JPS606104B2 - MIS semiconductor device - Google Patents

MIS semiconductor device

Info

Publication number
JPS606104B2
JPS606104B2 JP1146176A JP1146176A JPS606104B2 JP S606104 B2 JPS606104 B2 JP S606104B2 JP 1146176 A JP1146176 A JP 1146176A JP 1146176 A JP1146176 A JP 1146176A JP S606104 B2 JPS606104 B2 JP S606104B2
Authority
JP
Japan
Prior art keywords
semiconductor
region
voltage
semiconductor device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1146176A
Other languages
Japanese (ja)
Other versions
JPS5295184A (en
Inventor
怜 目黒
保信 小佐
幸一 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1146176A priority Critical patent/JPS606104B2/en
Publication of JPS5295184A publication Critical patent/JPS5295184A/en
Publication of JPS606104B2 publication Critical patent/JPS606104B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、肌S半導体装置に関し、特に高耐圧MSトラ
ンジスタ、高耐圧MISIC、高耐圧CMISICなど
のMIS半導体装置に関する。 従来、高耐圧のMIS半導体装置は、オフセットゲート
構造、スタツクトゲート構造、高不純物濃度のドレィン
層の周辺をこれよりも低不純物濃度の拡散層(ドレィン
層と同一導電型の拡散層)で囲んだ二重拡散形式のドレ
ィン層構造などの種々の構造のものである。 しかしながら、上述した種々の構造の皿S半導体装置は
、高耐圧のものではあるが、製造プロセスはその構造上
複雑なものであり、作業工程が大なるものとなる欠点が
あった。 しかも、上述した構造の高耐圧肌S半導体装置において
、さらに高速化、低消費電力化などの高性能な特性を満
足するように素子のしきし、値電圧Vthを低減するた
めに半導体基板に低不純物濃度のものを用いる場合には
、フィールド絶縁膜下の寄生MOSトランジスタの防止
やチャンネル防止用のチャンネルストツパ−を設ける必
要があり、それだけ作業工数が増加し、製造歩留まりを
低減させたり製造原価が高価になる欠点があった。それ
ゆえ、本発明の目的は、上述した従来の諸欠点を解決し
、その製作が容易でしかも高性能で簡単な構造の高耐圧
MIS半導装置を提供することにある。 このような目的を達成するために、本発明による高耐圧
肌S半導体装置の望ましい実施例においては、ドレィン
層の中間的な位置の基板表面にゲート絶縁膜よりも厚い
酸化を設け、この酸化膜の下にドレィン層と同一導電型
でかつドレィン層より低不純物濃度の層を設けたことを
特徴とする。 以下、本発明にかかる実施例を用いて具体的に説明する
。第1図〜第6図は、本発明の一実施例であるLOCO
S構造の高耐圧MOSICおよびその製造方法を工程順
に示した断面図である。 同図を用いて本発明にかかる高耐圧MOSICおよびそ
の製造方法を工程順に詳細に説明する。
The present invention relates to a skin S semiconductor device, and particularly to an MIS semiconductor device such as a high voltage MS transistor, a high voltage MISIC, and a high voltage CM ISIC. Conventionally, high-voltage MIS semiconductor devices have an offset gate structure, a stacked gate structure, and a drain layer with a high impurity concentration surrounded by a diffusion layer with a lower impurity concentration (a diffusion layer of the same conductivity type as the drain layer). There are various structures such as a double diffusion type drain layer structure. However, although the plate S semiconductor devices of the various structures described above have a high breakdown voltage, the manufacturing process is complicated due to their structure and has the drawback that the work steps are large. Moreover, in the high-voltage S semiconductor device having the above-described structure, in order to satisfy high-performance characteristics such as higher speed and lower power consumption, the threshold voltage of the element is lowered and the semiconductor substrate is lowered to reduce the value voltage Vth. When using a material with impurity concentration, it is necessary to provide a channel stopper to prevent parasitic MOS transistors under the field insulating film and to prevent the channel, which increases the number of man-hours, reduces manufacturing yield, and increases manufacturing costs. The disadvantage was that it was expensive. Therefore, an object of the present invention is to solve the above-mentioned conventional drawbacks and to provide a high-voltage MIS semiconductor device that is easy to manufacture, has high performance, and has a simple structure. In order to achieve this purpose, in a preferred embodiment of the high-voltage S semiconductor device according to the present invention, an oxide film thicker than the gate insulating film is provided on the substrate surface at an intermediate position of the drain layer. It is characterized in that a layer having the same conductivity type as the drain layer and having a lower impurity concentration than the drain layer is provided below. Hereinafter, the present invention will be specifically explained using examples. FIG. 1 to FIG. 6 show LOCO, which is an embodiment of the present invention.
1A and 1B are cross-sectional views illustrating an S-structure high voltage MOSIC and a method for manufacturing the same in order of steps. The high breakdown voltage MOSIC and the manufacturing method thereof according to the present invention will be explained in detail in the order of steps using the same figure.

