JPS6126241A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6126241A
JPS6126241A JP14804484A JP14804484A JPS6126241A JP S6126241 A JPS6126241 A JP S6126241A JP 14804484 A JP14804484 A JP 14804484A JP 14804484 A JP14804484 A JP 14804484A JP S6126241 A JPS6126241 A JP S6126241A
Authority
JP
Japan
Prior art keywords
epitaxial layer
substrate
type
oxide film
isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14804484A
Other languages
Japanese (ja)
Inventor
Hitoshi Kudo
均 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14804484A priority Critical patent/JPS6126241A/en
Publication of JPS6126241A publication Critical patent/JPS6126241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make interelement isolation positive without sacrificing the characteristics by a method wherein an epitaxial layer which affects interelement isolation is composed of an epitaxial layer containing little impurity or having the same conductivity type as that of the substrate and an epitaxial layer having the reverse conductivity tupe to that of the substrate. CONSTITUTION:A P<+> type buried layer 42 is formed in the P type substrate 41. A P type epitaxial layer 43 containing little impurity or having the same conductivity type as that of the substrate is formed on this substrate 41. Successively, an N type epitaxial layer 44 is formed. Next, the substrate 41 is partly etched away according to the pattern. It is desirable that the etching depth here is more than the thickness of the layer 44, but a smaller depth is also sufficient. Thereafter, an oxide film 45 is formed in the etched part. This manner enables interelement isolation securely without sacrificing the transistor characteristics.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、バイポーラ集積回路の様にエピタキシャル層
を用いて素子分離を行なう半導体集積回路の製造方法に
関するもので、特にシリコン酸化膜によって素子分離を
行なう製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor integrated circuit in which elements are isolated using an epitaxial layer, such as a bipolar integrated circuit, and in particular, in which elements are isolated by a silicon oxide film. This relates to a manufacturing method.

従来例の構成とその問題点 エピタキシャル層を形成する目的の一つに素子間分離が
あげられる。バイポーラ半導体の場合従来、PN接合に
よシ素子間分離を行なってきたがPN接合容量によシ高
速化できないため、シリコン酸化膜(以下酸化膜と略記
する)で素子間分離する方法が試みられている。
Conventional Structures and Problems One of the purposes of forming an epitaxial layer is isolation between elements. In the case of bipolar semiconductors, conventional isolation between silicon elements has been achieved using PN junctions, but since high speed cannot be achieved with PN junction capacitance, attempts have been made to isolate elements using silicon oxide films (hereinafter abbreviated as oxide films). ing.

以下図を用いて従来例を説明する。第1図は、改良LO
CO3法(選択酸化法)によシ分離酸化膜を形成する方
法の要点を説明したものである。
A conventional example will be explained below using figures. Figure 1 shows the improved LO
This is an explanation of the main points of a method for forming an isolation oxide film by the CO3 method (selective oxidation method).

第1図aでは、P型基板11上にチャンネルストッパー
としてP 埋込層12が形成された状態が示されている
。第1図すでは、基板11上にN型エピタキシャル層1
3が形成されている。第1図Cでは、N5工ピタキシヤ
ル層13の一部をパターンに従って一部エッチングした
状態が示されている。次に第1図dでは、エツチングし
た部分のみ酸化して素子間分離用酸化膜15を形成した
状態が示されている。
FIG. 1a shows a state in which a P2 buried layer 12 is formed on a P type substrate 11 as a channel stopper. In FIG. 1, an N-type epitaxial layer 1 is formed on a substrate 11.
3 is formed. FIG. 1C shows a state in which a portion of the N5 pittaxial layer 13 has been partially etched according to a pattern. Next, FIG. 1d shows a state in which only the etched portions are oxidized to form an oxide film 15 for isolation between elements.

