JPS5931224B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS5931224B2
JPS5931224B2 JP49019737A JP1973774A JPS5931224B2 JP S5931224 B2 JPS5931224 B2 JP S5931224B2 JP 49019737 A JP49019737 A JP 49019737A JP 1973774 A JP1973774 A JP 1973774A JP S5931224 B2 JPS5931224 B2 JP S5931224B2
Authority
JP
Japan
Prior art keywords
type
region
insulating substrate
semiconductor layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49019737A
Other languages
Japanese (ja)
Other versions
JPS50114986A (en
Inventor
道宏 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP49019737A priority Critical patent/JPS5931224B2/en
Publication of JPS50114986A publication Critical patent/JPS50114986A/ja
Publication of JPS5931224B2 publication Critical patent/JPS5931224B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は酸化アルミニウムを主成分とする絶縁基板上に
形成する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device formed on an insulating substrate containing aluminum oxide as a main component.

絶縁基板上に半導体単結晶をエピタキシャル成長法によ
り形成し、その半導体単結晶を用いて半導体装置を製造
する例は例えばトランジスタ、ダイオード及び絶縁ゲー
ト型電界効果トランジスタ等の如く多くある。
There are many examples of manufacturing semiconductor devices such as transistors, diodes, and insulated gate field effect transistors by forming a semiconductor single crystal on an insulating substrate by an epitaxial growth method and using the semiconductor single crystal.

ここでは絶縁ゲート型電界効果トランジスタを例として
説明する。従来、絶縁ゲート型電界効果トランジスタは
ある導電型を持つ半導体基板の表面近傍にチャンネル領
域をはさんで形成されるソースおよびhャ戟[ンとソース
とドレイン間にまたがつてその半導体基板表面に絶縁膜
を介して形成されるゲートとからなつており、ゲートと
基板間に加える電圧によリソースとドレイン間を流れる
電流を制御するものである。
Here, an insulated gate field effect transistor will be explained as an example. Conventionally, an insulated gate field effect transistor has a source formed near the surface of a semiconductor substrate of a certain conductivity type with a channel region sandwiched therebetween. It consists of a gate formed through an insulating film, and the current flowing between the resource and the drain is controlled by the voltage applied between the gate and the substrate.

しかしこのような構造の絶縁ゲート型電界効果トランジ
スタではドレインと半導体基板間のPN接合容量が大き
い為に、動作周波数は高くならない。このドレインと基
板間のPN接合容量を減らす為に絶縁基板上にエピタキ
シャル成長法により半導体単結晶層(以下半導体層と略
す)を形成し、ドレイン領域を半導体層表面より絶縁基
板まで延長して絶縁ゲート型電界効果トランジスタを形
成している。例えば第1図に示すPチャンネル絶縁ゲー
ト型電界効果トランジスタはアルミニウム酸化物のサフ
ァイア基板やスピンネル基板の絶縁基板1にN型で低不
純物濃度の半導体層2を形成し、半導体層と逆導電型で
高不純物濃度のドレイン領域4とソース領域5とを絶縁
基板まで延長して形成し、その後ゲート絶縁膜6、ゲー
ト電極7、ドレイン電極8及びソース電極9とを形成し
て得られる。
However, in the insulated gate field effect transistor having such a structure, the operating frequency cannot be increased because the PN junction capacitance between the drain and the semiconductor substrate is large. In order to reduce this PN junction capacitance between the drain and the substrate, a semiconductor single crystal layer (hereinafter referred to as the semiconductor layer) is formed by epitaxial growth on the insulating substrate, and the drain region is extended from the surface of the semiconductor layer to the insulating substrate to form an insulated gate. A type field effect transistor is formed. For example, in the P-channel insulated gate field effect transistor shown in FIG. 1, an N-type semiconductor layer 2 with a low impurity concentration is formed on an insulating substrate 1 such as a sapphire substrate made of aluminum oxide or a spinel substrate. It is obtained by forming a drain region 4 and a source region 5 with high impurity concentration extending to an insulating substrate, and then forming a gate insulating film 6, a gate electrode 7, a drain electrode 8, and a source electrode 9.

