JPS60117764A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60117764A
JPS60117764A JP22581883A JP22581883A JPS60117764A JP S60117764 A JPS60117764 A JP S60117764A JP 22581883 A JP22581883 A JP 22581883A JP 22581883 A JP22581883 A JP 22581883A JP S60117764 A JPS60117764 A JP S60117764A
Authority
JP
Japan
Prior art keywords
type
oxide film
film
layer
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22581883A
Other languages
Japanese (ja)
Other versions
JPH0228267B2 (en
Inventor
Hidetaro Watanabe
渡辺 秀太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP22581883A priority Critical patent/JPS60117764A/en
Publication of JPS60117764A publication Critical patent/JPS60117764A/en
Publication of JPH0228267B2 publication Critical patent/JPH0228267B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8221Three dimensional integrated circuits stacked in different levels

Abstract

PURPOSE:To obtain a semiconductor device wherein a high speed N-P-N transistor and a resistor suitable for high speed operation are commonly provided, by providing the resistor comprising a polycrystalline semiconductor and a single crystal semiconductor region, in which element regions are formed, on a semiconductor substrate. CONSTITUTION:An N type embedded layer 302 is formed on a P type silicon substrate 30. A silicon oxide film 30, a polycrystalline silicon film 304, a silicon oxide film 305, and a silicon nitride film 306 are sequentially formed. Then, with a plurality of parts of the oxide film 305 and the nitride film 306, which are to be used as resistors, being made to remain, the other parts of the oxide film 305 and the nitride film 306 are removed. The polycrystalline silicon film other than the resistor is converted into an oxide film 307. Then, impurities are introduced into remaining polysilicon layer films 304 and 305 so that they are converted into the first or second conductive type. Thereafter, an opening is provided so that it reaches the substrate in the oxide films 303 and 307 on the N type embeded layer 302. Thus the opening part 308 is formed. Then, an epitaxial layer 309 is formed in the opening part 308 up to the same height as that of the oxide layer 307. Thereafter, an oxide film 310 is attached. The device is completed in accordance with well known processes hereinafter.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は半導体装置に関し、特に高周波、高速動作を安
求される集積回路に於けるトランジスタと抵抗体に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a semiconductor device, and particularly to a transistor and a resistor in an integrated circuit that requires high frequency and high speed operation.

(従来技術) 最近の半導体デバイスは部品点数削減の為の大集積化及
び消費電力を低減する為の高速化の安水かます1すはげ
しくなってきておシ、抵抗体としても、従来の拡散法に
よる接合を有する抵抗体は接合容量を有する為に低速で
あるという理由から。
(Prior art) Recent semiconductor devices have become increasingly integrated to reduce the number of parts and high speed to reduce power consumption. This is because resistors with junctions using the method have junction capacitance and are therefore slow.

多結晶シリコンを使用して接合を持たない抵抗体の使用
が多くなってきている。
Junctionless resistors using polycrystalline silicon are increasingly being used.

第1図に従来の拡散抵抗を有する装置の部分構造断面図
を示す、第1図において、101はP型基板、102は
N 型埋込層、103はN型エピタキシャル層、104
はP型絶縁層、105はP型抵抗領域及びNPN)ラン
ジスタのベース、106はNPN)ランジスタのエミッ
タ及びコレクタコンタクト、107は絶祿膜、108は
アルミニウム電極をそれぞれ示す、かかる構造では、先
に述べた様にN型エピタキシャル層103中にP型の不
純物を拡散させてP型抵抗領域105を形成している為
に接合容量を有し、トランジスタが高速動作しても、抵
抗体105が速度を制限するという問題が生ずる。
FIG. 1 shows a partial structural sectional view of a conventional device having a diffused resistance. In FIG. 1, 101 is a P-type substrate, 102 is an N-type buried layer, 103 is an N-type epitaxial layer, 104
105 is a P-type insulating layer, 105 is a P-type resistance region and the base of an NPN transistor, 106 is an emitter and collector contact of an NPN transistor, 107 is an isolation film, and 108 is an aluminum electrode. As described above, since the P-type impurity is diffused into the N-type epitaxial layer 103 to form the P-type resistance region 105, there is a junction capacitance, and even if the transistor operates at high speed, the resistor 105 The problem arises of limiting the

