JPS62577B2 - - Google Patents

Info

Publication number
JPS62577B2
JPS62577B2 JP53103943A JP10394378A JPS62577B2 JP S62577 B2 JPS62577 B2 JP S62577B2 JP 53103943 A JP53103943 A JP 53103943A JP 10394378 A JP10394378 A JP 10394378A JP S62577 B2 JPS62577 B2 JP S62577B2
Authority
JP
Japan
Prior art keywords
substrate
recess
impurity region
semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53103943A
Other languages
Japanese (ja)
Other versions
JPS5457877A (en
Inventor
Ichiro Imaizumi
Masatoshi Kimura
Keijiro Uehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10394378A priority Critical patent/JPS5457877A/en
Publication of JPS5457877A publication Critical patent/JPS5457877A/en
Publication of JPS62577B2 publication Critical patent/JPS62577B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、半導体集積回路、特に同一基板上に
全体の厚みは均一であるが、耐圧によつて厚さの
異なるエピタキシヤル層を有する半導体装置の構
造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit, and particularly to the structure of a semiconductor device having an epitaxial layer on the same substrate having an epitaxial layer having a uniform overall thickness but varying in thickness depending on withstand voltage. .

更に、本願発明に関する技術が、特開昭52−
69587号公報に開示されている。
Furthermore, the technology related to the present invention is disclosed in Japanese Unexamined Patent Publication No. 52-
It is disclosed in Publication No. 69587.

しかし、特開昭52−69587号公報記載の技術
は、埋込層の構造について何ら考慮していない。
However, the technique described in Japanese Patent Application Laid-Open No. 52-69587 does not take into account the structure of the buried layer.

以下、本発明を実施例を参照して詳細に説明す
る。一例として、コレクタ・エミツタ間耐圧
(BVCEO)150Vの高耐圧トランジスタとBVCEO
15Vの低耐圧トランジスタ(小信号)を同一基板
上に集積する場合について説明する。
Hereinafter, the present invention will be explained in detail with reference to Examples. As an example, a high voltage transistor with collector-emitter breakdown voltage (BV CEO ) of 150V and BV CEO =
We will explain the case of integrating 15V low voltage transistors (small signal) on the same substrate.

まず、必要なエピタキシヤル層の比抵抗ρEP
厚さtEPついて述べる。上記仕様の高耐圧トラン
ジスタを形成するためには、そのトランジスタの
直流電流増幅率hFEの最大値を200とすると、ρE
は12Ωcm以上必要であり、製造プロセス上の余
裕を見て15Ωcmとする。この時のエピタキシヤル
層の厚さは、ベース・コレクタ逆バイアス150V
で延びる空乏層の厚み等を考慮して30μmとな
る。また、低耐圧トランジスタを形成するエピタ
キシヤル層の厚みを同様にして求めると、10μm
あれば充分である。
First, the required specific resistance ρ EP and thickness t EP of the epitaxial layer will be described. In order to form a high voltage transistor with the above specifications, if the maximum value of the transistor's DC current amplification factor h FE is 200, then ρ E
P must be 12 Ωcm or more, and it is set to 15 Ωcm to allow for margin in the manufacturing process. The thickness of the epitaxial layer at this time is based on the base-collector reverse bias of 150V.
Taking into consideration the thickness of the depletion layer extending in , it is 30 μm. Also, if the thickness of the epitaxial layer forming the low voltage transistor is found in the same way, it is 10 μm.
It is enough.

第1図に従つて上記仕様の構造を、本発明の製
造プロセスを用いて形成する場合について説明す
る。第1図は結晶方位(100)の表面をもつシ
リコン基板1上に酸化膜2を形成したのち、この
酸化膜2に結晶軸方向<100>に平行な辺のみか
らなる矩形の窓をホトエツチング技術を用いて開
けた断面構造図である。以下同じ番号は同一物を
指示する。
Referring to FIG. 1, a case will be described in which a structure with the above specifications is formed using the manufacturing process of the present invention. Figure 1 shows that after an oxide film 2 is formed on a silicon substrate 1 having a surface with a crystal orientation of (100), a rectangular window consisting of only sides parallel to the <100> crystal axis direction is formed in this oxide film 2 using photo-etching technology. FIG. The same numbers below refer to the same item.

