JPH05129426A - Element isolation method of semiconductor device - Google Patents

Element isolation method of semiconductor device

Info

Publication number
JPH05129426A
JPH05129426A JP31019791A JP31019791A JPH05129426A JP H05129426 A JPH05129426 A JP H05129426A JP 31019791 A JP31019791 A JP 31019791A JP 31019791 A JP31019791 A JP 31019791A JP H05129426 A JPH05129426 A JP H05129426A
Authority
JP
Japan
Prior art keywords
layer
film
oxide film
trench
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31019791A
Other languages
Japanese (ja)
Inventor
Takatoshi Ushigoe
貴俊 牛越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP31019791A priority Critical patent/JPH05129426A/en
Publication of JPH05129426A publication Critical patent/JPH05129426A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an element isolation method of a semiconductor device wherein fine isolation regions cad be obtained by low temperature treatment, and transistor characteristics of BVCBO, BVCEO, etc., can be improved. CONSTITUTION:An N-type epitaxial layer 43 is formed on a P-type semiconductor substrate 41. An oxide film 44 and a nitride film 45 are formed are after the other on the upper surface of the layer 43. A trench layer 46a is formed by etching. A side wall 47a of an oxide film is formed on the inner wall surface of the trench layer 46a. A doped CVD film like a BSG film 48 containing baron is buried in the trench.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、微細分離を可能とし
て高集積度が得られる半導体装置の素子分離方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element isolation method for a semiconductor device which enables fine isolation and obtains a high degree of integration.

【0002】[0002]

【従来の技術】図3は従来の半導体装置の素子分離方法
の前段の工程断面図であり、図4はその後段の工程断面
図であり、不純物拡散による分離方法である。まず、図
3(a)に示すように、P型の半導体基板1にバイポー
ラのコレクタ抵抗低減のため埋込みN+ 拡散層2を設
け、次にアイソレーション用となる不純物のP+ 拡散層
10を設け、次にエピタキシャル層3を形成する。この
とき、N+ 埋込層2、P+ 拡散層10はオートドーピン
グして上方に層が拡がる。
2. Description of the Related Art FIG. 3 is a process sectional view of a prior stage of an element isolation method for a conventional semiconductor device, and FIG. 4 is a process sectional view of a subsequent stage thereof, which is an isolation method by impurity diffusion. First, as shown in FIG. 3A, a buried N + diffusion layer 2 is provided on a P-type semiconductor substrate 1 to reduce a bipolar collector resistance, and then an impurity P + diffusion layer 10 for isolation is formed. After that, the epitaxial layer 3 is formed. At this time, the N + buried layer 2 and the P + diffusion layer 10 are auto-doped and the layers spread upward.

【0003】次に、N型エピタキシャル層3を分離しや
すくするために、図3(b)に示すように、上方向から
の拡散層10aを設ける。このとき、エピタキシャル層
3上に形成した絶縁膜11を利用して、不純物を拡散し
て形成する。次に、図3(c)に示すように、公知の拡
散技術によりドライブインを行ない、P+ 拡散層10、
拡散層10aを接合させアイソレーション層10bを形
成し分離を完成させる。
Next, in order to facilitate the separation of the N type epitaxial layer 3, as shown in FIG. 3B, a diffusion layer 10a is provided from above. At this time, the insulating film 11 formed on the epitaxial layer 3 is used to diffuse and form the impurities. Next, as shown in FIG. 3C, drive-in is performed by a known diffusion technique to remove the P + diffusion layer 10,
The diffusion layer 10a is joined and the isolation layer 10b is formed to complete the separation.

【0004】次に、図4(a)〜図4(c)に示す後段
の工程に入り、たとえばトランジスタ等を作り込むわけ
であるが、この時点で図4(a)に示すように、N+
込み層2は上方拡散が著しく、アイソレーション層10
bは横方向拡散が著しい。
Next, the subsequent steps shown in FIGS. 4 (a) to 4 (c) are carried out to form, for example, a transistor and the like. At this point, as shown in FIG. + The buried layer 2 has a remarkable upward diffusion, and the isolation layer 10
The lateral diffusion of b is remarkable.

【0005】次に、公知のホトリソ/エッチング/拡散
工程を経てコレクタ層2aを形成する。これはコレクタ
抵抗を低減させるために、N+ 拡散層2と接合するまで
拡散させる。
Next, the collector layer 2a is formed through known photolithography / etching / diffusion steps. This reduces the collector resistance and diffuses until it contacts the N + diffusion layer 2.