【ィ} P型シ
リコン基板量全面に気相反応による窒化シリコン(Si
3N4)膜2を形成する(第1図)。 {o} フィールド酸化膜を形成する領域のSi3N4
膜2と、ドレィン層を形成する領域のそのドレィン層の
中間的な位置のSi3N4膜2をエッチオフレ(第2図
)「ドレィン層を形成する領域以外をフオトレジスタ3
でマスクし、リン(P)等のドナー不純物噂を前記ドレ
ィン層を形成すべき領域内の窓を通してイオン注入する
(第3図)。 し一 フオトレジスタ3を除去したのちト湿潤酸素中「
高温で酸化しLOCOS構造の選択酸化シリコン(Si
02)膜585aを形成する(第亀図)。 このとき「Sj3N鼠葵2でカバーされた部分にはSi
3N4腰2の酸素に対するマスク効果のために酸化シリ
コン(Si02)膜は形成されない。O Si3N4膜
2を除去したのち、清浄なゲート酸化膜6を成長する。
続いて多結晶シリコン層7を基板1上面に形成し「フオ
トェツチングによりゲート電極以外をエッチオフする。
この残された多結晶シリコン層?をマスクにしてふたた
びエッチングを行い、ソース「ドレィン領域にあたるゲ
ート酸化膜7を除去し(第5図)、リン(P)等のドナ
ー不純物を拡散しN十型ソース層8とN+型ドレィン層
9を形成する(第6図)。{ホー ゲート電極G用多結
晶シリコン層7等を絶縁するためにt基板1上面にシラ
ンの熱分解で酸化シリコン(Si02)膜10を成長さ
せる(第7図)。 N コンタクト窓を開けたのちアルミニウム(山)を真
空蒸着し「フオトェッチングにより必要なアルミニウム
酸線および電極Sおよびドレィン電極Dを形成する(第
7図)。 なお、同図に示すように、ドレィン電極Dは、LOCO
S構造の厚いSi02膜に対してゲート電極Gと対向す
るN十型ドレィン層8上に設けるものとする。(ト)以
上によりウェハー処理工程を終了するわけで「その後は
「通常行なわれるように、チップに切断し「組立工程を
経てデバイスが完成する。上述したような製造工程を経
て形成された本発明にかかるLOCOS構造の高耐圧M
OSICは「下記に示すような諸特長を有するものであ
る。 {1} 本発明にかかるMOSICに組み込まれている
MOSトランジスタは、第7図に示すように、N十型ド
レィン層Sの中間的な位置LOCOS構造の厚い選択酸
化膜5aを有し「 この選択酸化膜6a下には、上詩的
+型ドレィン層8と連結しかつこれよりも低不純物濃度
のN型拡散層4(イオン注入法によって形成したもの)
を設けたものであり、しかもこのドレィン層8のオーミ
ックコンタクト電極すなわちドレィン電極Dは、上記選
択酸化膜5aに対してゲート電極Gと対向した領域のド
レィン層8上に設けた構造であるために、上記N型拡散
層4‘ま「ドレィン層8中において抵抗体として作用す
るものとなる。すなわち「本発明にかかる上記のMOS
トランジスタの回路図は、第8図に示すようなものとな
り、上記のN型拡散層4は、従釆のオフセットゲート構
造の高耐圧MOSトランジスタと同様に、飽和型の抵抗
体として働き〜同図に示すF点では「ドレィン電極D‘
こ印加されたドレイン印加電圧がこの抵抗体としてのN
型拡散層4のピンチオフ電圧Vp以下に保たれることに
なる。したがって、ドレィン層8の耐圧は「このN十型
ドレィン層8と基板1とのPN円接合の表面降伏電圧以
上に設定することができ、その耐圧を上記PN円筒接合
の下部である平坦なPN接合の内部降伏電圧まで高める
ことができるものである。それゆえ、本発明にかかるM
OSトランジスタの耐圧は可及的に大とすることができ
「もって本発明にかかるMOSトランジスタすなわちこ
れらの素子を組み込んだMOSICは非常に耐圧の高い
ものとなる。 脚 本発明にかかる高耐圧MOSICは、第】図に示す
ような簡単な構造のものでありもその製造方法および製
造プロセスは、前述したように極めて容易なものである
。すなわち、第1図〜第7図を用いて前述したように、
本発明にかかる高耐圧MOSICの製造方法およびその
製造プロセスは、従来のLOOOS構造のMOSICを
製作する製造工程を流用して行なうことができる。その
ため、作業工数が極めて少ない状態で、高耐圧のMOS
ICを得ることができ、高製造歩留まりと低製造原価を
達成することができる。【31 本発明は、前述した実
施例に限定されることなく「 PチャンネルMOSに
E/DMOSICC MOS ICおよびデイ・スクリ
ートMOSトランジスタそれに種々の態様のゲート電極
やゲート絶縁膜を用いた肌S半導体装置に適用できるも
のである。そして、本発明は、寄生MOSトランジスタ
防止やチャンネル防止のためのチャンネルストッパーの
製造工程は、本発明の構成要素であるドレィン層内の厚
い選択酸化膜下の拡散層(抵抗体)の製造プロセスと併
用して形成することができるために、その作業工数を増
加する必要がない。 さらに「本発明は、本質的に素子活性領域のしきし、値
電圧Vthの設定とは無関係に「 フィールド領域の半
導体基板表面のしきし、値電圧Vthを決定できるよう
な構造のものであるために、チャンネルストッパーを設
ける必要のある機種は極めてわずかのものに限ることが
できる。したがって、本発明にかかるMIS半導体装置
は、その製作が容易でしかも高性能(寄生効果がなく高
速動作、低消費電力で誤動作のない高信頼度)のもので
簡単な構造の高耐圧デバイスである。
[A] Silicon nitride (Si
3N4) Form film 2 (FIG. 1). {o} Si3N4 in the area where the field oxide film will be formed
Etch-off the Si3N4 film 2 at an intermediate position between the film 2 and the drain layer in the region where the drain layer is to be formed (Fig. 2).
A donor impurity such as phosphorus (P) is ion-implanted through the window in the region where the drain layer is to be formed (FIG. 3). After removing photoresistor 3, place it in humid oxygen.
Selective oxidation silicon (Si) oxidizes at high temperatures and has a LOCOS structure.
02) Form a film 585a (Figure 1). At this time, "Si
No silicon oxide (Si02) film is formed due to the masking effect of the 3N4 film 2 on oxygen. After removing the O 2 Si3N4 film 2, a clean gate oxide film 6 is grown.
Subsequently, a polycrystalline silicon layer 7 is formed on the upper surface of the substrate 1, and portions other than the gate electrode are etched off by photoetching.
This remaining polycrystalline silicon layer? The gate oxide film 7 corresponding to the source and drain regions is removed by etching again using the . (Fig. 6) In order to insulate the polycrystalline silicon layer 7 for the gate electrode G, etc., a silicon oxide (Si02) film 10 is grown on the upper surface of the T-substrate 1 by thermal decomposition of silane (Fig. 7). ). After opening the N contact window, vacuum evaporate aluminum (mountain) and photo-etch to form the necessary aluminum acid wire, electrode S, and drain electrode D (Figure 7). Drain electrode D is LOCO