このPチャンネル絶縁ゲート型電界効果トランジスタは
確かにドレイン領域3と半導体層2とのPN接合面積は
大幅に減少し、絶縁ゲート型電界効果トランジスタの負
荷容量が減り、動作周波数を高める事ができる。しかし
この構造ではチャンネル領域10はN型で低不純物濃度
であり、一方絶縁基板1として用いられるサファイア基
板やスピンネル基板は酸化アルミニウムであるために高
温の熱処理例えば1200゜Cで1時間以上の押込拡散
等を行なうと絶縁基板1よりチャンネル領域10へアル
ミニウムが拡散される。
It is true that in this P-channel insulated gate field effect transistor, the PN junction area between the drain region 3 and the semiconductor layer 2 is significantly reduced, the load capacitance of the insulated gate field effect transistor is reduced, and the operating frequency can be increased. However, in this structure, the channel region 10 is N-type and has a low impurity concentration, and on the other hand, the sapphire substrate or spinel substrate used as the insulating substrate 1 is made of aluminum oxide, so it is subjected to high-temperature heat treatment, for example, forced diffusion at 1200°C for 1 hour or more. When these steps are carried out, aluminum is diffused from the insulating substrate 1 into the channel region 10.

そのためにチャンネル領域10の絶縁基板1に接した領
域にアルミニウムが拡散されチャンネル領域10の導電
型とは反対のP型の領域11が形成される場合が非常に
多い。チヤンネル領域11の絶縁基板1の近傍にP型の
反転領域11ができるとドレイン領域4とソース領域5
とが導通し、ソースとドレイン間に大きなりーク電流が
流れる欠点がある。尚P型半導体層を絶縁基板1上に形
成し、この半導体層に素子を形成する場合は反転領域が
形成されないから問題は少ない。本発明はこの様な欠点
を除き、リーク電流が少なく、又周波数特件の良い半導
体装置を提供せんとするものである。
Therefore, in many cases, aluminum is diffused into the region of the channel region 10 in contact with the insulating substrate 1, and a P-type region 11, which is the opposite conductivity type to the channel region 10, is formed. When a P-type inversion region 11 is formed near the insulating substrate 1 in the channel region 11, the drain region 4 and the source region 5
There is a drawback that conduction occurs between the source and drain, causing a large leakage current to flow between the source and drain. Incidentally, when a P-type semiconductor layer is formed on the insulating substrate 1 and an element is formed on this semiconductor layer, there are few problems because no inversion region is formed. The present invention aims to eliminate these drawbacks and provide a semiconductor device with low leakage current and good frequency characteristics.

すなわち本発明では酸化アルミニウムを主成分とする絶
縁基板上にエピタキシャル成長法により半導体単結晶を
形成し、その半導体単結晶を用いて半導体装置を形成す
る場合にN型の導電型を示す領域の不純物濃度を絶縁基
板との界面近傍で最高値として、界面より遠さかるに従
つて減少する様な構造を有する半導体装置を提案するも
のである0本発明によれば、N型半導体層と絶縁基板と
の界面近傍に十分に高い不純物濃度のN型領域を形成す
ることにより、絶縁基板よりアルミニウムが拡散されて
来ても、そのアルミニウムの濃度よりもN型の不純物濃
度を十分高くしておく事により、絶縁基板に近いN型半
導体層にP型の反転領域が生ずることはなく、従つて本
発明ではリーク電流が少ない半導体装置を得るものであ
る。
That is, in the present invention, when a semiconductor single crystal is formed by an epitaxial growth method on an insulating substrate mainly composed of aluminum oxide, and a semiconductor device is formed using the semiconductor single crystal, the impurity concentration in a region exhibiting N-type conductivity is reduced. The present invention proposes a semiconductor device having a structure in which the maximum value is near the interface with the insulating substrate and decreases as the distance from the interface increases.According to the present invention, the N-type semiconductor layer and the insulating substrate By forming an N-type region with a sufficiently high impurity concentration near the interface, even if aluminum is diffused from the insulating substrate, the N-type impurity concentration can be made sufficiently higher than the aluminum concentration. A P-type inversion region does not occur in the N-type semiconductor layer near the insulating substrate, and therefore, the present invention provides a semiconductor device with low leakage current.

