JPS6324672A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6324672A
JPS6324672A JP16861386A JP16861386A JPS6324672A JP S6324672 A JPS6324672 A JP S6324672A JP 16861386 A JP16861386 A JP 16861386A JP 16861386 A JP16861386 A JP 16861386A JP S6324672 A JPS6324672 A JP S6324672A
Authority
JP
Japan
Prior art keywords
film
layer
groove
grooves
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16861386A
Other languages
Japanese (ja)
Other versions
JPH0616509B2 (en
Inventor
Takayuki Kamiya
孝行 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61168613A priority Critical patent/JPH0616509B2/en
Publication of JPS6324672A publication Critical patent/JPS6324672A/en
Publication of JPH0616509B2 publication Critical patent/JPH0616509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the collector series resistance while attaining high degree of integration of elements by a method wherein an insulating film is formed on a part of N layer on a P type substrate; P layers are laminated; grooves reaching the insulating film are made; sides of grooves are covered with the insulating film; windows are made in the bottom of grooves to fill the grooves with N type poli Si. CONSTITUTION:An N<+>layer 2 is buried in a P type Si substrate 1; an Si3N4 film 3 is partly provided; and an N epitaxial layer 4, an Si02 film 5 and another Si3N4 film 6 are laminated. An isolating groove B, a collector leading out groove A are made in specified positions by anisotropical dry etching process. When etched meeting the requirement for reaching the substrate 1, the film 3 becomes a stopper in the groove A, also on the sides and bottom of groove B by thermooxidation. The Si3N4 films 3, 6 on the bottom and surface of groove A are removed to fill the grooves A, B with N<+> polySi 8, 8'. The SiO2 film 5 is removed to be covered with a thermooxide film 9 and then a base layer 10, an emitter layer 11 and electrodes 12 are provided. In such a constitution, the collector series resistance can be reduced while preventing the lateral diffu sion of impurity from occuring to cut down the element space.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にノ(イボー
ラトランジスタのコレクタの埋込層から電極までの接続
領域を有する半導体装置の製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly relates to a method for manufacturing a semiconductor device having a connection region from the buried layer of the collector of an Ibora transistor to the electrode. .

〔従来の技術〕[Conventional technology]

従来、バイポーラトランジスタのコレクタの埋込層と電
極とを接続するには、単にコレクタ領域のエピタキシャ
ル層表面に電極を形成するだけではなく、コレクタの直
列抵抗を低減する為に、エピタキシャル層の表面から埋
込層まで高濃度のエピタキシャル層と同一導電型の不純
物の拡散を行なって接続するのが一般的である。
Conventionally, in order to connect the buried layer of the collector of a bipolar transistor and an electrode, it is not only necessary to simply form an electrode on the surface of the epitaxial layer in the collector region, but also to connect the buried layer of the collector of a bipolar transistor with the electrode from the surface of the epitaxial layer in order to reduce the series resistance of the collector. It is common to connect to the buried layer by diffusing impurities of the same conductivity type as the highly doped epitaxial layer.

第2図は従来の半導体装置の一例の断面図である。FIG. 2 is a cross-sectional view of an example of a conventional semiconductor device.