It is assumed that it is provided on the N0 type drain layer 8 facing the gate electrode G for the thick Si02 film of the S structure. (G) This concludes the wafer processing process, and the device is completed by cutting it into chips as usual and then going through the assembly process. High breakdown voltage M of LOCOS structure applied to
OSIC has the following features. {1} As shown in FIG. 7, the MOS transistor incorporated in the MOSIC according to the present invention Underneath this selective oxide film 6a, there is an N-type diffusion layer 4 (ion-implanted) which is connected to the positive type drain layer 8 and has a lower impurity concentration than this selective oxide film 5a. formed by law)
Moreover, since the ohmic contact electrode of this drain layer 8, that is, the drain electrode D is provided on the drain layer 8 in a region facing the gate electrode G with respect to the selective oxide film 5a. , the N-type diffusion layer 4' acts as a resistor in the drain layer 8. That is, the MOS transistor according to the present invention acts as a resistor in the drain layer 8.
The circuit diagram of the transistor is as shown in FIG. 8, and the above-mentioned N-type diffusion layer 4 acts as a saturation type resistor similarly to the conventional high-voltage MOS transistor with an offset gate structure. At point F shown in ``drain electrode D'
The applied drain voltage is N as this resistor.
This will keep the pinch-off voltage Vp of the type diffusion layer 4 or lower. Therefore, the breakdown voltage of the drain layer 8 can be set to be higher than the surface breakdown voltage of the PN circular junction between the N-type drain layer 8 and the substrate 1, and the breakdown voltage of the drain layer 8 can be set to be higher than the surface breakdown voltage of the PN circular junction between the N-type drain layer 8 and the substrate 1. It is possible to increase the internal breakdown voltage of the junction.Therefore, the M according to the present invention
The withstand voltage of the OS transistor can be made as high as possible, so that the MOS transistor according to the present invention, that is, the MOSIC incorporating these elements has a very high withstand voltage. Even though it has a simple structure as shown in Figure 1, its manufacturing method and manufacturing process are extremely easy as described above. To,
The method and process for manufacturing a high voltage MOSIC according to the present invention can be carried out by utilizing the manufacturing process for manufacturing a conventional LOOOS structure MOSIC. Therefore, high-voltage MOS can be manufactured with extremely few man-hours.
ICs can be obtained, and high manufacturing yields and low manufacturing costs can be achieved. [31] The present invention is not limited to the above-mentioned embodiments, but is applicable to “P-channel MOS”.
It can be applied to E/DMOSICC MOS ICs, day-screte MOS transistors, and semiconductor devices using various types of gate electrodes and gate insulating films. Further, in the present invention, the manufacturing process of the channel stopper for preventing parasitic MOS transistors and channels is the same as the manufacturing process of the diffusion layer (resistor) under the thick selective oxide film in the drain layer, which is a component of the present invention. Since they can be formed in combination, there is no need to increase the number of man-hours. Furthermore, ``the present invention essentially has a structure in which the threshold value voltage Vth of the semiconductor substrate surface in the field region can be determined irrespective of the setting of the threshold value voltage Vth of the element active region. Therefore, the MIS semiconductor device according to the present invention is easy to manufacture and has high performance (no parasitic effects, high speed operation, low consumption). It is a high-voltage device with a simple structure and high reliability (no malfunctions when using electricity).

