JPH118252A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH118252A
JPH118252A JP15992197A JP15992197A JPH118252A JP H118252 A JPH118252 A JP H118252A JP 15992197 A JP15992197 A JP 15992197A JP 15992197 A JP15992197 A JP 15992197A JP H118252 A JPH118252 A JP H118252A
Authority
JP
Japan
Prior art keywords
layer
diffusion
type
pnp transistor
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15992197A
Other languages
Japanese (ja)
Inventor
Ryoichi Ito
良一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP15992197A priority Critical patent/JPH118252A/en
Publication of JPH118252A publication Critical patent/JPH118252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a diffusion layer parasitic capacity from increasing by forming a P-type diffusion layer that also plays a role of the side surface collector region of a vertical PNP transistor by forming a vertical groove through etching and by performing filling with a polycrystalline silicon layer, including a diffusion impurity for decreasing resistance. SOLUTION: A P-type diffused layer 3' of the entire portion of the surrounding part of the side surface collector region of a vertical PNP transistor is formed by performing the vertical groove etching of an N-type epitaxial layer 2 until a P-type embedded layer 3 is reached and further filling a polycrystalline silicon 23 whose resistance is decreased containing the P-type diffusion impurity. Therefore, the diffusion spread in the horizontal direction is determined less by the width of a groove 20 formed by the vertical groove etching, as compared with a case when a side surface collector region is formed due to thermal diffusion, thus suppressing the increase in the diffusion layer parasitic capacity of the side surface collector and improving the cut-off frequency of the vertical PNP transistor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、遮断周波数の高い
バイポーラトランジスタを含む半導体装置の製造方法の
改良に関するもので、特に縦形PNPトランジスタに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method of manufacturing a semiconductor device including a bipolar transistor having a high cutoff frequency, and more particularly to a vertical PNP transistor.

【0002】[0002]

【従来の技術】バイポーラ素子を利用したアナログ回路
は、一般的にはNPNトランジスタだけで構成するのは
困難であり、回路の出力信号DCレベルあるいはダイナ
ミックレンジ等の性能を考慮すると、PNPトランジス
タを回路構成上、レベルシフト、出力アンプ部等で使用
する必要性が生じる。
2. Description of the Related Art In general, it is difficult to configure an analog circuit using a bipolar element only with an NPN transistor. In consideration of the output signal DC level or the dynamic range of the circuit, a PNP transistor is used. Due to the configuration, there is a need to use it in a level shift, an output amplifier section, and the like.

【0003】ところが、こうしたアナログ回路をIC化
した場合、通常は上記のPNPトランジスタはラテラル
形として形成されるため、素子サイズが大きく寄生容量
が多くなり、縦形構造のNPNトランジスタに比べて周
波数応答性が遅い、いわゆる遮断周波数fT がNPNト
ランジスタに比べ1/10以下となる。その結果、上記
アナログ回路全体での出力周波数特性が遮断周波数fT
の低い上記PNPトランジスタにより定まることにな
り、低下する。
However, when such an analog circuit is formed into an IC, the above-mentioned PNP transistor is usually formed as a lateral type, so that the element size is large and the parasitic capacitance is large, and the frequency response is higher than that of the vertical type NPN transistor. , The so-called cutoff frequency f T is 1/10 or less of that of the NPN transistor. As a result, the output frequency characteristic of the entire analog circuit becomes the cutoff frequency f T
, Which is determined by the PNP transistor having a low threshold voltage.

【0004】このPNPトランジスタの遮断周波数を向
上させるためには、NPNトランジスタと同様に縦形構
造にすればよい。以下、その縦形PNPトランジスタ製
造方法の従来例について図2により順に説明する。すな
わち、図2(a)に示すようにP形シリコン基板1に底
面側素子分離用のN形埋込み層4と、縦形PNPトラン
ジスタの底面コレクタ領域を兼ねたP形埋込み層3を、
熱酸化シリコン膜形成、同ホトエッチングおよび熱拡散
等を繰り返して形成し、前記熱酸化シリコン膜を除去
後、N形エピタキシャル層2を形成する。
In order to improve the cutoff frequency of the PNP transistor, a vertical structure may be used similarly to the NPN transistor. Hereinafter, a conventional example of the method of manufacturing the vertical PNP transistor will be described in order with reference to FIG. That is, as shown in FIG. 2A, an N-type buried layer 4 for bottom-side device isolation and a P-type buried layer 3 also serving as a bottom collector region of a vertical PNP transistor are formed in a P-type silicon substrate 1.
The thermal silicon oxide film formation, photoetching, thermal diffusion, and the like are repeated, and the thermal silicon oxide film is removed. Then, the N-type epitaxial layer 2 is formed.