【0006】次に、図4(b)に示すように、ベース層
12を同様に作り込み、このベース層12内に図4
(c)に示すように、エミッタ層13を形成する。この
場合、エミッタ押し出し効果があり、押出し層13aが
自然に形成される。
Next, as shown in FIG. 4B, a base layer 12 is similarly formed, and the base layer 12 is formed in the base layer 12 as shown in FIG.
As shown in (c), the emitter layer 13 is formed. In this case, there is an emitter pushing effect, and the push layer 13a is naturally formed.

【0007】図5(a)〜図5(d)は従来の別の半導
体装置の素子分離方法の工程断面図を示すものであり、
絶縁膜分離方式による素子分離方法である。まず、図5
(a)に示すようにP型の半導体基板21に埋込N+
レクタ層22を設け、P+ プレアイソレーション層30
を設け、公知のエピタキシャル技術でN型単結晶層23
を形成する。
5 (a) to 5 (d) are sectional views showing the steps of another conventional element isolation method for a semiconductor device.
This is an element isolation method using an insulating film isolation method. First, FIG.
As shown in (a), a buried N + collector layer 22 is provided in a P type semiconductor substrate 21, and a P + pre-isolation layer 30 is provided.
And the N-type single crystal layer 23 is formed by a known epitaxial technique.
To form.

【0008】次に、図5(b)に示すように、酸化膜2
4、窒化膜25を順次N型単結晶層23上に形成し、公
知のホトリソ/エッチング技術(トレンチエッチ技術も
含む)を経て、トレンチ層26aを得る。
Next, as shown in FIG. 5B, the oxide film 2
4. The nitride film 25 is sequentially formed on the N-type single crystal layer 23, and the trench layer 26a is obtained through the known photolithography / etching technique (including the trench etching technique).

【0009】次に、図5(c)に示すように、高圧酸化
炉で厚い酸化膜を形成し、トレンチ層26aの内部を埋
めるが、この場合窒化膜25の膜厚がストッパとなって
上部には酸化膜25aは薄く形成される。
Next, as shown in FIG. 5 (c), a thick oxide film is formed in a high pressure oxidation furnace to fill the inside of the trench layer 26a. In this case, the film thickness of the nitride film 25 serves as a stopper. The oxide film 25a is thinly formed.

【0010】次に、図5(d)に示すように、P+ プレ
アイソレーション層30aと酸化膜26bを接合させる
べく、公知の拡散技術でアニールし、アイソレーション
を形成する。
Next, as shown in FIG. 5D, in order to bond the P + pre-isolation layer 30a and the oxide film 26b, annealing is performed by a known diffusion technique to form an isolation.

【0011】[0011]

【発明が解決しようとする課題】しかしながら以上述べ
た二つの従来の分離方法であっても、図3、図4で示し
た不純物分離法でのN+ 拡散層3の上方拡散、図5で示
したP+ アイソレーション層30,30aの横方向拡散
絶縁膜による分離法でのN+ 上方拡散、厚い酸化膜の必
要性からの横方向への酸化があり、その後に形成するト
ランジスタ等のたとえばBVCBO (コレクタ・ベース間
降伏電圧)、BVCEO (コレクタ・エミッタ間降伏電
圧)の耐圧がとれないため、厚いエピタキシャル層、分
離領域の余裕等をとる必要があり、微細な素子分離が出
来なかった。
However, even with the two conventional separation methods described above, the upward diffusion of the N + diffusion layer 3 by the impurity separation method shown in FIGS. 3 and 4, and the diffusion method shown in FIG. In addition, there is N + upward diffusion in the separation method of the lateral diffusion insulating film of the P + isolation layers 30 and 30a, lateral oxidation due to the necessity of a thick oxide film, and a transistor or the like formed later, for example, BV Since the breakdown voltage of CBO (collector-base breakdown voltage) and BV CEO (collector-emitter breakdown voltage) cannot be obtained, it is necessary to secure a thick epitaxial layer and a margin for the isolation region, so that fine element isolation cannot be performed. ..

【0012】この発明は前記従来技術が持っている問題
点のうち、不純物拡散による分離方法でのN+ 拡散層の
上方拡散と絶縁分離方式による素子分離方法でのP+
イソレーション層の横方向の拡散に起因するエピタキシ
ャル層、分離領域の余裕などをとる必要があるために、
微細な素子分離ができないという問題点について解決し
た半導体装置の素子分離を提供するものである。
In the present invention, among the problems of the above-mentioned prior art, the upward diffusion of the N + diffusion layer by the isolation method by impurity diffusion and the lateral direction of the P + isolation layer by the element isolation method by the insulation isolation method. Since it is necessary to make room for the epitaxial layer and isolation region due to the diffusion of
An object of the present invention is to provide element isolation of a semiconductor device, which solves the problem that fine element isolation cannot be performed.

