JPS6131630B2 - - Google Patents

Info

Publication number
JPS6131630B2
JPS6131630B2 JP9761177A JP9761177A JPS6131630B2 JP S6131630 B2 JPS6131630 B2 JP S6131630B2 JP 9761177 A JP9761177 A JP 9761177A JP 9761177 A JP9761177 A JP 9761177A JP S6131630 B2 JPS6131630 B2 JP S6131630B2
Authority
JP
Japan
Prior art keywords
type
region
insulating layer
buried insulating
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9761177A
Other languages
Japanese (ja)
Other versions
JPS5431289A (en
Inventor
Junji Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9761177A priority Critical patent/JPS5431289A/en
Publication of JPS5431289A publication Critical patent/JPS5431289A/en
Publication of JPS6131630B2 publication Critical patent/JPS6131630B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、不純物導入領域の下側に埋込み絶縁
層を形成した型式の集積回路半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated circuit semiconductor device of the type in which a buried insulating layer is formed below an impurity doped region.

従来、半導体装置の高周波特性、消費電力特性
を向上させる為、第1図乃至第3図に見られるよ
うな構造のものが提案されている。
Conventionally, structures such as those shown in FIGS. 1 to 3 have been proposed in order to improve the high frequency characteristics and power consumption characteristics of semiconductor devices.

第1図はnチヤンネル型MOS電界効果トラン
ジスタの要部側面図であり、1はp+型シリコン
半導体基板、2はp-型エピタキシヤル成長シリ
コン半導体層、3は埋込み絶縁層、4はゲート絶
縁膜、5は多結晶シリコン・ゲート、6はn+
ソース領域、7はn+型ドレイン領域、8は燐硅
酸ガラス膜、Sはソース電極端子、Gはゲート電
極端子、Dはドレイン電極端子をそれぞれ示す。
Figure 1 is a side view of the main parts of an n-channel MOS field effect transistor, in which 1 is a p + type silicon semiconductor substrate, 2 is a p - type epitaxially grown silicon semiconductor layer, 3 is a buried insulating layer, and 4 is a gate insulator. 5 is a polycrystalline silicon gate, 6 is an n + type source region, 7 is an n + type drain region, 8 is a phosphosilicate glass film, S is a source electrode terminal, G is a gate electrode terminal, D is a drain electrode Each terminal is shown.

第2図はp・n・p型バイポーラ・トランジス
タの要部側断面図であり、11はn+型シリコン
半導体基板、12はn-型エピタキシヤル成長シ
リコン半導体層、13は埋込み絶縁層、14は絶
縁膜、15はp+型エミツタ領域、16はn+型ベ
ース領域、17はp+型コレクタ領域、Eはエミ
ツタ電極端子、Bはベース電極端子、Cはコレク
タ電極端子をそれぞれ示す。
FIG. 2 is a sectional side view of the main parts of a p-n-p type bipolar transistor, in which 11 is an n + type silicon semiconductor substrate, 12 is an n - type epitaxially grown silicon semiconductor layer, 13 is a buried insulating layer, and 14 15 is an insulating film, 15 is a p + type emitter region, 16 is an n + type base region, 17 is a p + type collector region, E is an emitter electrode terminal, B is a base electrode terminal, and C is a collector electrode terminal.

第3図はジヤンクシヨン型電界効果トランジス
タの要部側断面図であり、21はn+型シリコン
半導体基板、22はp-型エピタキヤル成長シリ
コン半導体層、23は埋込み絶縁層、24は絶縁
膜、25はp+型ソース領域、26はp+型ドレイ
ン領域、27はn+型ゲート領域、Sはソース電
極端子、Dはドレイン電極端子、Gはゲート電極
端子をそれぞれ示す。
FIG. 3 is a side sectional view of the main parts of a junction field effect transistor, in which 21 is an n + type silicon semiconductor substrate, 22 is a p - type epitaxially grown silicon semiconductor layer, 23 is a buried insulating layer, 24 is an insulating film, 25 26 is a p + type source region, 26 is a p + type drain region, 27 is an n + type gate region, S is a source electrode terminal, D is a drain electrode terminal, and G is a gate electrode terminal, respectively.