【0005】続いて、図2(b)で素子分離および側面
コレクタ領域用のP形拡散層3′を表面側から、またP
NPトランジスタのベース領域となるN形Well層5
も、同様に形成する(図2(c))さらに、エミッタ領
域となるP+拡散層33およびベース電極取出し用とな
るN+拡散層44を同様に形成し(図2(d))、コン
タクト用の酸化シリコン膜10のホトエッチングを行
い、各端子の取出しA1電極8をA1膜形成、同ホトエ
ッチングにより形成して、図2(e)に示すように縦形
PNPトランジスタが完成する。
Subsequently, in FIG. 2 (b), a P-type diffusion layer 3 'for element isolation and a side collector region is formed from the front side,
N-type well layer 5 serving as a base region of NP transistor
(FIG. 2 (c)). Further, a P + diffusion layer 33 serving as an emitter region and an N + diffusion layer 44 serving as a base electrode take-out are similarly formed (FIG. 2 (d)). Photoetching of the silicon oxide film 10 is performed, and an A1 electrode 8 for each terminal is formed by A1 film formation and photoetching, thereby completing a vertical PNP transistor as shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】さて、ここに示した従
来方法による縦形PNPトランジスタの製造方法には以
下に述べる欠点があることがわかる。
By the way, it can be understood that the method of manufacturing a vertical PNP transistor according to the conventional method shown here has the following disadvantages.

【0007】まず、先に述べたようにPNPトランジス
タの遮断周波数fT を向上させるためには、縦形構造を
採用する必要がある。さらに、トランジスタの遮断周波
数fT は下記に示すその関係式(1)からコレクタ・ベ
ース時定数1/ωcおよび基板蓄積容量の時定数1/ω
s(集積回路項)を小さくすることにより向上すること
がわかる。
First, as described above, in order to improve the cutoff frequency f T of the PNP transistor, it is necessary to adopt a vertical structure. Further, the cut-off frequency f T of the transistor is calculated from the relational expression (1) shown below from the collector-base time constant 1 / ωc and the time constant 1 / ω of the substrate storage capacitance.
It can be seen that improvement is achieved by reducing s (integrated circuit term).

【0008】 1/(2πfT )=1/ωe+1/ωb+1/ωd+1/ωc+1/ωs …(1) 但し、1/ωe:ベース・エミッタ時定数 1/ωb:ベース移送時定数 1/ωd:コレクタ・ベース空間電荷層時定数 ここで、前記の各時定数を小さくするためには、下記に
示すその関係式(2)、(3)からコレクタ抵抗を小さ
くする必要がある。
1 / (2πf T ) = 1 / ωe + 1 / ωb + 1 / ωd + 1 / ωc + 1 / ωs (1) where 1 / ωe: base-emitter time constant 1 / ωb: base transfer time constant 1 / ωd: collector Base Space Charge Layer Time Constant Here, in order to reduce the above time constants, it is necessary to reduce the collector resistance according to the following relational expressions (2) and (3).

【0009】 1/ωc=CCBCC …(2) 1/ωs=CCSCC …(3) 但し、CCB:逆バイアスされたベース・コレクタ接合の
容量 CCS:逆バイアスされた基板・コレクタ接合の容量 RCC:コレクタ抵抗 ところが、コレクタ領域を形成するための側面コレクタ
領域を兼ねたP形拡散層3′は、熱拡散で形成するかぎ
り低抵抗化しようとすると、P形拡散層3′はよりその
幅が広がり拡散深さが深くなる。そのため、逆に拡散層
寄生容量が増加して時定数を小さくすることができず、
遮断周波数fTの向上が困難となる。また、縦形PNP
トランジスタのコレクタ領域内側に形成するベース、エ
ミッタ領域を側面コレクタ領域を兼ねたP形拡散層3′
が熱拡散により内側にも広がるため、コレクタ周囲領域
を広く取る必要があり、本トランジスタを全体的に縮小
化するための妨げとなる。
[0009] 1 / ωc = C CB R CC ... (2) 1 / ωs = C CS R CC ... (3) where, C CB: capacity of the reverse biased base-collector junction C CS: reverse-biased substrate The collector junction capacitance R CC : collector resistance However, the P-type diffusion layer 3 ′, which also serves as a side collector region for forming the collector region, is a P-type diffusion layer in order to reduce the resistance as long as it is formed by thermal diffusion. 3 'has a wider width and a deeper diffusion depth. Therefore, on the contrary, the parasitic capacitance of the diffusion layer increases and the time constant cannot be reduced.
Improvement of the cutoff frequency f T is difficult. Also, vertical PNP
The base and emitter regions formed inside the collector region of the transistor are P-type diffusion layers 3 'also serving as side collector regions.
Is spread to the inside due to thermal diffusion, so that it is necessary to increase the area around the collector, which hinders the overall reduction in size of the transistor.