従来の半導体装置の製造方法によれば、この例は、p型
のシリコン基板1上にn+型の埋込層2′を設け、シリ
コン基板1と埋込層2′の上にエピタキシャル成長によ
ってn型の不純物層4′を設け、不純物層4′表面の酸
化膜9′の開孔部から埋込層2′に至るコレクタの電極
14に接続した引出し部のn+型の拡散領域13を設け
た構造をしている。
According to the conventional semiconductor device manufacturing method, in this example, an n+ type buried layer 2' is provided on a p type silicon substrate 1, and an n type layer is formed by epitaxial growth on the silicon substrate 1 and the buried layer 2'. A structure in which an impurity layer 4' is provided, and an n+ type diffusion region 13 is provided in the lead-out portion connected to the collector electrode 14 extending from the opening of the oxide film 9' on the surface of the impurity layer 4' to the buried layer 2'. doing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置の製造方法によれば、埋込層
と電極とを接続する引出し部の抵抗を下げる為には、エ
ピタキシャル層表面からの不純物拡散を高濃度で行ない
、引出し部の拡散領域を低抵抗化すると共に拡散領域が
埋込層に到達するようにしておく事が必要であるが、こ
のようにすると拡散領域の横方自店がりが大きくなり、
特にバイポーラトランジスタを形成する際には、通常後
工程で行なうベース領域、エミッタ領域の形成の為の熱
処理がさらにががるので、必要な接合耐圧を得る為には
、トランジスタのベース及びエミ・ツタ領域をコレクタ
引出し部から十分に離しておかなければならず素子面積
が大きくなる6従って、従来の方法では、コレクタの直
列抵抗の低減化と素子の高密度化とを同時に満足する事
が困難であるという欠点がある。
According to the conventional semiconductor device manufacturing method described above, in order to lower the resistance of the lead-out portion that connects the buried layer and the electrode, impurity diffusion is performed at a high concentration from the surface of the epitaxial layer, and the diffusion region of the lead-out portion is It is necessary to lower the resistance of the diffusion region and to allow the diffusion region to reach the buried layer, but if this is done, the lateral self-centering of the diffusion region becomes large.
In particular, when forming bipolar transistors, the heat treatment required to form the base and emitter regions, which is usually carried out in the post-process, is required. The area must be kept sufficiently away from the collector lead-out portion, which increases the device area6. Therefore, with conventional methods, it is difficult to simultaneously reduce the series resistance of the collector and increase the density of the device. There is a drawback.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、−導電型の半導体基
板上に反対導電型の埋込層を形成する工程と、前記埋込
層上の一部に第1の絶縁膜を選択的に形成する工程と、
前記埋込層と前記第1の絶縁膜とを表面に備えた前記半
導体基板上に反対導電型の半導体層を形成する工程と、
前記第1の絶縁膜上部の前記半導体層を除去して前記半
導体層表面から前記第1の絶縁膜に至る溝を形成する工
程と、前記溝の側面に第2の絶縁膜を形成する工程と、
前記溝の底部に露出した部分の前記第1の絶縁膜を除去
する工程と、前記溝に反対導電型の不純物を含有する多
結晶シリコンを充填する工程とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes a step of forming a buried layer of an opposite conductivity type on a semiconductor substrate of a -conductivity type, and selectively forming a first insulating film on a part of the buried layer. The process of
forming a semiconductor layer of an opposite conductivity type on the semiconductor substrate, the surface of which is provided with the buried layer and the first insulating film;
a step of removing the semiconductor layer above the first insulating film to form a trench from the surface of the semiconductor layer to the first insulating film; and a step of forming a second insulating film on the side surface of the trench. ,
The method includes the steps of removing a portion of the first insulating film exposed at the bottom of the trench, and filling the trench with polycrystalline silicon containing impurities of an opposite conductivity type.

〔実施例〕〔Example〕

次に、本発明の一実施例について図面を参照して説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention.

この例では、第1図(a)に示すように、先ず、p型の
シリコン基板1にn+型の埋込層2を形成した後、シリ
コンの窒化膜3を堆積し、埋込層2上のコレクタの引出
し部分を形成する領域以外のシリコンの窒化1摸を除去
する。続いてn型シリコンの不純物層4を成長してシリ
コンの酸化膜5、窒化115j 6を形成する。ここで
不に!物層4をエピタキシャル成長で形成する場合には
窒化膜3の上部には、通常、多結晶シリコンが堆積する
In this example, as shown in FIG. 1(a), first, an n+ type buried layer 2 is formed on a p type silicon substrate 1, and then a silicon nitride film 3 is deposited on the buried layer 2. The silicon nitride layer is removed from areas other than those forming the lead-out portion of the collector. Subsequently, an n-type silicon impurity layer 4 is grown, and a silicon oxide film 5 and nitride film 115j 6 are formed. Not here! When the material layer 4 is formed by epitaxial growth, polycrystalline silicon is usually deposited on top of the nitride film 3.

次に、第1図(b)に示すように、写真食刻工程と異方
性ドライエツチングを用いて所定の位置の窒化膜6.酸
化膜5.不純物層4およびシリコン基板1をエツチング
し、溝A及びBを形成する。ここで、講Bは素子間分離
用の講であり、講Aがコレクタの引出し用の沼である。
Next, as shown in FIG. 1(b), a photolithography process and anisotropic dry etching are used to etch the nitride film 6. Oxide film 5. Impurity layer 4 and silicon substrate 1 are etched to form trenches A and B. Here, the channel B is a channel for isolation between elements, and the channel A is a channel for drawing out the collector.

又、不純物層4とシリコン基板1とをエツチングするた
めの異方性ドライエツチングでは、シリコン基板1に達
するような条件でエツチングを行なえば良く、湧Aでは
窒化膜3がストッパーとなり自動的にエツチングが停止
する。更に、傷形成後に熱酸化を行ないfiAの曲面及
び溝Bの側面、底面に酸化膜7及び7′を形成する。
Furthermore, in the anisotropic dry etching for etching the impurity layer 4 and the silicon substrate 1, it is sufficient to carry out the etching under conditions such that the etching reaches the silicon substrate 1. stops. Further, after the scratches are formed, thermal oxidation is performed to form oxide films 7 and 7' on the curved surface of fiA and the side and bottom surfaces of groove B.