【図面の簡単な説明】 第1図〜第7図は「本発明にかかるLOCOS構造の高
耐圧MOSICおよびその製造方法を工程順に示す断面
図、第8図は、上述の高耐圧MOSICに含まれる高耐
圧MOSトランジスタの回路図を示す図である。 1…P型シリコン基板、2…Si3N4膜、3…フオト
レジスタ、4…リン(P)不純物層あるいはN型拡散層
、5,5a…選択酸化膜、6・・。 ゲート酸化膜、7…多結晶シリコン層あるいはゲート電
極G、8…N+型ドレイン層、9…N+型ソース層、1
0…Si02膜、D…ドレィン電極、S…ソース電極。
第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図
[BRIEF DESCRIPTION OF THE DRAWINGS] Figures 1 to 7 are cross-sectional views showing the LOCOS structure high voltage MOSIC according to the present invention and its manufacturing method in order of process. It is a diagram showing a circuit diagram of a high voltage MOS transistor. 1... P-type silicon substrate, 2... Si3N4 film, 3... photoresistor, 4... phosphorus (P) impurity layer or N-type diffusion layer, 5, 5a... selective oxidation. Film, 6... Gate oxide film, 7... Polycrystalline silicon layer or gate electrode G, 8... N+ type drain layer, 9... N+ type source layer, 1
0...Si02 film, D...drain electrode, S...source electrode.
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板と、前記半導体基板の主表面
のチヤンネルが形成されるべき領域部に薄いゲート絶縁
膜を介して設けられたゲート電極と、前記チヤンネルが
形成されるべき領域部の相対抗する端部を規定するよう
に形成された前記半導体基板と反対導電型の一対の高不
純物濃度の第1の半導体領域とを有するMIS半導体装
置において、前記一対の第1の半導体領域の一方と所定
の間隔をおいて高不純物濃度の第2の半導体領域を設け
、前記第1の半導体領域の一方と前記第2の半導体領域
との間の前記半導体基板の表面に前記ゲート絶縁膜より
も厚い酸化膜を設け、前記厚い酸化膜の下に前記第1の
半導体領域の一方と前記第2の半導体領域とを結ぶ前記
一対の半導体領域と同一導電型でかつ前記一対の半導体
領域よりも低不純物濃度の領域を設けたことを特徴とす
るMIS半導体装置。
1. A semiconductor substrate of one conductivity type, a gate electrode provided through a thin gate insulating film in a region on the main surface of the semiconductor substrate where a channel is to be formed, and a phase in the region where the channel is to be formed. In the MIS semiconductor device, the MIS semiconductor device includes the semiconductor substrate formed to define opposing ends, and a pair of highly impurity concentration first semiconductor regions of opposite conductivity type, wherein one of the pair of first semiconductor regions and A second semiconductor region having a high impurity concentration is provided at a predetermined interval, and is thicker than the gate insulating film on the surface of the semiconductor substrate between one of the first semiconductor regions and the second semiconductor region. An oxide film is provided under the thick oxide film, and the impurity content is the same as that of the pair of semiconductor regions connecting one of the first semiconductor regions and the second semiconductor region and that is lower in impurity than the pair of semiconductor regions. A MIS semiconductor device characterized in that a concentration region is provided.
JP1146176A 1976-02-06 1976-02-06 MIS semiconductor device Expired JPS606104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1146176A JPS606104B2 (en) 1976-02-06 1976-02-06 MIS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1146176A JPS606104B2 (en) 1976-02-06 1976-02-06 MIS semiconductor device