同図で、異方性エツチング液を用いて約20μ
mの深さの凹み部21を基板に形成する。エツチ
ング液はKOH20wt%水溶液にイソプロピルアル
コールと、エツチング面にピラミツド状の突起が
現われるのを防ぐための界面活性剤FC−95等を
混合したもので、KOH300g、純水1200c.c.、イソ
プロピルアルコール300c.c.、FC−95の0.1%水溶
液25c.c.で作成した。20μmエツチングするには、
この混合エツチング液を用いて液温70℃で約50分
を要する。
In the same figure, approximately 20 μm was etched using an anisotropic etching solution.
A recess 21 with a depth of m is formed in the substrate. The etching solution is a mixture of a 20wt% KOH aqueous solution, isopropyl alcohol, and a surfactant such as FC-95 to prevent pyramid-shaped protrusions from appearing on the etched surface. 300g of KOH, 1200c.c. of pure water, and 300c of isopropyl alcohol. .c., prepared with 25 c.c. of 0.1% aqueous solution of FC-95. To etch 20μm,
Using this mixed etching solution, it takes about 50 minutes at a solution temperature of 70°C.

次に同図では、上記のような凹み部を形成し
たのちに、埋め込みn+拡散層3を形成する。
Next, in the same figure, after forming the recessed portion as described above, the buried n + diffusion layer 3 is formed.

なお、埋込み拡散層3は凹部周辺の基板表面に
延在する部分31を有するようにする。次にn型
エピタキシヤル層4を30μm成長させ、さらに基
板の凹部が転写されたエピタキシアル層の凹み部
41のみにエツチングマスキング材の酸化膜42
を通常のホトエツチング形成している。このと
き、酸化膜42は同図破線のように5〜10μm程
度は凹み部上部にかかつた部分があつてもよい。
Note that the buried diffusion layer 3 has a portion 31 extending to the substrate surface around the recess. Next, an n-type epitaxial layer 4 is grown to a thickness of 30 μm, and an oxide film 42 of an etching masking material is formed only on the concave portions 41 of the epitaxial layer where the concave portions of the substrate have been transferred.
is formed by normal photoetching. At this time, the oxide film 42 may have a portion covering the upper part of the recess by about 5 to 10 μm, as indicated by the broken line in the figure.

第1図で、異方性エツチング液を用い低耐圧
側エピタキシヤル層をエツチングして、表面を平
坦にする。これでエピタキシヤル層は高耐圧部で
30μm、低耐圧部で10μmの厚さとなる。エツチ
ング液はKOH40wt%水溶液を用い、液温70℃で
約30分行なう。
In FIG. 1, the epitaxial layer on the lower voltage side is etched using an anisotropic etching solution to flatten the surface. The epitaxial layer is now a high voltage part.
The thickness is 30μm, and the low voltage part is 10μm thick. The etching solution used was a 40wt% KOH aqueous solution, and the etching was carried out at a temperature of 70°C for about 30 minutes.

平坦化を行なつた後、のエツチング工程で残
つた酸化膜42を除去する。表面酸化を行ないエ
ピタキシヤル層表面にSiO2膜(図示せず)を形
成し、ホトエツチングでアイソレーシヨン拡散用
の窓をSiO2膜に開ける。アイソレーシヨン用P
型拡散層5で第1図のように高耐圧部101と
低耐圧部102が分離され、以後は通常のリニア
集積回路の製造工程で行ない、同図のごとき構造
の集積回路が形成される。6は部分31で埋込み
層3と結ばれるコレクタ打ち抜きn+拡散層、7
はP型ベース拡散層、8はn型エミツタ拡散層で
ある。
After planarization, the oxide film 42 remaining in the etching process is removed. Surface oxidation is performed to form a SiO 2 film (not shown) on the surface of the epitaxial layer, and windows for isolation diffusion are opened in the SiO 2 film by photoetching. P for isolation
The high breakdown voltage section 101 and the low breakdown voltage section 102 are separated by the type diffusion layer 5 as shown in FIG. 1, and the subsequent steps are carried out in a normal linear integrated circuit manufacturing process to form an integrated circuit having the structure shown in the same figure. 6 is a collector punched n + diffusion layer connected to the buried layer 3 at a portion 31; 7
8 is a P-type base diffusion layer, and 8 is an n-type emitter diffusion layer.

本発明の半導体装置では、高耐圧部の島領域4
01のコレクタ埋込み拡散層3が凹部周辺の基板
表面上に延在しているため、コレクタ打ち抜き
n+拡散層6を低耐圧部の島領域402のものと
同一工程で簡単に形成できる。又、コレクタ打ち
抜きn+拡散層を薄いエピタキシヤル層に形成で
きるため、占有面積も不必要に大きくする必要も
なくなり、集積回路の集積密度に悪影響を与える
ことがない。
In the semiconductor device of the present invention, the island region 4 of the high breakdown voltage section
Since the collector buried diffusion layer 3 of No. 01 extends on the substrate surface around the recess, the collector is not punched out.
The n + diffusion layer 6 can be easily formed in the same process as that of the island region 402 of the low breakdown voltage section. Furthermore, since the collector punched n + diffusion layer can be formed in a thin epitaxial layer, there is no need to increase the occupied area unnecessarily, and the integration density of the integrated circuit is not adversely affected.