次に、第1図(c>に示すように、?’?4Aの底部に
露出した窒化膜3と表面のシリコン窒化膜6とを除去し
て溝A、B内にn+型不純物を含有する多結晶シリコン
8,8′を充填した後、不純物層4表面の酸化[5を除
去し、更に熱酸化を行ない不純物層4及び多結晶シリコ
ン8.8′の表面に酸化IB!9を形成する。
Next, as shown in FIG. 1 (c>), the nitride film 3 exposed at the bottom of the ?'?4A and the silicon nitride film 6 on the surface are removed to contain n+ type impurities in the trenches A and B. After filling polycrystalline silicon 8, 8', oxidation [5] on the surface of impurity layer 4 is removed, and thermal oxidation is further performed to form oxide IB!9 on the surface of impurity layer 4 and polycrystalline silicon 8, 8'. .

次に、第1図(d)に示すように、ベース領域10及び
エミッタ領域11を形成し、酸化膜9にベース、エミッ
タ、コレクタの各コンタクト窓を開口した後、ベース、
エミッタ及びコレクタの電極12b、12e及び12c
を形成してバイポーラ)・ランジスタが完成する。
Next, as shown in FIG. 1(d), after forming a base region 10 and an emitter region 11 and opening contact windows for the base, emitter, and collector in the oxide film 9, the base region 10 and the emitter region 11 are formed.
Emitter and collector electrodes 12b, 12e and 12c
A bipolar) transistor is completed.

上記の方法で、多結晶シリコン8に対してn型の不純物
の拡散は容易で、コレクタの直列抵抗を低く設定する事
が可能であるだけでなく、mAの側面に酸化膜7がある
ため、不純物が横方向に拡散する事が無く素子面積の縮
小が可能である。
By the above method, it is easy to diffuse n-type impurities into the polycrystalline silicon 8, and not only can the series resistance of the collector be set low, but also because there is an oxide film 7 on the side surface of the mA. Since impurities do not diffuse laterally, the device area can be reduced.

又、素子間分離用の?74Bとコレクタの引出し部の溝
Aとを同時に形成できるので、工程が短縮される。
Also, for isolation between elements? Since the groove 74B and the groove A of the collector pull-out part can be formed at the same time, the process is shortened.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、溝内を充填した多結晶シ
リコンを低抵抗にする事により、コレクタの直列抵抗を
低減したコレクタ引出し部を形成し、かつ素子面積を縮
小することができるという効果がある。又、このコレク
タの引出し部と素子量分i!!71Iを同一の工程で形
成できるので製造工程も短縮できるという効果もある。
As explained above, the present invention has the advantage that by making the polycrystalline silicon filled in the groove low in resistance, a collector lead-out portion with reduced series resistance of the collector can be formed, and the device area can be reduced. There is. Also, the drawer portion of this collector and the amount of elements i! ! Since 71I can be formed in the same process, there is also the effect that the manufacturing process can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図は従
来の半導体装置の一例の断面図である。 1・・・シリコン基板、2.2′・・・埋込層、3・・
・窒化膜、4.4′・・・不純物層、5・・・酸化膜、
6・・・窒化膜、7.7′・・・酸化膜、8.8′・・
・多結晶シリコン、9.9′・・・酸化膜、10・・・
ベース領域、11・・・エミッタ領域、12b、12c
、12e・−電極、13・・・拡散領域、14・・・電
極、A、B・・・溝。 代理人 弁理士   内 原   草 茅 1 ■ 第2閃
FIGS. 1A to 1D are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an example of a conventional semiconductor device. 1... Silicon substrate, 2.2'... Buried layer, 3...
・Nitride film, 4.4'... impurity layer, 5... oxide film,
6...Nitride film, 7.7'...Oxide film, 8.8'...
・Polycrystalline silicon, 9.9'...Oxide film, 10...
Base region, 11... Emitter region, 12b, 12c
, 12e - electrode, 13... diffusion region, 14... electrode, A, B... groove. Agent Patent Attorney Kusaya Uchihara 1 ■ Second Flash

Claims (1)