【0013】[0013]

【課題を解決するための手段】この発明は前記問題点を
解決するために、半導体装置の素子分離方法において、
半導体基板上のエピタキシャル層にトレンチ層を形成し
た後に、このトレンチ層の内面に酸化膜によるサイドウ
ォールを形成した後にサイドウォール内にボロンを含む
シリカゲートガラス膜などのドープドCVDを埋め込む
工程とを導入したものである。
In order to solve the above problems, the present invention provides an element isolation method for a semiconductor device,
A step of forming a trench layer in an epitaxial layer on a semiconductor substrate, forming a sidewall of an oxide film on the inner surface of the trench layer, and then burying a doped CVD film such as a silica gate glass film containing boron in the sidewall. It was done.

【0014】[0014]

【作用】この発明によれば、半導体装置の素子分離方法
において、以上のような工程を導入したので、トレンチ
層内のサイドウォールによりボロンの横方向の拡散を防
止し、半導体基板との接合が可能となり、したがって前
記問題点を除去できる。
According to the present invention, since the above steps are introduced in the element isolation method of the semiconductor device, the lateral diffusion of boron is prevented by the sidewalls in the trench layer, and the junction with the semiconductor substrate is achieved. It becomes possible and therefore the above problems can be eliminated.

【0015】[0015]

【実施例】以下、この発明の半導体装置の素子分離方法
の実施例について図面に基づき説明する。図1(a)〜
図1(d)はその一実施例の前段の工程断面図であり、
図2(a)〜図2(c)はその後段の工程断面図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the element isolation method for a semiconductor device according to the present invention will be described below with reference to the drawings. 1 (a)-
FIG. 1D is a process sectional view of the first stage of the embodiment,
2A to 2C are process cross-sectional views of the subsequent stage.

【0016】まず、図1(a)〜図1(d)の前段の工
程において、図1(a)に示すように、P型の半導体基
板41にN+ 埋込層42を形成し、次にN型エピタキシ
ャル層43を形成する。このN型エピタキシャル層43
は従来と較べて薄く形成でき、その分N+ 埋込層42の
浮き上りは軽減される。
First, as shown in FIG. 1A, an N + buried layer 42 is formed on a P-type semiconductor substrate 41 in the preceding steps of FIGS. 1A to 1D, and then, as shown in FIG. Then, the N-type epitaxial layer 43 is formed. This N-type epitaxial layer 43
Can be formed thinner than the conventional one, and the floating of the N + buried layer 42 can be reduced accordingly.

【0017】次に、図1(b)に示すように、酸化膜4
4と窒化膜45を順次N型エピタキシャル層43上に形
成し、分離の必要な部分を公知のホトリソ/エッチング
技術で開口部46を形成する。次に、図1(c)に示す
ように、トレンチドライシリコンエッチャーにてP型の
半導体基板41に達するまで窒化膜45、酸化膜44を
エッチングしてトレンチ層46aを形成する。(この場
合、半導体基板41にエッチングが達しなくても、本発
明によれば、支障はない。)次に図1(d)に示すよう
に、常圧CVD法にて酸化膜47を薄く形成する。当然
トレンチ層46aの内壁にもこの薄い酸化膜47が形成
されるが、形成形状はあまり良くない(但しこの発明に
は問題ない)。
Next, as shown in FIG. 1B, the oxide film 4 is formed.
4 and a nitride film 45 are sequentially formed on the N-type epitaxial layer 43, and an opening 46 is formed in a portion requiring separation by a known photolithography / etching technique. Next, as shown in FIG. 1C, the nitride film 45 and the oxide film 44 are etched by a trench dry silicon etcher until the P-type semiconductor substrate 41 is reached to form a trench layer 46a. (In this case, even if the etching does not reach the semiconductor substrate 41, there is no problem according to the present invention.) Next, as shown in FIG. 1D, the oxide film 47 is thinly formed by the atmospheric pressure CVD method. To do. Naturally, the thin oxide film 47 is also formed on the inner wall of the trench layer 46a, but the formed shape is not so good (however, there is no problem with the present invention).

