JPH02105456A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02105456A
JPH02105456A JP63258668A JP25866888A JPH02105456A JP H02105456 A JPH02105456 A JP H02105456A JP 63258668 A JP63258668 A JP 63258668A JP 25866888 A JP25866888 A JP 25866888A JP H02105456 A JPH02105456 A JP H02105456A
Authority
JP
Japan
Prior art keywords
region
layer
polycrystalline silicon
silicon layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63258668A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takahashi
弘行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63258668A priority Critical patent/JPH02105456A/en
Publication of JPH02105456A publication Critical patent/JPH02105456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To be provided with a bipolar random-access memory cell which has suppressed an emitter region and a spread of a lateral pnp transistor by a method wherein an impurity diffusion region is formed of the following: a highly doped buried polycrystalline layer whose one side face completely comes into contact with a dielectric insulating layer; a high-concentration impurity region which is formed by thermal diffusion from the polycrystalline silicon layer and is situated near the surface of the polycrystalline silicon layer. CONSTITUTION:An N<+> type buried layer C1 and an N<-> type semiconductor layer C2 are formed individually on a P-type semiconductor substrate S inside an element partitioned by dielectric insulating layers I2 for element isolation use; in addition, an emitter region E0 and a base region B for an NPN transistor are formed on the surface. A high-concentration impurity diffusion region E1 forming an emitter region for a lateral PNP transistor is formed to be adjacent to the base region B of the NPN transistor so as to surround a wall face of a P-type highly doped polycrystalline silicon layer P1; D1 to D4 are formed as their respective extraction electrodes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にバイポーラ・トランジ
スタを基本素子とする半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device having a bipolar transistor as a basic element.

〔従来の技術〕[Conventional technology]

バイポーラ・ランダム・アクセス・メモリ装置(以下B
 i p−RAMという)は高速動作を必要とする機器
によく用いられるが、今日ではPNP型トランジスタを
負荷としたNPNトランジスタ・フリップ・フロップ構
成のクロスカップル形pnpnメモリ・セルを用いたも
のがその主流となっている。これは最も集積度があげら
れるからである。
Bipolar random access memory device (hereinafter referred to as B
IP-RAM) is often used in devices that require high-speed operation, but today it is using cross-coupled pnpn memory cells with an NPN transistor flip-flop configuration loaded with PNP transistors. It has become mainstream. This is because it has the highest degree of integration.

、第4図および第5図はそれぞれ従来のクロスカップル
型pnpnメモリ・セルの等価回路図およびその一方の
側の素子構造を示す半導体装置の断面図である。第5図
において、セル素子はP型半導体基板Sの上に形成され
た不純物濃度の高いN+型埋込み半導体層C1およびそ
の上の比較的低濃度のN−型半導体層C2をコレクタ領
域とし、その表面に形成されたベース領域Bとエミッタ
領域EoとによりNPN)−ランジスタを構成しており
、また、N−型半導体層C2表面のP十型不純物拡散領
域E1は、ラテラルPNPトランジスタのエミッタ領域
となっている。ここで、C5はコレクタ領域のN+型埋
込み半導体層C1およびN−型半導体層02領域と電[
! D tとの間を低抵抗で接続するために設けられた
高濃度のN+型不純物拡散領域である。
, 4 and 5 are respectively an equivalent circuit diagram of a conventional cross-coupled pnpn memory cell and a sectional view of a semiconductor device showing the element structure on one side thereof. In FIG. 5, the cell element has an N+ type buried semiconductor layer C1 with a high impurity concentration formed on a P type semiconductor substrate S and a relatively low concentration N− type semiconductor layer C2 thereon as a collector region. The base region B and emitter region Eo formed on the surface constitute an NPN)-transistor, and the P<0> type impurity diffusion region E1 on the surface of the N-type semiconductor layer C2 serves as the emitter region of a lateral PNP transistor. It has become. Here, C5 is connected to the N+ type buried semiconductor layer C1 and the N− type semiconductor layer 02 region in the collector region.
! This is a heavily doped N+ type impurity diffusion region provided to connect with Dt with low resistance.