【0010】本発明の目的は、縦形PNPトランジスタ
の遮断周波数fTを向上させるための上記側面コレクタ
領域を兼ねたP形拡散層を低抵抗化するにあたり、拡散
層寄生容量の増加を防ぐことにある。
An object of the present invention is to reduce the resistance of the P-type diffusion layer also serving as the side collector region for improving the cut-off frequency f T of the vertical PNP transistor, thereby preventing an increase in the diffusion layer parasitic capacitance. is there.

【0011】[0011]

【課題を解決するための手段】本発明は、上記の目的を
達成するために、上記縦形PNPトランジスタの側面コ
レクタ領域を兼ねたP形拡散層を、エッチングによる縦
溝形成と低抵抗化するための拡散不純物を含んだ多結晶
シリコン層で埋設して形成するものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a vertical PNP transistor having a P-type diffusion layer which also serves as a side collector region by forming a vertical groove by etching and reducing the resistance. Buried in a polycrystalline silicon layer containing the diffusion impurity of the above.

【0012】本発明では縦形PNPトランジスタの側面
コレクタ領域の周囲部全体のP形拡散層を、N形エピタ
キシャル層をP形埋込み層に届くまで縦溝エッチングし
て、さらにP形拡散不純物を含む低抵抗化した多結晶シ
リコンを埋設して形成する。このため、熱拡散により上
記の側面コレクタ領域を形成する場合に比べて、その横
方向の拡散広がりが縦溝エッチングにより形成される溝
幅で決まることになり少なくなる。このため本発明によ
り形成する上記側面コレクタ領域の寄生容量は従来の熱
拡散法に比べて減少することになる。
According to the present invention, the P-type diffusion layer in the entire periphery of the side face collector region of the vertical PNP transistor is subjected to vertical groove etching until the N-type epitaxial layer reaches the P-type buried layer, and the low-level diffusion containing P-type diffusion impurities is further performed. It is formed by burying polycrystalline silicon having resistance. For this reason, compared to the case where the side surface collector region is formed by thermal diffusion, the lateral diffusion spread is determined by the groove width formed by the vertical groove etching, and is reduced. Therefore, the parasitic capacitance of the side collector region formed according to the present invention is reduced as compared with the conventional thermal diffusion method.

【0013】[0013]

【発明の実施の形態】以下に、本発明による実施例を図
1により説明する。図1(a)は従来例の図2(a)と
同じものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to FIG. FIG. 1A is the same as FIG. 2A of the conventional example.

【0014】続いて、図1(b)で素子分離および側面
コレクタ領域用のP形拡散層3′を表面側から、またP
NPトランジスタのベース領域となるN形Well層5
も、同様に形成する。(図1(c))さらに、エミッタ
領域となるP+拡散層33およびベース電極取出し用と
なるN+拡散層44を同様に形成し(図1(d))、コ
ンタクト用の酸化シリコン膜10のホトエッチングを行
い、各端子の取出しA1電極8をA1膜形成、同ホトエ
ッチングにより形成して、図1(e)に示すように縦形
PNPトランジスタが完成する。
Subsequently, in FIG. 1B, a P-type diffusion layer 3 'for element isolation and a side face collector region is formed from the front side,
N-type well layer 5 serving as a base region of NP transistor
Are similarly formed. (FIG. 1C) Further, a P + diffusion layer 33 serving as an emitter region and an N + diffusion layer 44 serving as a base electrode extraction are formed in the same manner (FIG. 1D). Etching is performed, and an A1 electrode 8 for each terminal is formed by A1 film formation and photoetching to complete a vertical PNP transistor as shown in FIG. 1 (e).

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば縦
形PNPトランジスタの側面コレクタ領域を兼ねたP形
拡散層を、N形エピタキシャル層を縦溝エッチングして
P形拡散不純物を含んだ多結晶シリコンで埋設形成する
ため、上記側面コレクタ領域をその幅および拡散深さが
広がることなく低抵抗化することができる。
As described above, according to the present invention, a P-type diffusion layer also serving as a side collector region of a vertical PNP transistor is formed, and an N-type epitaxial layer is subjected to vertical groove etching to contain a P-type diffusion impurity. Since the side collector region is buried with crystalline silicon, the side collector region can be reduced in resistance without increasing its width and diffusion depth.