この欠点を改善する為に多結晶シリコンを使用した例を
第2図に示す、第2図で、201はP型基板、202は
N+型埋込層、203はN型エピタキシャル層、204
はP型分離層%205は絶縁酸化膜、206はNPfl
ランジスタのベース領域、2o7はNPN)ランジスタ
のエミッタ及びコレクタ領域、2o8は多結晶シリコン
によるP型又はN型抵抗体、2o9は絶縁酸化膜、 2
10はアルミニウム電極をそれぞれ示す。
An example of using polycrystalline silicon to improve this drawback is shown in FIG. 2. In FIG. 2, 201 is a P type substrate, 202 is an N+ type buried layer, 203 is an N type epitaxial layer, and 204 is an N type buried layer.
is a P-type isolation layer% 205 is an insulating oxide film, 206 is a NPfl
2o8 is a P-type or N-type resistor made of polycrystalline silicon, 2o9 is an insulating oxide film, 2
10 each indicates an aluminum electrode.

かかる構造の場合は、確かに多結晶シリコン抵抗208
は絶縁膜205,209により囲まれている為に接合容
量は持たす、又電圧依存性もないので高速用の抵抗とし
ては優れている。しかしながら、この構造では、多結晶
シリコン体208をNPNトランジスタの各領域を形成
した後に、例えばドライエッチにょシ抵抗体208を作
る為に表面に段差を生じ、この結果、抵抗208の上に
アルミニウム配線を置きた込場合に段切れを生ずる。そ
の為に、多結晶シリコン208の側面をダラす為に、例
えはリンガラスを付けて温源処理して表面の平滑化を行
う様な方法での処理が必要となる。しかも、この高温の
熱処理のために、先に形成したN P N )ランジス
タの素子領域が変化して特性が変ifすしてしまい、製
造条件が限られてしまうという欠点がある。さらにまた
、NPNトランジスタは浅い接合を形成して高速にした
いにもかかわらず、後で熱処理が加わる為に接合が深く
なシスピードが遅くなるという欠点がある。
In the case of such a structure, it is true that the polycrystalline silicon resistor 208
Since it is surrounded by the insulating films 205 and 209, it has a junction capacitance, and since it has no voltage dependence, it is excellent as a high-speed resistor. However, in this structure, after forming each region of the NPN transistor on the polycrystalline silicon body 208, for example, a step is created on the surface to make the resistor 208 by dry etching, and as a result, aluminum wiring is formed on the resistor 208. If you place a line, a break will occur. Therefore, in order to smooth the side surfaces of the polycrystalline silicon 208, it is necessary to process the polycrystalline silicon 208 by a method such as attaching phosphorus glass and performing heat source treatment to smooth the surface. Moreover, this high-temperature heat treatment changes the element area of the previously formed N P N transistor, resulting in changes in its characteristics, resulting in a drawback that manufacturing conditions are limited. Furthermore, although it is desired to increase the speed by forming a shallow junction in the NPN transistor, there is a drawback in that the junction speed is slow due to the addition of heat treatment later.

(発明の目的) 本発明の[」的は、高速なNPN)ランジスタを高速動
作に向く抵抗体を共存させた半導体装置を提供するもの
である。
(Objective of the Invention) An object of the present invention is to provide a semiconductor device in which a high-speed NPN transistor coexists with a resistor suitable for high-speed operation.

(発明の構成) かかる目的を達成する為に不発明は、多結晶シリコンを
用いた抵抗体は、NPNトランジスタを形成する前に完
成させ、NPN)ランジスタは基板上の絶縁膜を異方性
ドライエッチで開口し、塩化水素ガスを含む雰囲気中で
開口部に選択的エピタキシャル成長し1選択エピタキシ
ャル領域中にトランジスタを形成する事を特徴とする。
(Structure of the Invention) In order to achieve this object, a resistor using polycrystalline silicon is completed before forming an NPN transistor, and an insulating film on a substrate is anisotropically dried. The method is characterized in that an opening is formed by etching and selective epitaxial growth is performed in the opening in an atmosphere containing hydrogen chloride gas to form a transistor in one selective epitaxial region.