第1図dで形成した酸化膜16直下の不純物プロファイ
ルの例を第2図に示す。酸化膜15との界面の不純物濃
度は、チャンネルストッパーのf埋込に用いたホウ素が
支配的であるが、エピタキシャル層に含まれるリンも存
在している。ここでホウ素とリンの濃度差が小さくなる
と素子間分離が不十分となる。この様子を図を用いて説
明すム第3図は、チャンネルストッパの形成条件を一定
にしたときの酸化膜界面のリン濃度とエピタキシャル層
の厚さの関係を示したものである。エピタキシャル層が
1.3μm厚のときは良好な素子間耐圧を示すが、それ
より厚くなると急激に耐圧が低下している。
FIG. 2 shows an example of the impurity profile directly under the oxide film 16 formed in FIG. 1d. The impurity concentration at the interface with the oxide film 15 is dominated by boron used for filling the channel stopper with f, but phosphorus contained in the epitaxial layer is also present. Here, if the difference in concentration between boron and phosphorus becomes small, isolation between elements becomes insufficient. This situation will be explained with reference to the drawings. FIG. 3 shows the relationship between the phosphorus concentration at the oxide film interface and the thickness of the epitaxial layer when the conditions for forming the channel stopper are kept constant. When the epitaxial layer has a thickness of 1.3 μm, it exhibits a good inter-element breakdown voltage, but when it becomes thicker than that, the breakdown voltage drops rapidly.

素子間分離を十分に行なうためには ■ シリコンのエツチング量を大きくする。In order to achieve sufficient isolation between elements, ■ Increase the amount of silicon etching.

■ チャンネルストツバのP 濃度を大きくする。■ Increase the P concentration of the channel stopper.

■ エピタキシャル層を浅くする。■ Make the epitaxial layer shallower.

等が考えられるが、シリコンのエツチング量ヲ増大スる
事は、エツチングそのものの困難度が増加する事および
、酸化の際のストレスが増大する事から好ましくない。
However, increasing the amount of silicon etched is not preferable because it increases the difficulty of etching itself and increases the stress during oxidation.

P+濃度を大きくする事は、基板でのPN接合容量が増
大するため好ましくない。また、エピタキシャル層を浅
くするとトラン、ジスタ自体の耐圧が低下するため不可
層である。
Increasing the P+ concentration is not preferable because it increases the PN junction capacitance in the substrate. Further, if the epitaxial layer is made shallow, the withstand voltage of the transistors and transistors themselves decreases, so it is not possible to make the epitaxial layer shallower.

発明の目的 本発明は以上の様な問題に対してなされたもので、トラ
ンジスタ特性(高周波特性、耐圧等)を低下させずに素
子間分離を確実に行なう事を目的、とする。
OBJECTS OF THE INVENTION The present invention has been made in response to the above-mentioned problems, and an object of the present invention is to ensure isolation between elements without deteriorating transistor characteristics (high frequency characteristics, breakdown voltage, etc.).

発明の構成 本発明は、素子間分離に影響を与えるエピタキシャル層
を、基板と同型の不純物を含むかあるいは不純物をほと
んど含まない第1のエピタキシャル層と、基板と反対の
型の不純物を含む第2のエピタキシャル層から構成し、
その後エツチングと酸化により分離酸化膜を形成する事
を特徴とすム先に従来例として示した第3図は、エピタ
キシャル層濃度を101 とした場合であるにもかかb
らf、1.8μmのエピタキシャル層膜厚のトキは、酸
化膜界面濃度はエピタキシャル層の濃度の約2倍になっ
ている。一方ホウ素については界面で急激に濃度が低下
している。これは、酸化の工程で、ホウ素は酸化膜中に
取り込まれやすいが、リンは逆にシリコン側に残りやす
い事に起因している。従ってあらかじめ、酸化される領
域のリン濃度を下げておけば、素子間耐圧の劣化は発生
しない。
Structure of the Invention The present invention provides an epitaxial layer that affects isolation between elements, including a first epitaxial layer containing impurities of the same type as the substrate or almost no impurities, and a second epitaxial layer containing impurities of the opposite type to the substrate. Consisting of an epitaxial layer of
After that, an isolation oxide film is formed by etching and oxidation. Figure 3, shown earlier as a conventional example, shows the case where the epitaxial layer concentration is 101.
In the case of an epitaxial layer thickness of 1.8 μm, the oxide film interface concentration is approximately twice that of the epitaxial layer. On the other hand, the concentration of boron rapidly decreases at the interface. This is because boron tends to be incorporated into the oxide film during the oxidation process, but phosphorus tends to remain on the silicon side. Therefore, if the phosphorus concentration in the region to be oxidized is lowered in advance, deterioration of the inter-element breakdown voltage will not occur.

