-11-09 Method of producing cation-exchange membrane having roughed surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57196836A JPS5989328A (en) 1982-11-11 1982-11-11 Manufacture of cation exchange membrane having roughened surface

Publications (2)

Publication Number Publication Date
JPS5989328A true JPS5989328A (en) 1984-05-23
JPS6256184B2 JPS6256184B2 (en) 1987-11-24

Family

ID=16364467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57196836A Granted JPS5989328A (en) 1982-11-10 1982-11-11 Manufacture of cation exchange membrane having roughened surface

Country Status (1)

Country Link
JP (1) JPS5989328A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192283U (en) * 1987-12-09 1989-06-16

Also Published As

Publication number Publication date
JPS6256184B2 (en) 1987-11-24

Similar Documents

Publication Publication Date Title
EP0045603B2 (en) Ion exchange membrane cell and electrolytic process using the same
BRPI0709954A2 (en) gas diffusion electrode for electrolyte percolation cells
JPS5911674B2 (en) Electrolysis method and electrolyzer
JPS5989328A (en) Manufacture of cation exchange membrane having roughened surface
JPS58199884A (en) Improved cation exchange membrane for electrolysis
EP0066102B1 (en) Ion exchange membrane cell and electrolysis with use thereof
JP3127991B2 (en) Method for producing electrode assembly of laminated ion exchange membrane having porous membrane on surface
EP0045147B1 (en) Process for producing a membrane for electrolysis
JPS5989329A (en) Manufacture of cation exchange membrane having roughened surface
JPS5986627A (en) Production of surface-roughened cation exchange membrane
JPS5848686A (en) Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
JPH0288645A (en) Fluorine-containing cation exchange membrane for alkali chloride electrolysis
US4537910A (en) Method of producing cation-exchange membrane having roughed surface
JP3192763B2 (en) How to reuse an electrolytic cell
JP3112039B2 (en) How to restart the electrolytic cell
JPS5925989A (en) Electrolyzing method
JPS6120634B2 (en)
JPS58176223A (en) Production of cation exchange membrane having roughened surface
JPS5857444B2 (en) Cation exchange membrane for electrolysis
JPS631391B2 (en)
US4341614A (en) Production of porous diaphragms
EP0066101B1 (en) Ion exchange membrane cell and electrolysis with use thereof
JPS6040515B2 (en) Ion exchange membrane electrolyzer
JPS5887283A (en) Manufacture of alkali hydroxide
JPS63310985A (en) Production of alkali hydroxide