これ等従来例に共通しているのは、例えばソー
ス領域等、不純物導入領域の下側に埋込み絶縁層
が設置されていることである。このようにする
と、不純物導入領域と基板(半導体層)との間で
形成される接合に寄生する容量を低減することが
できるので高周波特性の向上、消費電力の低下に
有効である。
What these conventional examples have in common is that a buried insulating layer is provided below an impurity-introduced region, such as a source region. In this way, it is possible to reduce the parasitic capacitance of the junction formed between the impurity doped region and the substrate (semiconductor layer), which is effective in improving high frequency characteristics and reducing power consumption.

しかしながら、前記の埋込み絶縁層は全ての素
子領域に形成することは必ずしも得策ではなく、
むしろ、その存在が不都合を生ずる場合もある。
However, it is not necessarily a good idea to form the above-mentioned buried insulating layer in all element regions;
In fact, its existence may sometimes cause inconvenience.

本発明は、一半導体基板に接合容量を減少させ
る埋込み絶縁層を形成した素子領域と、埋込み絶
縁層を形成せず、寄生する接合容量を積極的に利
用するようにした素子領域とを有する半導体装置
を提供するものであり、次にこれを詳細に説明す
る。
The present invention provides a semiconductor having an element region in which a buried insulating layer for reducing junction capacitance is formed on one semiconductor substrate, and an element region in which a buried insulating layer is not formed and parasitic junction capacitance is actively utilized. An apparatus is provided, which will now be described in detail.

第4図は、本発明一実施例の要部断面図であ
る。
FIG. 4 is a sectional view of essential parts of an embodiment of the present invention.

本実施例は、nチヤネルMISインバータからな
る本体回路と、その入力保護回路とからなるもの
〓〓〓〓
を例示するものである。
This embodiment consists of a main circuit consisting of an n-channel MIS inverter and its input protection circuit.
This is an example.

図に於いて、31はp+型シリコン半導体基
板、32はp-型エピタキシヤル成長シリコン半
導体層、33は埋込み絶縁層、34はゲート絶縁
膜、35は多結晶シリコン・ゲート、36はn+
型ソース領域、37はn+型ドレイン領域、38
は絶縁膜、39はp+型不純物導入領域、40は
n+型不純物導入領域、Sはソース電極端子、D
はドレイン電極端子、Gはゲート電極端子、IN
は入力端子をそれぞれ示す。
In the figure, 31 is a p + type silicon semiconductor substrate, 32 is a p - type epitaxially grown silicon semiconductor layer, 33 is a buried insulating layer, 34 is a gate insulating film, 35 is a polycrystalline silicon gate, and 36 is an n +
type source region, 37 is n + type drain region, 38
39 is an insulating film, 39 is a p + type impurity introduced region, and 40 is an insulating film.
n + type impurity introduced region, S is the source electrode terminal, D
is the drain electrode terminal, G is the gate electrode terminal, IN
indicate input terminals, respectively.

第5図は第4図に見られる実施例の等価回路図
を表し、同じく第4図に於いて用いた記号と同記
号は同部分を表すか或いは同じ意味を持つものと
する。
FIG. 5 shows an equivalent circuit diagram of the embodiment shown in FIG. 4, and the same symbols as those used in FIG. 4 represent the same parts or have the same meanings.

図に於いて、Rはn+型不純物導入領域40で
形成される抵抗、Diはp+型不純物導入領域39
及びn+型不純物導入領域40で形成され且つ比
較的低い逆耐圧に設定されているダイオード、
C1は接合容量、C2はゲート容量、C3はドレイン
接合容量、Mは本体回路、Pは入力保護回路であ
る。
In the figure, R is the resistance formed by the n + type impurity introduced region 40, and Di is the p + type impurity introduced region 39.
and a diode formed of the n + type impurity-introduced region 40 and set to a relatively low reverse breakdown voltage;
C 1 is a junction capacitance, C 2 is a gate capacitance, C 3 is a drain junction capacitance, M is a main circuit, and P is an input protection circuit.