Publications (2)

Publication Number Publication Date
JPS5295184A JPS5295184A (en) 1977-08-10
JPS606104B2 true JPS606104B2 (en) 1985-02-15

Family

ID=11778725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146176A Expired JPS606104B2 (en) 1976-02-06 1976-02-06 MIS semiconductor device

Country Status (1)

Country Link
JP (1) JPS606104B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111221A (en) * 1985-11-08 1987-05-22 Sumitomo Electric Ind Ltd Optical connector
JPH0522885Y2 (en) * 1987-10-09 1993-06-11
JPH0524885Y2 (en) * 1986-09-11 1993-06-24
JPH06250044A (en) * 1993-02-23 1994-09-09 Nippon Telegr & Teleph Corp <Ntt> Optical connector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146578A (en) * 1976-05-28 1977-12-06 Texas Instruments Inc Method of producing resistance element and semiconductor device having same element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111221A (en) * 1985-11-08 1987-05-22 Sumitomo Electric Ind Ltd Optical connector
JPH0524885Y2 (en) * 1986-09-11 1993-06-24
JPH0522885Y2 (en) * 1987-10-09 1993-06-11
JPH06250044A (en) * 1993-02-23 1994-09-09 Nippon Telegr & Teleph Corp <Ntt> Optical connector

Also Published As

Publication number Publication date
JPS5295184A (en) 1977-08-10

Similar Documents

Publication Publication Date Title
US4346512A (en) Integrated circuit manufacturing method
JPH0832040A (en) Semiconductor device
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
JPS6237551B2 (en)
JPS60210861A (en) Semiconductor device
US4884116A (en) Double diffused mosfet with potential biases
US5059547A (en) Method of manufacturing double diffused mosfet with potential biases
JPS606104B2 (en) MIS semiconductor device
JPH11121757A (en) Semiconductor device and manufacture thereof
JPS6298663A (en) Semiconductor integrated circuit device
JPS6237818B2 (en)
JPS6231505B2 (en)
JP2751220B2 (en) Semiconductor device and manufacturing method thereof
JPH0481336B2 (en)
JP2678081B2 (en) Semiconductor integrated circuit device
JPS5931224B2 (en) semiconductor equipment
JPS6131630B2 (en)
JPS6214458A (en) Manufacture of semiconductor device
JPS60211867A (en) Semiconductor device and manufacture thereof
JPH06181312A (en) Manufacture of semiconductor device
JPS6199365A (en) Semiconductor integrated circuit device
JPS6298779A (en) Semiconductor device and manufacture thereof
JPS63157474A (en) Manufacture of semiconductor device
JPH07153859A (en) Semiconductor integrated circuit and its manufacture
JPS6410941B2 (en)