以下図面を用いて本発明の半導体装置についてPチヤン
ネル絶縁ゲート型電界効果トランジスタの例を用いて製
法と共に詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The semiconductor device of the present invention will be described below in detail with reference to the drawings, using an example of a P-channel insulated gate field effect transistor and its manufacturing method.

第2図Aに示す様にサフアイア基板又はスピンネル基板
の絶縁基板1上にN型の導電型を示し、不純物濃度が例
えば1014〜1017c!n−3で厚さが0.5〜1
.0μ半導体層2を形成する。
As shown in FIG. 2A, the insulating substrate 1 such as a sapphire substrate or a spinel substrate exhibits N type conductivity, and the impurity concentration is, for example, 1014 to 1017c! n-3 and thickness 0.5-1
.. A 0μ semiconductor layer 2 is formed.

次に第2図Bに示す様に半導体層2の表面全体に気相成
長法又は熱酸化法等によつて得られる厚さ0.5〜1.
0μのシリコン酸化膜3を形成し、シリコン酸化膜3に
窓をあける。
Next, as shown in FIG. 2B, the entire surface of the semiconductor layer 2 has a thickness of 0.5 to 1.5 mm, which is obtained by vapor phase growth or thermal oxidation.
A silicon oxide film 3 with a thickness of 0 μm is formed, and a window is opened in the silicon oxide film 3.

次に第2図Cに示す様に半導体層2とは反対導電型すな
わちP型のドレイン領域4とソース領域5とを熱拡散法
又はイオン注入法等により形成する。
Next, as shown in FIG. 2C, a drain region 4 and a source region 5 of a conductivity type opposite to that of the semiconductor layer 2, that is, P type, are formed by thermal diffusion, ion implantation, or the like.

次に第2図Dに示す様にドレイン領域4とソース領域5
とにまたがつて半導体層2上にあるシリコン酸化膜を取
り除きソース,ドレインの両領域にまたがつてN型の導
電型を与える不純物、たとえばリンイオンを1011〜
1015cm−2の量だけイオン注入法により半導体層
2と絶縁基板1との界面近傍へ注入し、その後熱処理を
行なつてN型で1016〜1021c!RL−3の高不
純物濃度層13を形成する。イオン注入法で不純物を注
入する場合にはフオトレジスト膜12を注入不要の部分
に形成し、イオン注入法に対する保護膜とする。次に第
2図Eに示す様にシリコン酸化膜やシリコン窒化膜など
によつてゲート絶縁膜6を形成する。
Next, as shown in FIG. 2D, the drain region 4 and the source region 5 are
Then, the silicon oxide film on the semiconductor layer 2 is removed and an impurity, for example, phosphorus ions, which gives N-type conductivity is added to both the source and drain regions.
An amount of 1015 cm-2 is implanted into the vicinity of the interface between the semiconductor layer 2 and the insulating substrate 1 by ion implantation, followed by heat treatment to form an N-type 1016-1021c! A high impurity concentration layer 13 of RL-3 is formed. When impurities are implanted by ion implantation, a photoresist film 12 is formed in areas where implantation is not required, and serves as a protective film against the ion implantation. Next, as shown in FIG. 2E, a gate insulating film 6 is formed of a silicon oxide film, a silicon nitride film, or the like.

次に第2図Fに示す如く、ソース領域4とドレイン領域
5の各々の表面上のシリコン酸化膜に窓をあけた後にゲ
ート電極7、ドレイン電極8とソース電極9を形成する
Next, as shown in FIG. 2F, after opening a window in the silicon oxide film on the surface of each of the source region 4 and drain region 5, a gate electrode 7, a drain electrode 8, and a source electrode 9 are formed.