このセル素子の構造においては、誘電体絶縁理工2に隣
接して設けられたラテラルPNPトランジスタのエミッ
タ用高濃度不純物拡散層E1およびコレクタ電極引出用
の高濃度拡散M C3は、それぞれ高濃度(〜1020
c+t+−3)でかつ表面から深い距!(0,5〜1μ
m程度)まで不純物をドープすることが必要である。し
かし、一般に行なわれている熱拡散法またはイオン注入
法では、どちらの場合でも表面から深くドープするとマ
スクパターンに対して横方向への拡散が大きくなる。た
とえば、絶縁保護膜I、上にマスク・パターンを用いて
電極引出し用の開口部を設けると、半導体表面に平行な
横方向への拡散はXl + X2のように大きなものと
なる。そのため、この拡散距離X、、X2をあらかじめ
考慮したマスク・パターン・マージンが必要となるので
高集積化が妨げられている。
In the structure of this cell element, the high concentration impurity diffusion layer E1 for the emitter and the high concentration diffusion layer MC3 for leading out the collector electrode of the lateral PNP transistor provided adjacent to the dielectric insulation technology 2 are each formed with a high concentration (~ 1020
c+t+-3) and deep distance from the surface! (0.5~1μ
It is necessary to dope the impurity up to about m). However, in the commonly used thermal diffusion method or ion implantation method, in either case, doping deeply from the surface increases diffusion in the lateral direction with respect to the mask pattern. For example, if an opening for leading out an electrode is provided on the insulating protective film I using a mask pattern, the diffusion in the lateral direction parallel to the semiconductor surface becomes large as Xl + X2. Therefore, a mask pattern margin is required that takes the diffusion distances X, , X2 into consideration in advance, which hinders high integration.

従来、この横方向の拡散マージンによる影響を最小限に
するため、高濃度不純物拡散層E1およびC5は、それ
ぞれ素子の外周を囲んでいる素子分離用誘電体絶縁層■
2に接するように配置され、一方向の横方向拡散を絶縁
層I2の壁で妨げる手段がとられている。
Conventionally, in order to minimize the influence of this lateral diffusion margin, the high-concentration impurity diffusion layers E1 and C5 are each formed using a dielectric insulation layer for element isolation surrounding the outer periphery of the element.
The insulating layer I2 is disposed so as to be in contact with the insulating layer I2, and measures are taken to prevent lateral diffusion in one direction by the wall of the insulating layer I2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

、このように、上述した従来のB i p −RAMの
セル素子では、ラテラルPNP)ランジスタのエミッタ
領域用およびコレクタ電極引出用の高濃度不純物拡散領
域E、およびC3は、その領域を決定するマスク・パタ
ーンに対して基板表面に平行な横方向への大きな拡散(
0,5〜1μm)を弓き起こすため、この広がりを考慮
したマージンをデバイス面積中に見積る必要があり、高
集積化のためのセル面積の縮小化に大きな問題が生じる
As described above, in the conventional B i p -RAM cell element described above, the high concentration impurity diffusion regions E and C3 for the emitter region and collector electrode extraction of the lateral PNP transistor are masked to determine the regions.・Large diffusion in the lateral direction parallel to the substrate surface with respect to the pattern (
0.5 to 1 μm), it is necessary to estimate a margin in consideration of this spread in the device area, which causes a big problem in reducing the cell area for higher integration.

また、この大きな素子面積は、第4図の等価回路図に示
したように、埋込みコレクタ・基板間の寄生容N Cc
 sを大きくして回路の動作速度を遅らせる大きな原因
となり、さらに、ラテラルPNPトランジスタのエミッ
タ拡散領域E1の広がりによりベース・エミッタ間の接
合面積が大きくなりこの部分の接合容量Cebを増大さ
せるため、デバイスのスイッチング速度を遅らせると同
時に、拡散距離のバラツキがトランジスタの増幅率h「
。に大きな影響を与え、デバイス特性を不安定にさせる
In addition, this large element area is due to the parasitic capacitance N Cc between the buried collector and the substrate, as shown in the equivalent circuit diagram of FIG.
Increasing s becomes a major cause of slowing down the operating speed of the circuit.Furthermore, due to the expansion of the emitter diffusion region E1 of the lateral PNP transistor, the junction area between the base and emitter increases, increasing the junction capacitance Ceb in this area. At the same time, variations in the diffusion distance reduce the transistor's amplification factor h'
. This has a large impact on the device characteristics and makes the device characteristics unstable.