【特許請求の範囲】[Claims]  一導電型の半導体基板上に反対導電型の埋込層を形成
する工程と、前記埋込層上の一部に第1の絶縁膜を選択
的に形成する工程と、前記埋込層と前記第1の絶縁膜と
を表面に備えた前記半導体基板上に反対導電型の半導体
層を形成する工程と、前記第1の絶縁膜上部の前記半導
体層を除去して前記半導体層表面から前記第1の絶縁膜
に至る溝を形成する工程と、前記溝の側面に第2の絶縁
膜を形成する工程と、前記溝の底部に露出した部分の前
記第1の絶縁膜を除去する工程と、前記溝に反対導電型
の不純物を含有する多結晶シリコンを充填する工程とを
含むことを特徴とする半導体装置の製造方法。
a step of forming a buried layer of an opposite conductivity type on a semiconductor substrate of one conductivity type; a step of selectively forming a first insulating film on a portion of the buried layer; a step of forming a semiconductor layer of an opposite conductivity type on the semiconductor substrate having a first insulating film on its surface; a step of forming a groove reaching the first insulating film, a step of forming a second insulating film on the side surface of the trench, and a step of removing the portion of the first insulating film exposed at the bottom of the trench; A method for manufacturing a semiconductor device, comprising the step of filling the groove with polycrystalline silicon containing impurities of an opposite conductivity type.
JP61168613A 1986-07-16 1986-07-16 Method for manufacturing semiconductor device Expired - Lifetime JPH0616509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61168613A JPH0616509B2 (en) 1986-07-16 1986-07-16 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168613A JPH0616509B2 (en) 1986-07-16 1986-07-16 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6324672A true JPS6324672A (en) 1988-02-02
JPH0616509B2 JPH0616509B2 (en) 1994-03-02

Family

ID=15871304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168613A Expired - Lifetime JPH0616509B2 (en) 1986-07-16 1986-07-16 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0616509B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763931A (en) * 1994-09-22 1998-06-09 Nec Corporation Semiconductor device with SOI structure and fabrication method thereof
US6042957A (en) * 1995-05-05 2000-03-28 Rayovac Corporation Thin walled electrochemical cell
JP2002222938A (en) * 2001-01-25 2002-08-09 Rohm Co Ltd Semiconductor device
US7468307B2 (en) 2005-06-29 2008-12-23 Infineon Technologies Ag Semiconductor structure and method
US7982284B2 (en) 2006-06-28 2011-07-19 Infineon Technologies Ag Semiconductor component including an isolation structure and a contact to the substrate
DE102006029682B4 (en) * 2005-06-29 2015-01-08 Infineon Technologies Ag Semiconductor structure and method of fabricating the structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925871A (en) * 1972-07-04 1974-03-07
JPS566449A (en) * 1979-06-28 1981-01-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925871A (en) * 1972-07-04 1974-03-07
JPS566449A (en) * 1979-06-28 1981-01-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763931A (en) * 1994-09-22 1998-06-09 Nec Corporation Semiconductor device with SOI structure and fabrication method thereof
US6042957A (en) * 1995-05-05 2000-03-28 Rayovac Corporation Thin walled electrochemical cell
JP2002222938A (en) * 2001-01-25 2002-08-09 Rohm Co Ltd Semiconductor device
US7468307B2 (en) 2005-06-29 2008-12-23 Infineon Technologies Ag Semiconductor structure and method
DE102006029682B4 (en) * 2005-06-29 2015-01-08 Infineon Technologies Ag Semiconductor structure and method of fabricating the structure
US7982284B2 (en) 2006-06-28 2011-07-19 Infineon Technologies Ag Semiconductor component including an isolation structure and a contact to the substrate

Also Published As

Publication number Publication date
JPH0616509B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
JP2788269B2 (en) Semiconductor device and manufacturing method thereof
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
JP3014012B2 (en) Method for manufacturing semiconductor device
US4661832A (en) Total dielectric isolation for integrated circuits
US4615746A (en) Method of forming isolated island regions in a semiconductor substrate by selective etching and oxidation and devices formed therefrom
JP2666384B2 (en) Method for manufacturing semiconductor device
JP2654607B2 (en) Method for manufacturing semiconductor device
JPS6324672A (en) Manufacture of semiconductor device
JPS59108325A (en) Manufacture of semiconductor device
JP3107806B2 (en) Method for manufacturing semiconductor device
JPH0629375A (en) Semiconductor device and its production
JPS61172346A (en) Semiconductor integrated circuit device
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JP2690740B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS60126846A (en) Semiconductor device and manufactute thereof
JPH05129424A (en) Semiconductor device and manufacture thereof
JPH05129426A (en) Element isolation method of semiconductor device
JPH02152240A (en) Manufacture of semiconductor device
JPS63245939A (en) Semiconductor device
JPH04294543A (en) Manufacture of semiconductor device
JPH034539A (en) Semiconductor device and its manufacture
JPS60753A (en) Manufacture of semiconductor device
JPH0653310A (en) Semiconductor device and its manufacture method
JPH11354530A (en) Bi-polar type semiconductor device and its manufacture
JPH04113627A (en) Manufacture of bipolar transistor