【0018】次に、図2(a)〜図2(c)に示す後段
の工程に入り、公知のドライエッチングで薄い酸化膜4
7上を全面エッチングすると、トレンチ層46aの内壁
に酸化膜47が残存してサイドウォール47aとなる。
次に、図2(b)に示すように、トレンチ層46内を埋
め込むわけであるが、ボロンを含んだ常圧CVD法での
シリカゲートガラス(以下、BSGという)膜48など
のドープドCVDを埋め込むのが良好であり、トレンチ
内が埋込まれるまで厚く形成する。
Next, the subsequent steps shown in FIGS. 2A to 2C are performed, and the thin oxide film 4 is formed by known dry etching.
When the entire surface of 7 is etched, the oxide film 47 remains on the inner wall of the trench layer 46a and becomes the sidewall 47a.
Next, as shown in FIG. 2B, the trench layer 46 is buried, but a doped CVD process such as a silica gate glass (hereinafter referred to as BSG) film 48 by a normal pressure CVD method containing boron is performed. It is preferable to fill it, and it is formed thick until the inside of the trench is filled.

【0019】次に、図2(c)に示すように、再度全面
エッチバックにより埋込BSG層48aを形成する。こ
こまでの分離工程の熱処理は最高でも常圧CVDの40
0℃程度であり、N+ 埋込層42は上方拡散が皆無であ
る。
Next, as shown in FIG. 2C, a buried BSG layer 48a is formed again by full-surface etchback. The heat treatment in the separation process up to this point is at most 40 at atmospheric pressure CVD.
The temperature is about 0 ° C., and the N + buried layer 42 has no upward diffusion.

【0020】さらに、酸化膜によるサイドウォール47
aがあるため、BSG膜48からの不純物の横方向拡散
は皆無である。但し図2(c)に示すP+層49は形成
する必要があるが、これはその後のコレクタ、ベース、
エミッタ形成(本説明では省略)での熱処理により同時
に拡散されるため、あえてアニール工程は必要ない。
Further, the sidewall 47 made of an oxide film is used.
Since there is a, there is no lateral diffusion of impurities from the BSG film 48. However, it is necessary to form the P + layer 49 shown in FIG. 2C.
The annealing process is not necessary since the diffusion is performed at the same time by the heat treatment for forming the emitter (this description is omitted).

【0021】この発明における各部の具体的数値例を挙
げると、N型エピタキシャル層43の厚さは1μ、0.
5Ωcm、N+ 上方拡散は0.1μ、BSG膜48は13
w+%、P+ 層49で数kΩ/□、ベース層(図示せ
ず)が0.3μ、エミッタ層(図示せず)が0.2μで
実現でき、エミッタ押出し効果があっても、BVCBO
20V、BVCEO ≧10V、HFE(エミッタ接地直流
電流増幅率)を実現できた。また、分離領域は0.5μ
〜1.0μで形成でき、大幅に微細パターンが可能とな
る。
To give specific numerical examples of each part in the present invention, the thickness of the N-type epitaxial layer 43 is 1 μm, 0.
5 Ωcm, N + upward diffusion 0.1 μ, BSG film 48 13
w +%, a few kΩ / □ in the P + layer 49, a base layer (not shown) of 0.3μ, and an emitter layer (not shown) of 0.2μ, and even if there is an emitter pushing effect, BV CBO
20V, BV CEO ≧ 10V, HFE (grounded emitter direct current amplification factor) were realized. The separation area is 0.5μ
It can be formed with a thickness of up to 1.0 μ, and a significantly fine pattern can be formed.

【0022】[0022]

【発明の効果】以上詳細に説明したように、この発明に
よれば、エピタキシャル層にトレンチ層を形成し、その
内壁面に酸化膜によるサイドウォールを形成してこの後
のBSG膜よりのボロンの横方向拡散を防ぎつつ半導体
基板との接合が可能となるようにして、分離領域を形成
するようにしたので、微細な分離領域が得られ、さらに
分離領域形成まですべて低温処理で実現できN+ 埋込層
の浮き上りも少なくなり、薄いエピタキシャル層が可能
であり、BVCBO 、BVCEO 等トランジスタ特性の向上
も期待できる。
As described above in detail, according to the present invention, the trench layer is formed in the epitaxial layer, the side wall of the oxide film is formed on the inner wall surface of the trench layer, and then the boron of the BSG film is removed. as while preventing lateral diffusion bonding between the semiconductor substrate becomes possible, since to form the isolation region, can be realized in a fine isolation region is obtained, further everything isolation region forming a low temperature process N + The floating of the buried layer is reduced, a thin epitaxial layer is possible, and improvement of transistor characteristics such as BV CBO and BV CEO can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の半導体装置の素子分離方法の一実施
例を説明するための前段の工程断面図。
FIG. 1 is a process sectional view of a preceding stage for explaining an embodiment of an element isolation method for a semiconductor device of the present invention.

【図2】同上実施例の後段の工程断面図。FIG. 2 is a process sectional view of the latter stage of the embodiment.