この様にして得られたこの発明による半導体装置、即ち
この例の如くPチヤンネル絶縁ゲート型電界効果トラン
ジスタによればイオン注入法により、半導体層2と絶縁
基板1との界面近傍に高不純物濃度のN型領域13が形
成され、表面に近い半導体層内部では不純物濃度にほと
んど変化がないため、仮に絶縁基板1からアルミニウム
が半導体層2に拡散されても、これによりP型反転領域
が形成される事なく、従つてリーク電流が生ずる事なく
、所望の閾値電圧を持つ良い電界効果トランジスタが得
られる。
According to the thus obtained semiconductor device according to the present invention, that is, the P-channel insulated gate field effect transistor as in this example, a high impurity concentration is added near the interface between the semiconductor layer 2 and the insulating substrate 1 by ion implantation. Since an N-type region 13 is formed and there is almost no change in impurity concentration inside the semiconductor layer near the surface, even if aluminum is diffused from the insulating substrate 1 into the semiconductor layer 2, a P-type inversion region is formed. Therefore, a good field effect transistor having a desired threshold voltage can be obtained without causing any leakage current.

本発明装置の他の製造方法としては、第3図Aに示す様
に絶縁基板1上に半導体層2をエピタキシャル成長法に
より形成する場合に半導体層2を絶縁基板1に近い領域
を高不純物濃度層21たとえば1016〜1018cT
rL−3とし、次に不純物濃度を低くして1014〜1
017cTrL−3の低不純物濃度層22とする構造に
する。
Another method of manufacturing the device of the present invention is to form a semiconductor layer 2 on an insulating substrate 1 by epitaxial growth as shown in FIG. 21 For example 1016-1018 cT
rL-3, then lower the impurity concentration to 1014-1
The structure is such that the low impurity concentration layer 22 is 017cTrL-3.

次に第3図Bに示す様にその後ドレイン頭域4、ソース
領域5の形成、ゲート絶縁膜6と各電極7,8,9を形
成し、Pチヤンネル絶縁ゲート型トランジスタを得る製
造方法も採り得る。尚第2図で説明した製法に於いては
N型の高濃度層13をソース領域4とドレイン領域5に
またがつて形成したが、第4図に示す様にソース領域4
とドレイン領域5との間のN型領域内の一部に高濃度層
13′を形成しても同じ効果が得られる。
Next, as shown in FIG. 3B, a manufacturing method is adopted in which a drain head region 4, a source region 5, a gate insulating film 6, and each electrode 7, 8, 9 are formed to obtain a P-channel insulated gate transistor. obtain. In the manufacturing method explained in FIG. 2, the N-type high concentration layer 13 was formed across the source region 4 and the drain region 5, but as shown in FIG.
The same effect can be obtained by forming a heavily doped layer 13' in a part of the N-type region between the drain region 5 and the drain region 5.