実施例の説明 以下本発明の一実施例を図面を用いて説明する。Description of examples An embodiment of the present invention will be described below with reference to the drawings.

第4図は変形LOCO3法に本発明を適用したものであ
る。第4図(2L)では、(111)P型5×1o 〜
5×10 (7) の基板41の一部に50〜300Ω
/口のP 層42が形成された状態が示されている。第
4図(b)では、不純物を含まないかあるいはP型で2
×10 α 以下の不純物濃度である第1のエピタキシ
ャル層43を0.1〜1.0μm形成する。ひき続きN
型で10 15〜10 α のリンを含む第2のエピタ
キシャル層44を0.3〜1.3μm形成する。第4図
(C)ではエツチングによりエピタキシャル層e 0.
6〜1.0μm除去した状態が示されている。ここでの
エツチング深さは、第2のN型エピタキシャル層の厚さ
以上が望しいが、それ以下であってもよい。第4図(l
i)では、(C)でエツチングした部分を1.0〜2・
0μmの厚さの酸化膜45を形成した状態が示されてい
る。しかるのち、この分離用酸化膜46の両側のエピタ
キシャル層44内に半導体素子を通常の工程で形成する
・ 本発明の方法による素子間耐圧が向上した結果を第5図
に示す。エピタキシャル層が厚くなっても素子間の耐圧
は低下していない。
FIG. 4 shows the application of the present invention to the modified LOCO3 method. In Figure 4 (2L), (111) P type 5×1o ~
50 to 300 Ω on a part of the 5×10 (7) substrate 41
A state in which the P layer 42 of the /mouth is formed is shown. In Fig. 4(b), 2
A first epitaxial layer 43 having an impurity concentration of 0.1 to 1.0 μm is formed with an impurity concentration of ×10 α or less. Continue N
A second epitaxial layer 44 containing 10 15 to 10 α of phosphorus is formed to a thickness of 0.3 to 1.3 μm. In FIG. 4(C), the epitaxial layer e0.
A state in which 6 to 1.0 μm has been removed is shown. The etching depth here is desirably equal to or greater than the thickness of the second N-type epitaxial layer, but may be less than that. Figure 4 (l
In i), the etched part in (C) is 1.0~2.
A state in which an oxide film 45 with a thickness of 0 μm is formed is shown. Thereafter, semiconductor elements are formed in the epitaxial layer 44 on both sides of this isolation oxide film 46 by a normal process. The result of improving the inter-element breakdown voltage by the method of the present invention is shown in FIG. Even if the epitaxial layer becomes thicker, the breakdown voltage between elements does not decrease.

本発明はバイポーラ集積回路のみならず、MO3集積回
路にも適用可能であるのは言う丑でもない。
Needless to say, the present invention is applicable not only to bipolar integrated circuits but also to MO3 integrated circuits.