本発明の目的は、上記の問題点に鑑み、ラテラルPNP
トランジスタのエミッタ領域および拡がりを抑制したバ
イポーラ・ランダム・アクセス・メモリ・セルを備えた
半導体装置を提供することである。
In view of the above problems, an object of the present invention is to
An object of the present invention is to provide a semiconductor device including an emitter region of a transistor and a bipolar random access memory cell with suppressed expansion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、半導体基板表面に形成される半導体素
子を相互に分離する素子間分離用誘電体絶縁層に隣接し
てN型またはP型の不純物拡散領域を形成する半導体装
置は、前記不純物拡散領域を゛前記誘電体絶縁層に側面
の一つを完全に接する高ドープの埋込み多結晶シリコン
層と該多結晶シリコン層からの熱拡散で形成される多結
晶シリコン層表面近傍の高濃度不純物領域とで形成する
ことを含んで構成される。
According to the present invention, a semiconductor device in which an N-type or P-type impurity diffusion region is formed adjacent to a dielectric insulating layer for element isolation that isolates semiconductor elements formed on a surface of a semiconductor substrate from each other, The diffusion region is defined as ``a highly doped buried polycrystalline silicon layer whose one side is completely in contact with the dielectric insulating layer, and a highly concentrated impurity near the surface of the polycrystalline silicon layer formed by thermal diffusion from the polycrystalline silicon layer. It is configured by forming a region.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すクロスカップル型pn
pnメモリ・セルの一方の側の素子構造を示す半導体装
置の断面図である。本実施例によれば、本発明の半導体
装置は、素子分離用誘電体絶縁層■2で区切られた素子
内のP型半導体基板S上にN+型埋込み層C1およびN
−型半導体層C2とがそれぞれ形成され、更にその表面
にはNPN)ランジスタのエミッタ領域E。およびベー
ス領域Bが形成される。また、ラテラルPNPトランジ
スタのエミッタ領域を形成する高濃度不純物拡散領域E
1がP型窩ドープド多結晶シリコン層P1の壁面を取囲
むようにNPNトランジスタのベース領域Bに隣接して
形成され、それぞれの引出電極としてD1〜D4が設け
られる6本実雄側によれば、このラテラルPNP トラ
ンジスタのエミッタ領域用不純物拡散領域E1は、必要
最小限の大きさに形成された引出電極D4の直下に形成
されたボロンなどのP型不純物を高濃度にドープした多
結晶シリコン層Plがらのわずかなく50.18m)不
純物拡散で形成することができる。このようにすると、
素子分離用誘電体絶縁N r 2と多結晶シリコン層P
lとの間の領域には不必要なエミッタ領域用不純物拡散
領域E1は形成されず、不純物もシリコン酸化物などの
絶縁層中へほとんど拡散させずにすむ。
FIG. 1 is a cross-coupled pn showing an embodiment of the present invention.
1 is a cross-sectional view of a semiconductor device showing the element structure on one side of a pn memory cell. FIG. According to this embodiment, the semiconductor device of the present invention has an N+ type buried layer C1 and an N
- type semiconductor layers C2 are respectively formed, and furthermore, an emitter region E of an NPN transistor is formed on the surface thereof. and base region B are formed. Also, a high concentration impurity diffusion region E forming the emitter region of the lateral PNP transistor.
1 is formed adjacent to the base region B of the NPN transistor so as to surround the wall surface of the P-type cavity doped polycrystalline silicon layer P1, and D1 to D4 are provided as respective extraction electrodes. The impurity diffusion region E1 for the emitter region of this lateral PNP transistor is a polycrystalline silicon layer P1 doped with a P-type impurity such as boron at a high concentration, which is formed directly under the extraction electrode D4 formed to the minimum necessary size. It can be formed by impurity diffusion (50.18 m) without a small amount of debris. In this way,
Dielectric insulation N r 2 for element isolation and polycrystalline silicon layer P
An unnecessary impurity diffusion region E1 for the emitter region is not formed in the region between 1 and 1, and impurities hardly need to be diffused into the insulating layer such as silicon oxide.