【図3】従来の半導体装置の素子分離方法の前段の工程
断面図。
FIG. 3 is a process cross-sectional view of the former stage of a conventional element isolation method for a semiconductor device.

【図4】同上従来の半導体装置の素子分離方法の後段の
工程断面図。
FIG. 4 is a process cross-sectional view of a latter stage of the conventional semiconductor device element isolation method.

【図5】従来の別の半導体装置の素子分離方法の工程断
面図。
FIG. 5 is a process cross-sectional view of another conventional element isolation method for a semiconductor device.

【符号の説明】[Explanation of symbols]

41 半導体基板 42 N+ 埋込層 43 N型エピタキシャル層 44 酸化膜 45 窒化膜 46 開口部 46a トレンチ層 47 薄い酸化膜 47a サイドウォール 48 BSG膜 48a 埋込BSG層 49 P+ 41 Semiconductor Substrate 42 N + Buried Layer 43 N-Type Epitaxial Layer 44 Oxide Film 45 Nitride Film 46 Opening 46a Trench Layer 47 Thin Oxide Film 47a Sidewall 48 BSG Film 48a Buried BSG Layer 49 P + Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にエピタキシャル層を形成
し、このエピタキシャル層上に酸化膜と窒化膜を順次形
成する工程と、 前記窒化膜と酸化膜、およびエピタキシャル層をエッチ
ングしてトレンチ層を形成し、前面に薄い酸化膜を形成
する工程と、 全面エッチバックにより、前記酸化膜によるサイドウォ
ールを前記トレンチ層の内壁面に形成する工程と、 前記トレンチ層内に、シリカゲート・ガラスなどのドー
プドCVD膜を埋め込む工程と、 よりなる半導体装置の素子分離方法。
1. A step of forming an epitaxial layer on a semiconductor substrate and sequentially forming an oxide film and a nitride film on the epitaxial layer, and etching the nitride film, the oxide film, and the epitaxial layer to form a trench layer. Then, a step of forming a thin oxide film on the front surface, a step of forming a side wall of the oxide film on the inner wall surface of the trench layer by full-scale etch back, and a step of doping silica gate glass or the like in the trench layer A method for element isolation of a semiconductor device, which comprises a step of burying a CVD film.
JP31019791A 1991-10-30 1991-10-30 Element isolation method of semiconductor device Pending JPH05129426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31019791A JPH05129426A (en) 1991-10-30 1991-10-30 Element isolation method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31019791A JPH05129426A (en) 1991-10-30 1991-10-30 Element isolation method of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05129426A true JPH05129426A (en) 1993-05-25

Family

ID=18002346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31019791A Pending JPH05129426A (en) 1991-10-30 1991-10-30 Element isolation method of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05129426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709925B2 (en) 2006-01-27 2010-05-04 Mitsubishi Electric Corporation Semiconductor device
CN113782589A (en) * 2021-08-31 2021-12-10 上海华虹宏力半导体制造有限公司 Process method of groove type power MOSFET device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709925B2 (en) 2006-01-27 2010-05-04 Mitsubishi Electric Corporation Semiconductor device
CN113782589A (en) * 2021-08-31 2021-12-10 上海华虹宏力半导体制造有限公司 Process method of groove type power MOSFET device

Similar Documents

Publication Publication Date Title
JP3180599B2 (en) Semiconductor device and method of manufacturing the same
JPH0677421A (en) Manufacture of transistor
US4323913A (en) Integrated semiconductor circuit arrangement
US4184172A (en) Dielectric isolation using shallow oxide and polycrystalline silicon
US4231819A (en) Dielectric isolation method using shallow oxide and polycrystalline silicon utilizing a preliminary etching step
US4283235A (en) Dielectric isolation using shallow oxide and polycrystalline silicon utilizing selective oxidation
JP2654607B2 (en) Method for manufacturing semiconductor device
JP3149470B2 (en) Method for manufacturing semiconductor device
JPH05129426A (en) Element isolation method of semiconductor device
JP3107806B2 (en) Method for manufacturing semiconductor device
JPS6324672A (en) Manufacture of semiconductor device
JP2652995B2 (en) Semiconductor device and manufacturing method thereof
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JP2917646B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JP2765864B2 (en) Method for manufacturing semiconductor device
JP2625373B2 (en) Method for manufacturing semiconductor device
JP2712889B2 (en) Method for manufacturing semiconductor device
JPS63245939A (en) Semiconductor device
JPH02278735A (en) Semiconductor device
JPH0479364A (en) Manufacture of semiconductor device
JPH065619A (en) Semiconductor device and manufacture thereof
JPH01189159A (en) Manufacture of semiconductor integrated circuit device
JPH118252A (en) Manufacture of semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990914