本実施例に於いて、n+型ドレイン領域37
は、その底面及び側面の一部が二酸化シリコンか
らなる絶縁層33、絶縁膜38で絶縁されている
ので、接合容量C3は著しく低減され、高周波特
性は向上する。これとは逆に接合容量C1は比較
的大きな値になつているので、入力端子INと電
源との間に急峻な大きな電圧ノイズ(スパイク)
が加わつた際、そのスパイク電圧はC1×Rの時
定数に従つて鈍化するから、ゲート容量C2が破
壊されることはなくなる。このような機能を効果
的に維持させる為には、p+型不純物導入領域3
9、n+型不純物導入領域40の底面、側面は絶
縁されていない方が良い。その理由は、埋込み絶
縁層を形成しても利益が無いばかりでなく、前記
C1,Rの値を適当に選択する為の設計の自由度
が狭くなるからである。
In this embodiment, the n + type drain region 37
Since the bottom and part of the side surfaces are insulated by the insulating layer 33 and the insulating film 38 made of silicon dioxide, the junction capacitance C3 is significantly reduced and the high frequency characteristics are improved. On the other hand, since the junction capacitance C1 has a relatively large value, a large voltage noise (spike) occurs between the input terminal IN and the power supply.
When is applied, the spike voltage slows down according to the time constant of C 1 ×R, so that the gate capacitance C 2 will not be destroyed. In order to effectively maintain such a function, the p + type impurity introduced region 3
9. It is preferable that the bottom and side surfaces of the n + -type impurity-introduced region 40 are not insulated. The reason for this is that not only is there no benefit in forming a buried insulating layer, but also
This is because the degree of freedom in design for appropriately selecting the values of C 1 and R becomes narrower.

前記の埋込み絶縁層33を形成することは極め
て容易である。即ち、p+型基板31上に例えば
1〔μm〕程度の熱酸化膜を形成し、次に、通常
のフオト・リソグラフイ技術に依り熱酸化膜のパ
ターニングを行い、その上にp-型エピタキシヤ
ル成長シリコン半導体層32を形成して埋込み絶
縁層33を形成する。そのパターンとしては、本
体回路Mに於けるゲート領域となる部分、入力保
護回路Pに於いてはその全体部分の熱酸化膜が除
去されるようにする。前記説明した埋込み絶縁層
33を形成する技術は公知であり、要すれば、特
開昭49−112574号公報を参照されると良い。次
に、通常の気相成長法に依りシリコンを0.5〜1.0
〔μm〕程度成長させる。すると、絶縁層33上
には多結晶シリコン膜が、また、熱硬化膜が除去
されて半導体層32の表面が露出している部分上
には単結晶シリコン膜が成長する。これに依り埋
込み絶縁層は完全に埋込まれたことになる。この
後、通常の工程で所要の素子を形成すれば良い。
尚、熱酸化膜を形成する工程では、窒化膜を用い
た選択酸化技術(例えば、プラノツクス、アイソ
プレーナ等)を適用しても良い。また、前記実施
例では、MIS電界効果トランジスタに関して説明
したが、バイポーラ・トランジスタ、接合型電界
効果トランジスタについても本発明を適用するこ
とができる。
Forming the buried insulating layer 33 described above is extremely easy. That is, a thermal oxide film of, for example, about 1 [μm] is formed on the p + type substrate 31, and then the thermal oxide film is patterned using ordinary photolithography technology, and then p - type epitaxy is formed on the thermal oxide film. A buried insulating layer 33 is formed by forming a dielectrically grown silicon semiconductor layer 32 . The pattern is such that the thermal oxide film is removed from the portion of the main circuit M that will become the gate region, and from the entire portion of the input protection circuit P. The technique for forming the buried insulating layer 33 described above is well known, and if necessary, refer to Japanese Patent Application Laid-Open No. 112574/1984. Next, silicon is deposited at 0.5 to 1.0 using the usual vapor phase growth method.
Grow to about [μm]. Then, a polycrystalline silicon film is grown on the insulating layer 33, and a single crystal silicon film is grown on the portion where the surface of the semiconductor layer 32 is exposed by removing the thermosetting film. As a result, the buried insulating layer is completely buried. After this, required elements may be formed through normal steps.
In the step of forming the thermal oxide film, a selective oxidation technique using a nitride film (eg, planox, isoplanar, etc.) may be applied. Further, in the embodiments described above, the MIS field effect transistor has been described, but the present invention can also be applied to bipolar transistors and junction field effect transistors.