第2図(a)〜(b)は本発明半導体装置のラテラルP
NP トランジスタのエミッタ領域の形成工程図で、埋
込み電極用の高ドープド多結晶シリコンP、の形成は、
まず第2図(a)が示すように素子分離用誘電体絶縁層
I2の形成前に行われる。すなわち、基板S上に垂直な
講掘りエツチングをまず行い、ついでこの溝内へP型不
純物を高濃度に添加した多結晶シリコン層P1が埋込ま
れる。つぎに、第2図(b)が示すように、埋込まれな
この多結晶シリコン層P1の一部を含むように素子分離
用誘電体絶縁層I2のための満1゜が掘られ、ついで絶
縁物質が埋設される。ここで残された多結晶シリコン層
P、は、絶縁体に接した必要最小限の大きさをもつ不純
物拡散源となるので、950℃の温度で約30分の熱処
理を行えばエミッタの不純物拡散領域E、が形成される
。以上のような構造のエミッタ拡散領域は、表面に平行
な横方向への不純物の拡散距離X1が最小限に抑えられ
るので、このマージン分をセル面積内に取、る必要がな
くなる。このためコレクタ基板間容量CC5は小さくな
り、同時にPNP )ランジスタのエミッタ・コレクタ
間容i c ebも拡散領域の縮小に伴い小さくなる。
FIGS. 2(a) and 2(b) show the lateral P of the semiconductor device of the present invention.
In the process diagram for forming the emitter region of an NP transistor, the formation of highly doped polycrystalline silicon P for the buried electrode is as follows:
First, as shown in FIG. 2(a), this is performed before forming the dielectric insulation layer I2 for element isolation. That is, vertical trench etching is first performed on the substrate S, and then a polycrystalline silicon layer P1 doped with a P-type impurity at a high concentration is buried in this trench. Next, as shown in FIG. 2(b), a full 1° area for the element isolation dielectric insulating layer I2 is dug so as to include a part of the polycrystalline silicon layer P1 that is not buried. Insulating material is buried. The remaining polycrystalline silicon layer P becomes an impurity diffusion source with the minimum required size in contact with the insulator, so heat treatment at a temperature of 950°C for about 30 minutes will diffuse the impurity into the emitter. A region E is formed. In the emitter diffusion region having the above structure, the impurity diffusion distance X1 in the lateral direction parallel to the surface is minimized, so there is no need to take this margin into the cell area. Therefore, the collector-substrate capacitance CC5 becomes smaller, and at the same time, the emitter-collector capacitance ic eb of the PNP transistor also becomes smaller as the diffusion region is reduced.

また、この拡散領域E、の少なくとも一面は素子分離用
誘電体絶縁層■2に接するように形成されるため、その
部分には接合容量は形成されず、僅かに接合部より約1
〜2桁小さい浮遊容量Csoを絶縁層■2の間につくる
だけである。従って、トランジスタ セルのスイッチン
グ動作はより一層高速化する。
Furthermore, since at least one surface of this diffusion region E is formed so as to be in contact with the dielectric insulating layer 2 for element isolation, no junction capacitance is formed in that portion, and it is slightly smaller than the junction by approximately 1.
A stray capacitance Cso that is two orders of magnitude smaller is simply created between the insulating layer (2). Therefore, the switching operation of the transistor cell becomes even faster.

第3図は本発明の他の実施例を示すクロスカップル型p
npnメモリ・セルの一方の側の素子構造を示す半導体
装置の断面図である。本実施例はNPNトランジスタの
コレクタ領域引出用のN+型不純物拡散頭域C9を前実
施例と同様な手法で形成したものである9ただし、多結
晶シリコン層に対して高濃度にドープする不純物には、
ヒ素またはリンなどのN型不純物が用いられる。この際
、不純物をドープした多結晶シリコン層は、約1000
℃と数10分の熱処理でN+埋込み層C1と同程度まで
十分に低抵抗になるが、不純物の横方向への拡散路M 
X 2は小さくほとんど拡散しない、従って、この広が
り分のマージンはほとんど不要となり、セル面積を縮小
化することができ、コレクタ・基板間容jiccsも減
少せしめ得る。
FIG. 3 shows a cross-coupled p
1 is a cross-sectional view of a semiconductor device showing the element structure on one side of an npn memory cell. FIG. In this example, an N+ type impurity diffusion head region C9 for leading out the collector region of an NPN transistor is formed using the same method as in the previous example. teeth,
N-type impurities such as arsenic or phosphorus are used. At this time, the impurity-doped polycrystalline silicon layer has approximately 1000
℃ for several tens of minutes, the resistance becomes sufficiently low to the same level as the N+ buried layer C1, but the impurity diffusion path M in the lateral direction
X2 is small and hardly diffuses, so a margin for this spread is almost unnecessary, the cell area can be reduced, and the collector-substrate volume jiccs can also be reduced.