以上に述べた様に、本発明の半導体装置では、
コレクタ抵抗の低減のためのコレクタ埋込み層を
基板の凹部周辺の表面領域に設けたことを特徴と
するものである。
As described above, in the semiconductor device of the present invention,
The device is characterized in that a collector buried layer for reducing collector resistance is provided in the surface area around the concave portion of the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の半導体装置の一実施例の製
造工程を素子断面図で示すものである。 1:P型Si基板2:SiO2膜3:n+型コレクタ
埋込み層4:n型Siエピタキシヤル層、6:n+
レクタ打抜き層。
FIG. 1 is a cross-sectional view showing the manufacturing process of an embodiment of the semiconductor device of the present invention. 1: P type Si substrate 2: SiO 2 film 3: n + type collector buried layer 4: n type Si epitaxial layer, 6: n + collector punching layer.

Claims (1)

【特許請求の範囲】 1 第1導電型の半導体基板と、該基板に設けら
れた凹みと、該凹みの表面領域に設けられた基板
と反対導電型の第1の不純物領域と、前記凹みを
埋めるとともに前記基板表面上に設けられ、表面
がほぼ平坦な半導体層とを有する半導体装置にお
いて、 上記凹み部分に対応する位置に少なくとも1つ
の高耐圧素子が設けられており、 上記凹み部分以外に対応する位置には少なくと
も1つの低耐圧素子が設けられており、 上記第1の不純物領域は上記半導体層が設けら
れる以前に上記凹み周辺部の上記基板表面領域に
延在するように設けられてなり、 かつ上記半導体層表面から上記半導体基板に向
つて設けられた上記半導体基板と逆導電型の第2
の不純物領域と上記第1の不純物領域は接触して
いることを特徴とする半導体装置。
[Scope of Claims] 1. A semiconductor substrate of a first conductivity type, a recess provided in the substrate, a first impurity region of a conductivity type opposite to that of the substrate provided in a surface region of the recess, and a recess provided in the recess. In a semiconductor device having a semiconductor layer filled in the substrate and a semiconductor layer provided on the surface of the substrate and having a substantially flat surface, at least one high-voltage element is provided at a position corresponding to the recessed portion, and corresponds to a portion other than the recessed portion. At least one low breakdown voltage element is provided at a position where the first impurity region is provided, and the first impurity region is provided so as to extend into the substrate surface region around the recess before the semiconductor layer is provided. , and a second conductivity type opposite to that of the semiconductor substrate, which is provided from the surface of the semiconductor layer toward the semiconductor substrate.
A semiconductor device, wherein the impurity region and the first impurity region are in contact with each other.
JP10394378A 1978-08-28 1978-08-28 Semiconductor device Granted JPS5457877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10394378A JPS5457877A (en) 1978-08-28 1978-08-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10394378A JPS5457877A (en) 1978-08-28 1978-08-28 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12347477A Division JPS5457865A (en) 1977-10-17 1977-10-17 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5457877A JPS5457877A (en) 1979-05-10
JPS62577B2 true JPS62577B2 (en) 1987-01-08

Family

ID=14367517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10394378A Granted JPS5457877A (en) 1978-08-28 1978-08-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5457877A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630737A (en) * 1979-08-21 1981-03-27 Seiko Epson Corp Semiconductor ic circuit

Also Published As

Publication number Publication date
JPS5457877A (en) 1979-05-10

Similar Documents

Publication Publication Date Title
US4278987A (en) Junction isolated IC with thick EPI portion having sides at least 20 degrees from (110) orientations
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
US4814288A (en) Method of fabricating semiconductor devices which include vertical elements and control elements
JP3014012B2 (en) Method for manufacturing semiconductor device
US5019523A (en) Process for making polysilicon contacts to IC mesas
JPS6159852A (en) Manufacture of semiconductor device
US3836998A (en) High voltage bipolar semiconductor device and integrated circuit using the same and method
JPS63157475A (en) Semiconductor device and manufacture thereof
JP2654607B2 (en) Method for manufacturing semiconductor device
JPH05343686A (en) Semiconductor device and manufacture thereof
JPS62577B2 (en)
JP2500630B2 (en) Semiconductor device
JPH0252858B2 (en)
JPS606104B2 (en) MIS semiconductor device
JPS5843903B2 (en) Manufacturing method of semiconductor device
JPS61172346A (en) Semiconductor integrated circuit device
JP2760401B2 (en) Dielectric separation substrate and semiconductor device
JPS63199454A (en) Semiconductor device
JP2654383B2 (en) Method for manufacturing semiconductor device
JPH0530074B2 (en)
JPS61269373A (en) Semiconductor device
JPS60776B2 (en) semiconductor equipment
JPS61194845A (en) Manufacture of semiconductor device
JPS6276775A (en) Semiconductor device
JPS6126241A (en) Manufacture of semiconductor device