以上の説明で判るように、本発明に依れば、高
速を必要とする素子を形成すべき領域には接合容
量を低減させる為の埋込み絶縁層を形成し、例え
ば入力保護回路等、接合容量を積極的に利用する
必要がある回路を構成する素子を形成すべき領域
には埋込み絶縁層を形成しないようにして、同一
基板上に設置される異種の素子それぞれが充分な
機能を発揮できるようにすることが極めて容易に
可能である。
As can be seen from the above explanation, according to the present invention, a buried insulating layer is formed in the region where elements that require high speed are to be formed to reduce the junction capacitance. A buried insulating layer is not formed in the area where the elements that make up the circuit are to be formed, so that different types of elements installed on the same substrate can perform their full functions. It is extremely easy to do this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来例の要部側断面図、第
4図は本発明一実施例の要部側断面図、第5図は
第4図実施例の等価回路図である。 図に於いて、31は半導体基板、32は半導体
層、33は埋込み絶縁層、34はゲート絶縁膜、
35は多結晶シリコン・ゲート、36はソース領
域、37はドレイン領域、38は絶縁膜、39,
40は不純物導入領域、INは入力端子、Sはソ
ース電極端子、Dはドレイン電極端子は、Gはゲ
ート電極端子をそれぞれ示す。 〓〓〓〓
1 to 3 are side sectional views of main parts of a conventional example, FIG. 4 is a side sectional view of main parts of an embodiment of the present invention, and FIG. 5 is an equivalent circuit diagram of the embodiment shown in FIG. In the figure, 31 is a semiconductor substrate, 32 is a semiconductor layer, 33 is a buried insulating layer, 34 is a gate insulating film,
35 is a polycrystalline silicon gate, 36 is a source region, 37 is a drain region, 38 is an insulating film, 39,
40 is an impurity introduced region, IN is an input terminal, S is a source electrode terminal, D is a drain electrode terminal, and G is a gate electrode terminal. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 一半導体基板に埋込み絶縁層が設けられその
上に形成される素子の接合容量は低下せしめられ
る素子領域と、同じく前記半導体基板に在つて前
記埋込み絶縁層が排除され、その上に形成される
素子の接合容量は大きくなされる素子領域とを有
してなることを特徴とする半導体装置。
1. A device region where a buried insulating layer is provided on a semiconductor substrate and the junction capacitance of the device formed thereon is reduced; 1. A semiconductor device comprising an element region having a large junction capacitance.
JP9761177A 1977-08-15 1977-08-15 Semiconductor device Granted JPS5431289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9761177A JPS5431289A (en) 1977-08-15 1977-08-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9761177A JPS5431289A (en) 1977-08-15 1977-08-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5431289A JPS5431289A (en) 1979-03-08
JPS6131630B2 true JPS6131630B2 (en) 1986-07-21

Family

ID=14197003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9761177A Granted JPS5431289A (en) 1977-08-15 1977-08-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5431289A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831574A (en) * 1981-08-19 1983-02-24 Toshiba Corp Semiconductor device and manufacture thereof
JPS63244874A (en) * 1987-03-31 1988-10-12 Toshiba Corp Input protective circuit
JP2557984B2 (en) * 1989-07-28 1996-11-27 日産自動車株式会社 Input protection circuit for semiconductor device

Also Published As

Publication number Publication date
JPS5431289A (en) 1979-03-08

Similar Documents

Publication Publication Date Title
US4933737A (en) Polysilon contacts to IC mesas
JPS6072243A (en) Semiconductor ic device
JPS6319844A (en) Semiconductor device and manufacture thereof
JPS60113455A (en) Semiconductor ic device
JPS6131630B2 (en)
JP3424146B2 (en) Semiconductor device and manufacturing method thereof
JPH04226061A (en) Process for formation of bipolar transistor and jfet transistor
JPS606104B2 (en) MIS semiconductor device
JP2001007219A (en) Semiconductor device and manufacture thereof
JPS61172346A (en) Semiconductor integrated circuit device
JPH05326556A (en) Manufacture of semiconductor device
US5008724A (en) Semiconductor device
JPH09321296A (en) Semiconductor device and manufacturing method
KR100356792B1 (en) Silicon on insulator device and method for fabricating the same
JPH03205877A (en) Insulated gate field effect transistor
JPH1092949A (en) Semiconductor integrated circuit device and manufacture thereof
JP2953061B2 (en) High breakdown voltage MOS transistor and method of manufacturing the same
JPH06120431A (en) Bipolar transistor and method of manufacturing semiconductor device
JPH0744231B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH0794741A (en) Semiconductor device
JPS60103661A (en) Semiconductor ic device and manufacture thereof
JPS6199365A (en) Semiconductor integrated circuit device
JP2524079B2 (en) Upward structure type bipolar transistor and manufacturing method thereof
JPS6018931A (en) Semiconductor device and usage thereof
JPS6276775A (en) Semiconductor device