【0016】その結果、上記側面コレクタ領域の拡散層
寄生容量の増加が押さえられ、縦形PNPトランジスタ
の遮断周波数fT をより向上させることができる。ま
た、上記側面コレクタ周囲領域が熱拡散の場合に比べて
内側に広がることが少ないため、同トランジスタの縮小
化に寄与できる。
As a result, the increase in the parasitic capacitance of the diffusion layer in the side collector region is suppressed, and the cutoff frequency f T of the vertical PNP transistor can be further improved. Further, since the peripheral region of the side collector is less likely to expand inward than in the case of thermal diffusion, it can contribute to the miniaturization of the transistor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による縦形PNPトランジスタ製造方法
の断面図。
FIG. 1 is a sectional view of a method for manufacturing a vertical PNP transistor according to the present invention.

【図2】従来方法による縦形PNPトランジスタ製造方
法の断面図。
FIG. 2 is a cross-sectional view of a conventional method for manufacturing a vertical PNP transistor.

【符号の説明】[Explanation of symbols]

1:P形シリコン基板、2:N形エピタキシャル層、2
0:エッチング縦溝、23:多結晶シリコン、3:P形
埋込み層、3′:P形拡散層、33:P+拡散層(P形
高濃度層)、4:N形埋込み層、44:N+拡散層(N
形高濃度層)5:N形Well層、8:Al電極、1
0:酸化シリコン膜。
1: P-type silicon substrate, 2: N-type epitaxial layer, 2
0: etched vertical groove, 23: polycrystalline silicon, 3: P-type buried layer, 3 ': P-type diffusion layer, 33: P + diffusion layer (P-type high concentration layer), 4: N-type buried layer, 44: N + Diffusion layer (N
5: N-type well layer, 8: Al electrode, 1
0: Silicon oxide film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一方導電形半導体基板上に、他方導電形
の第1の埋込み拡散領域を形成して、続いて一方導電の
第2の埋込み拡散領域を形成し、その後エピタキシャル
層を形成後トランジスタを形成するにあたり、前記半導
体基板の拡散層形成するために、あらかじめ、前記半導
体基板をエッチングし、さらに多結晶半導体を埋設形成
することを特徴とする半導体装置の製造方法。
1. A first buried diffusion region of the other conductivity type is formed on a semiconductor substrate of one conductivity type, a second buried diffusion region of one conductivity type is formed, and then an epitaxial layer is formed. Forming a diffusion layer of the semiconductor substrate, the semiconductor substrate is etched in advance, and a polycrystalline semiconductor is buried in the semiconductor substrate.
JP15992197A 1997-06-17 1997-06-17 Manufacture of semiconductor device Pending JPH118252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15992197A JPH118252A (en) 1997-06-17 1997-06-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15992197A JPH118252A (en) 1997-06-17 1997-06-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH118252A true JPH118252A (en) 1999-01-12

Family

ID=15704073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15992197A Pending JPH118252A (en) 1997-06-17 1997-06-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH118252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469366B1 (en) 2000-04-27 2002-10-22 Mitsubishi Denki Kabushiki Kaisha Bipolar transistor with collector diffusion layer formed deep in the substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469366B1 (en) 2000-04-27 2002-10-22 Mitsubishi Denki Kabushiki Kaisha Bipolar transistor with collector diffusion layer formed deep in the substrate

Similar Documents

Publication Publication Date Title
JPH0897225A (en) Semiconductor device and its manufacture
JPH118252A (en) Manufacture of semiconductor device
JPS6323335A (en) Isolation and substrate connection for bipolar integrated circuit
JPS6133261B2 (en)
US3718843A (en) Compact semiconductor device for monolithic integrated circuits
JPH0450747B2 (en)
JP2001144098A (en) Method of manufacturing semiconductor device
JP2833913B2 (en) Bipolar integrated circuit device
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPH0436578B2 (en)
JP2826405B2 (en) Semiconductor device
JP3182175B2 (en) Darlington transistor and manufacturing method thereof
JPH05129426A (en) Element isolation method of semiconductor device
JPH0193160A (en) Semiconductor device
JP2604793B2 (en) Semiconductor device
JP2536616B2 (en) Semiconductor device
JPS6348189B2 (en)
JP3186265B2 (en) Bipolar transistor and method of manufacturing the same
JPS6031105B2 (en) semiconductor equipment
JPS6322068B2 (en)
JPH03203333A (en) Semiconductor device and manufacture thereof
JPH0574799A (en) Semiconductor device
JPH02105456A (en) Semiconductor device
JPS61208260A (en) Semiconductor device
JPH01286356A (en) Semiconductor integrated circuit