(実施例) 以下1図面を用いて不発明の実施例を詳細に説明する。(Example) An embodiment of the invention will be described in detail below using one drawing.

第3図(a)乃至(f)は不発明の一実施例を製造工程
順に示しだものである。すなわち、P型シリコン基板3
01に層抵抗10〜30rl/口程度のN型埋込層30
2を形成しく第3図(a) ) 、シリコン酸化膜30
3を500OA−1000OA、多結晶シリコン304
を約500OA 、シリコン酸化膜305.を順次形成
する(第3図(bl )、次に、抵抗体として使用した
い複数部分の酸化膜305とチッ化膜306を残し、他
の・部分の酸化膜305とチッ化膜306は除去し、酸
素雰囲気中で熱処理して抵抗体以外の多結晶シリコン酸
化膜307に変換ぜしめる(第3図tel ) 、残っ
た多結晶シリコン304,305に熱拡散又はイオン注
入法によシネ鈍物を導入して第1導電型又は第2導電型
に変換せしめた後、N型埋込層302上の酸化膜303
と307を異方性ドライエッチによシ基板に達する迄開
口し。
FIGS. 3(a) to 3(f) show an embodiment of the invention in the order of manufacturing steps. That is, the P-type silicon substrate 3
01 has an N-type buried layer 30 with a layer resistance of about 10 to 30 rl/mouth.
2 (FIG. 3(a)), a silicon oxide film 30 is formed.
3 to 500OA-1000OA, polycrystalline silicon 304
approximately 500OA, silicon oxide film 305. are sequentially formed (Fig. 3 (bl)). Next, leave the oxide film 305 and nitride film 306 in multiple parts that you want to use as a resistor, and remove the oxide film 305 and nitride film 306 in other parts. Then, heat treatment is performed in an oxygen atmosphere to transform it into a polycrystalline silicon oxide film 307 other than the resistor (Figure 3, tel).The remaining polycrystalline silicon 304 and 305 are made with a cine dulling material by thermal diffusion or ion implantation. After introducing the oxide film 303 on the N-type buried layer 302 and converting it into the first conductivity type or the second conductivity type.
and 307 are opened by anisotropic dry etching until the substrate is reached.

開口部308f:形成する(第3図)。この後、塩化水
素ガスを含む雰囲気中で減圧エピタキシャル成長し、開
口部308に約lΩ−cmのエピタキシャル層309を
は化1漠307の面さと同じ程度に選択的に成長させた
後酸化膜310を付ける(第3図(e) )、このエピ
タキシャル成長前にチッ化膜又は多結晶シリコンを成長
させ異方性ドライエッチにより開口部308の側面にの
みチッ化膜又は多結晶シリコンを残して選択的にエピタ
キシャル成長しても良い、しかる後、エピタキシャル層
309に周知の方法によシベース領域311.エミッタ
」?よひコレクタコンタクト領域312を形成し。
Opening 308f: Formed (FIG. 3). After this, epitaxial growth is performed under reduced pressure in an atmosphere containing hydrogen chloride gas to selectively grow an epitaxial layer 309 of about 1Ω-cm in the opening 308 to the same extent as the surface of the oxide film 307, and then an oxide film 310 is formed. (FIG. 3(e)). Before this epitaxial growth, a nitride film or polycrystalline silicon is grown and selectively etched by anisotropic dry etching, leaving the nitride film or polycrystalline silicon only on the sides of the opening 308. The epitaxial layer 309 may be epitaxially grown, and then the base region 311 . Emitter”? A collector contact region 312 is then formed.

1疫化膜310に電極引き出し用の窓を開口して、アル
ミニウム電極313を付けて完成する。
1. A window for electrode extraction is opened in the oxidized film 310, and an aluminum electrode 313 is attached to complete the process.