以上説明した様にこの発明によれば絶縁基板に近い半導
体層内にN型高不純物領域を形成したからリーク電流を
増大させ、特性を劣化させる様なP型の反転層が絶縁基
板1からの拡散によつて形成される事なく、非常に特性
の良いものが得られる。尚上述においてはPチヤンネル
絶縁ゲート型電界効果トランジスタを例示して説明した
が、Pチヤンネル絶縁ゲート型電界効果トランジスタの
みならず、バイポーラトランジスタやダイオードにも適
用でき、さらに集積回路の1素子にも応用できる事容易
に理解できよう。
As explained above, according to the present invention, since an N-type highly impurity region is formed in the semiconductor layer near the insulating substrate, a P-type inversion layer that increases leakage current and deteriorates characteristics is removed from the insulating substrate 1. A product with very good properties can be obtained without being formed by diffusion. In the above description, a P-channel insulated gate field-effect transistor has been described as an example, but the application is not limited to a P-channel insulated-gate field-effect transistor, but can also be applied to bipolar transistors and diodes, and can also be applied to one element of an integrated circuit. It's easy to understand what you can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の欠点を説明するための断面図、第2図A
−Fはこの発明装置の製法の一例を示す断面図、第3図
A,Bはこの発明装置の他の製法の例を示す断面図、第
4図はこの発明装置の他の実施例を示す断面図である。 1:酸化アルミニウムを主成分とする絶縁基板、2:N
型半導体基板、13,13′,21:N型不純物濃度領
域。
Figure 1 is a sectional view to explain the drawbacks of the conventional technology, Figure 2A
-F is a sectional view showing an example of the manufacturing method of this invention device, FIGS. 3A and B are sectional views showing another example of the manufacturing method of this invention device, and FIG. 4 is a sectional view showing another embodiment of this invention device. FIG. 1: Insulating substrate mainly composed of aluminum oxide, 2: N
type semiconductor substrate, 13, 13', 21: N type impurity concentration region.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化アルミニウムを含む絶縁基板上にN型半導体層
を形成し、該N型半導体層にP型領域を有する半導体素
子を形成してなる半導体装置において、上記P型領域は
上記絶縁基板に達するように上記N型半導体層に側面が
囲まれて形成され、かつ上記半導体素子に含まれる上記
N型半導体層にはこれと上記絶縁基板との境界面近傍に
て高濃度のN型不純物領域が形成されていることを特徴
とする半導体装置。
1. In a semiconductor device in which an N-type semiconductor layer is formed on an insulating substrate containing aluminum oxide, and a semiconductor element having a P-type region is formed in the N-type semiconductor layer, the P-type region reaches the insulating substrate. A highly concentrated N-type impurity region is formed in the N-type semiconductor layer which is surrounded by the N-type semiconductor layer on its side and is included in the semiconductor element near the interface between the N-type semiconductor layer and the insulating substrate. A semiconductor device characterized by:
JP49019737A 1974-02-18 1974-02-18 semiconductor equipment Expired JPS5931224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49019737A JPS5931224B2 (en) 1974-02-18 1974-02-18 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49019737A JPS5931224B2 (en) 1974-02-18 1974-02-18 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS50114986A JPS50114986A (en) 1975-09-09
JPS5931224B2 true JPS5931224B2 (en) 1984-07-31

Family

ID=12007630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49019737A Expired JPS5931224B2 (en) 1974-02-18 1974-02-18 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS5931224B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151480A (en) * 1974-05-24 1975-12-05
JPS5429583A (en) * 1977-08-10 1979-03-05 Cho Lsi Gijutsu Kenkyu Kumiai Semiconductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056184A (en) * 1973-09-03 1975-05-16
JPS50100980A (en) * 1973-01-05 1975-08-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100980A (en) * 1973-01-05 1975-08-11
JPS5056184A (en) * 1973-09-03 1975-05-16

Also Published As

Publication number Publication date
JPS50114986A (en) 1975-09-09

Similar Documents

Publication Publication Date Title
JP3291957B2 (en) Vertical trench MISFET and method of manufacturing the same
JPH0783119B2 (en) Field effect transistor
JPH02143566A (en) Double diffusion type insulated gate field effect transistor
JPS6097661A (en) Semiconductor integrated circuit device
JPS62248255A (en) Thin-film transistor
JPS5931224B2 (en) semiconductor equipment
JPS6123669B2 (en)
JPH0350771A (en) Semiconductor device
JPH0656855B2 (en) Insulated gate type field effect transistor
JPS63217664A (en) Misfet and manufacture thereof
JPS606104B2 (en) MIS semiconductor device
JPS626352B2 (en)
JPH0213826B2 (en)
JPS62248256A (en) Semiconductor device
JPH051083Y2 (en)
JPS6146990B2 (en)
JPS6055995B2 (en) Junction field effect transistor
JPS60107866A (en) Semiconductor device
JPS61203679A (en) Mos transistor of high withstand voltage
JP2569454B2 (en) Manufacturing method of vertical field effect transistor
JPH07249760A (en) Fabrication of semiconductor device
JPS5980970A (en) V-groove mos type field-effect transistor
JP2708525B2 (en) MOS type semiconductor device
JPS6332273B2 (en)
JP2968640B2 (en) Semiconductor device