発明の詳細 な説明した様に本発明では、トランジスタ特性を犠牲に
する事なしに素子間の分離を確実に行う事ができる。
As described in detail, the present invention allows reliable isolation between elements without sacrificing transistor characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(&)〜(d)は従来の素子間分離工程図、第2
図は素子間分離部分の不純物プロファイルを示す図、第
3図は酸化膜界面の不純物濃度と素子間耐圧を示す図、
第4図(a)〜(d)は本発明の一実施例の素子間分離
工程図、第6図は酸化膜界面の不純物濃度と素子間耐圧
を示す図である。 41・・・・・・基板、42・・・・・P 層、43・
・・・・・第1のエピタキシャル層、44・・・・・第
2のエピタキシャル層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓 
1 図 (b) 第1図 (C) (d−) 第2図 0.0        +、0       2.+1
)        3.0       4.0Dep
th frog 5urfattズm+’trtns)
第3図 酸化膜界面の/F樟勃濃庚を素子間耐浮エピダキクヤノ
υM#厚 (メ焦ノ エピグキ宮1じ層 (Pl 濃厚;lθ16C飢−3第
4図 (αン 乙? Cb) 第4図 (C) (d−) 第5図 酸化膜xmっ不M’sn濃涜Y−孝子開酊入/、3  
   t、s       t、sエビクキシ豹!層繰
冴 (μ町
Figures 1 (&) to (d) are conventional device isolation process diagrams;
The figure shows the impurity profile of the isolation part between elements, and Figure 3 shows the impurity concentration at the oxide film interface and the breakdown voltage between elements.
4(a) to 4(d) are diagrams showing an isolation process between elements according to an embodiment of the present invention, and FIG. 6 is a diagram showing the impurity concentration at the oxide film interface and the breakdown voltage between elements. 41...Substrate, 42...P layer, 43...
. . . first epitaxial layer, 44 . . . second epitaxial layer. Name of agent: Patent attorney Toshio Nakao and one other name
1 Figure (b) Figure 1 (C) (d-) Figure 2 0.0 +, 0 2. +1
) 3.0 4.0Dep
th frog 5urfattzum+'trtns)
Figure 3: /F camphor concentration at the oxide film interface between elements. Figure (C) (d-) Figure 5 Oxide film
t, s t, s shrimp kukishi leopard! Layered Sae (μ town

Claims (1)

【特許請求の範囲】[Claims]  エピタキシャル成長させる半導体装置の製造に際し、
基板と同型の不純物を含むか又はほとんど不純物を含ま
ない第1のエピタキシャル層を形成し、引き続き前記基
板と反対の型の不純物を含んだ第2のエピタキシャル層
とを形成する工程、前記第2のエピタキシャル層の一部
あるいは全部をパターンに従ってエッチングする工程、
前記エッチングした部分に酸化膜を形成する工程とを含
むことを特徴とする半導体装置の製造方法。
When manufacturing epitaxially grown semiconductor devices,
forming a first epitaxial layer containing impurities of the same type as the substrate or almost no impurities, and subsequently forming a second epitaxial layer containing impurities of the opposite type as the substrate; etching part or all of the epitaxial layer according to a pattern;
A method of manufacturing a semiconductor device, comprising the step of forming an oxide film on the etched portion.
JP14804484A 1984-07-16 1984-07-16 Manufacture of semiconductor device Pending JPS6126241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14804484A JPS6126241A (en) 1984-07-16 1984-07-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14804484A JPS6126241A (en) 1984-07-16 1984-07-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6126241A true JPS6126241A (en) 1986-02-05

Family

ID=15443874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14804484A Pending JPS6126241A (en) 1984-07-16 1984-07-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6126241A (en)

Similar Documents

Publication Publication Date Title
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
JPS62219636A (en) Semiconductor device
JPS6159852A (en) Manufacture of semiconductor device
JPS59130465A (en) Manufacture of metal insulator semiconductor device
JPS6126241A (en) Manufacture of semiconductor device
JPS6324672A (en) Manufacture of semiconductor device
JPS61172346A (en) Semiconductor integrated circuit device
JPH09115998A (en) Element separation structure of semiconductor integrated circuit and element separation thereof
JPS6131630B2 (en)
JPS6037614B2 (en) Manufacturing method of semiconductor device
JPS6129149A (en) Semiconductor integrated circuit device
JPS63133662A (en) Manufacture of semiconductor device
JPS641933B2 (en)
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPS63122170A (en) Manufacture of semiconductor integrated circuit device
JPS63245939A (en) Semiconductor device
JPH03203333A (en) Semiconductor device and manufacture thereof
JPS62132342A (en) Manufacture of semiconductor integrated circuit
JPS6022358A (en) Semiconductor integrated circuit device
JPS62577B2 (en)
JPS5951545A (en) Semiconductor device
JPS6084878A (en) Semiconductor device having negative resistance characteristic and manufacture thereof
JPH0488629A (en) Semiconductor device and manufacture thereof
JPS60117764A (en) Semiconductor device
JPH053245A (en) Semiconductor device