以上述べた製法によシ形成された不発明の半導体装置は
、多結晶シリコン304,305を抵抗体として使用し
、かつ周囲を絶縁膜で囲筐れている為に接合容量を持た
ないという高速用の抵抗とに必要な条件を満たす。しか
も、抵抗304,305をエピタキシャル成長前に形成
している為、抵抗形成の熱処理はトランジスタのベース
、エミッタ形成に影響を及はさず、高速のトランジスタ
を独立に作り得る。又、選択的にエピタキシャル成長を
行ない、表面の高さを合せて平担にしている為に抵抗体
304,305の上にアルミニウムの配#!全通しでも
段切れの心配は全く無い。さらにまた、装置間の絶縁分
離は、接合分離ではなくて酸化膜によシ分離されておシ
、低容量化され高速化に!、::’Tあ、。coよ、に
、 *’iF、II;tJ、:m)¥>o*集積回路装
置を形成する時に従来の構造で問題となる表面の平担化
及び高速化に対し非常に優れた装置であると言える。
The uninvented semiconductor device formed by the above-mentioned manufacturing method uses polycrystalline silicon 304 and 305 as resistors and is surrounded by an insulating film, so it has no junction capacitance. meet the requirements for resistance and Moreover, since the resistors 304 and 305 are formed before epitaxial growth, the heat treatment for forming the resistors does not affect the formation of the base and emitter of the transistor, and high-speed transistors can be manufactured independently. Also, in order to selectively perform epitaxial growth and flatten the surface height, aluminum is placed on the resistors 304 and 305! There is no need to worry about run-offs even if you run the whole thing through. Furthermore, the insulation isolation between devices is not by junction isolation but by oxide film, resulting in lower capacitance and faster speed! , ::'T ah. coyo, ni, *'iF,II;tJ,:m)¥>o*This is an extremely excellent device for flattening the surface and increasing speed, which are problems with conventional structures when forming integrated circuit devices. I can say that there is.

本発明の笑施例に於いて、多結晶シリコン抵抗体は、第
一導電型と第二4電型が混在しても良いし、又、同一導
電型で濃度の違う不純物全尋人しても良い、基板301
.埋込層3021選択エビタギシャル層309.)ラン
ジスタのペース領域311、エミッタ、コレクタ領域3
12の導電型は逆転して使用しても良い、又、絶縁酸化
膜310の上にチッ化膜を付はパッシベーション族とし
て使用して良い事も勿論である。
In another embodiment of the present invention, the polycrystalline silicon resistor may have a mixture of the first conductivity type and the second fourth conductivity type, or may contain impurities of the same conductivity type but different concentrations. Also good, board 301
.. Embedded layer 3021 Selection Ebitital layer 309. ) Pace area 311, emitter, collector area 3 of transistor
Of course, the conductivity types of 12 may be reversed and used, and a nitride film may be formed on the insulating oxide film 310 and used as a passivation group.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は抵抗体を翁する装置の一従来例を示す断面図で
ある。 101 ・・・P型シリコン基板、102・・・・N+
型埋込層、103・・・・・N型エピタキシャル層。 104・・・・・P型絶縁分離層、105・・・・P型
NPNトランジスタベース領域、及び抵抗領域、106
・・・・・・N型NPNトランジスタエミッタ、コレク
タ領域、107・・・・・・絶縁ば化膜、108・・・
・アルミニウム電極、 第2図は他の従来例を示す断面図である。 201・・・・・・P型シリコン基板、202・・・・
N+型埋込層、203・・・・・N型エピタキシャル層
、204・・・・・・P型絶縁分離層% 205・・・
・・絶縁酸化膜、206・・・・・・P型NPN)ラン
ジスタベース領M、207・・・・・N型NPNトラニ
/ジスタエミツタおよびコレクタ領域、208・・・・
多結晶シリコン抵抗、209・・・・・・絶縁酸化膜、
210・・・・・・アルミニウム電極。 第3図ta+〜(f)は本発明の一実施例をその製造工
程順に沿って示した断面図である。 301・・・・P型シリコン基板、302・・・・N+
型埋込層、303・・・・・絶縁ば化ノ俣、304・・
・・・多結晶シリコン、305・・・・・絶縁酸化j摸
、306・・・・・チッ化膜、307・・・・絶縁酸化
膜% 308・・・・・・開口部、309・・・・・・
選択エピタキシャル層、310・・・・絶縁酸化膜、3
11・・・・・・P型NPNトランジスタベース領域、
312・・・・・N型NPN)ランジスタエミッタ、コ
レクタ領域、313.、、、、・アルミニウム電極。
FIG. 1 is a sectional view showing a conventional example of a device for removing a resistor. 101...P-type silicon substrate, 102...N+
Type buried layer, 103...N type epitaxial layer. 104...P-type insulating separation layer, 105...P-type NPN transistor base region and resistance region, 106
...N-type NPN transistor emitter, collector region, 107...Insulating film, 108...
- Aluminum electrode FIG. 2 is a sectional view showing another conventional example. 201...P-type silicon substrate, 202...
N+ type buried layer, 203...N type epitaxial layer, 204...P type insulating separation layer% 205...
...Insulating oxide film, 206...P-type NPN) transistor base region M, 207...N-type NPN tranny/distor emitter and collector region, 208...
Polycrystalline silicon resistor, 209...Insulating oxide film,
210...Aluminum electrode. FIGS. 3(a) to 3(f) are cross-sectional views showing one embodiment of the present invention along the manufacturing process order. 301...P-type silicon substrate, 302...N+
Mold embedding layer, 303... Insulation baranomata, 304...
... Polycrystalline silicon, 305 ... Insulating oxide j model, 306 ... Nitride film, 307 ... Insulating oxide film % 308 ... Opening, 309 ...・・・・・・
Selective epitaxial layer, 310...insulating oxide film, 3
11...P-type NPN transistor base region,
312...N type NPN) transistor emitter, collector region, 313. ,,,・Aluminum electrode.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上にこれとは絶縁されて形成されたl結晶半
導体による抵抗体と、前記半導体基板上にこれと接して
形成された単結晶半導体領域であってその中に素子領域
が形成された単結晶21を導体領域とを有することを特
徴とする半導体装置。
A single crystal semiconductor resistor formed on a semiconductor substrate and insulated from the single crystal semiconductor, and a single crystal semiconductor region formed on the semiconductor substrate in contact with the single crystal semiconductor region, in which an element region is formed. A semiconductor device comprising a crystal 21 and a conductor region.
JP22581883A 1983-11-30 1983-11-30 Semiconductor device Granted JPS60117764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22581883A JPS60117764A (en) 1983-11-30 1983-11-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22581883A JPS60117764A (en) 1983-11-30 1983-11-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60117764A true JPS60117764A (en) 1985-06-25
JPH0228267B2 JPH0228267B2 (en) 1990-06-22

Family

ID=16835276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22581883A Granted JPS60117764A (en) 1983-11-30 1983-11-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60117764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165167A (en) * 1987-12-22 1989-06-29 Mitsubishi Electric Corp Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156455U (en) * 1977-05-12 1977-11-28
JPS5476677U (en) * 1977-11-11 1979-05-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156455U (en) * 1977-05-12 1977-11-28
JPS5476677U (en) * 1977-11-11 1979-05-31

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165167A (en) * 1987-12-22 1989-06-29 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0228267B2 (en) 1990-06-22

Similar Documents

Publication Publication Date Title
US4507171A (en) Method for contacting a narrow width PN junction region
JP3132101B2 (en) Method for manufacturing semiconductor device
JPH09115921A (en) Semiconductor device and its manufacture
US4712125A (en) Structure for contacting a narrow width PN junction region
US3953255A (en) Fabrication of matched complementary transistors in integrated circuits
JPH05235017A (en) Semiconductor device
JP2654607B2 (en) Method for manufacturing semiconductor device
JPS59108325A (en) Manufacture of semiconductor device
JPS60117764A (en) Semiconductor device
JPS61172346A (en) Semiconductor integrated circuit device
JPS5828731B2 (en) All silicon materials available.
KR0152546B1 (en) A bipolar transistor and manufacturing method thereof
JPH0629304A (en) Semiconductor device and manufacture thereof
JPS59217363A (en) Manufacture of bi-polar type semiconductor device
JPH034539A (en) Semiconductor device and its manufacture
JPH04280423A (en) Manufacture of semiconductor device
JPH03203333A (en) Semiconductor device and manufacture thereof
JPH0541384A (en) Semiconductor device and manufacture thereof
JPH01152667A (en) Manufacture of semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor
JPS628536A (en) Electronic device and manufacture thereof
JPH027438A (en) Manufacture of semiconductor device
JPH10125691A (en) Manufacture of semiconductor device
JPS62214637A (en) Semiconductor device and manufacture thereof
JPS60207374A (en) Bipolar transistor and manufacture thereof