以上はクロスカップル型pnpnメモリ・セルに実施し
た場合を説明したが、不純物拡散領域が素子分離用誘電
体絶縁層に接する構造の素子であれば本発明を容易に実
施することが可能である。
Although the case where the present invention is implemented in a cross-coupled pnpn memory cell has been described above, the present invention can be easily implemented in any element having a structure in which the impurity diffusion region is in contact with a dielectric insulating layer for element isolation.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、素子間分
離用誘電体絶縁層に接して形成される、例えば、メモリ
・セル素子の不純物拡散領域が埋込み低抵抗導体層と、
その周囲にこれを拡散源としてわずかに形成された不純
物拡散領域から成るので、拡散領域の深さの大小に関係
なく半導体表面に水平な横方向への不純物拡散層の拡が
りを著しく抑制することができる。従ってこの拡がり分
をマージンとして素子面積内に含めなくてすむので1、
素子面積を縮小化することができ、また高集積化するこ
とができる。さらに、素子面積の減少は、埋込みコレク
タ・基板内の接合容量および不純物拡散領域周辺に形成
される接合面積も減少できるため、デバイスのスイッチ
ング速度及び回路動作を高速化することが可能である。
As described in detail above, according to the present invention, the impurity diffusion region of, for example, a memory cell element formed in contact with a dielectric insulating layer for element isolation is a buried low-resistance conductor layer.
Since it consists of a small impurity diffusion region formed around it using this as a diffusion source, it is possible to significantly suppress the spread of the impurity diffusion layer in the lateral direction horizontal to the semiconductor surface, regardless of the depth of the diffusion region. can. Therefore, this expansion does not need to be included in the element area as a margin, so 1.
The device area can be reduced and the device can be highly integrated. Furthermore, since the reduction in element area also reduces the junction capacitance in the buried collector/substrate and the junction area formed around the impurity diffusion region, it is possible to increase the switching speed and circuit operation of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すクロスカップル型pn
pnメモリ・セルの一方の側の素子構造を示す半導体装
置の断面図、第2図(a)〜(b)は本発明半導体装置
のラテラルPNPトランジスタのエミッタ領域の形成工
程図、第3図は本発明の他の実施例を示すクロスカップ
ル型pnpnメモリ・セルの一方の側の素子構造を示す
半導体装置の断面図、第4図および第5図はそれぞれ従
来のクロスカップル型pnpnメモリセルの等価回路図
およびその一方の側の素子構造を示す半導体装置の断面
図である。 S・・P型半導体基板、C1・・・N+型埋込み半導体
層、C2・・・N−型半導体層、C3・・・N+型不純
物拡散領域、B・・・NPN)−ランジスタのベース領
域、Eo・・・NPN)ランジスタのエミッタ領域、E
l・・・PNPhランジスタのエミッタ領域を形成する
高濃度不純物拡散領域、Pl・・・P型窩ドープド多結
晶シリコン層、■1・・・絶縁保護膜、■2・・・素子
分離用誘電体絶縁層、D1〜D4・・・引出電極、X、
、X2・・・拡散距離。 X2紘常距緘 第3図 第2図
FIG. 1 is a cross-coupled pn showing an embodiment of the present invention.
A cross-sectional view of a semiconductor device showing the element structure on one side of a pn memory cell, FIGS. 2(a) and 2(b) are process diagrams for forming the emitter region of a lateral PNP transistor of the semiconductor device of the present invention, and FIG. A cross-sectional view of a semiconductor device showing an element structure on one side of a cross-coupled pnpn memory cell showing another embodiment of the present invention, FIGS. 4 and 5 are equivalent to a conventional cross-coupled pnpn memory cell, respectively. FIG. 2 is a cross-sectional view of a semiconductor device showing a circuit diagram and an element structure on one side thereof. S...P type semiconductor substrate, C1...N+ type buried semiconductor layer, C2...N- type semiconductor layer, C3...N+ type impurity diffusion region, B...NPN)-base region of transistor, Eo...NPN) Emitter region of transistor, E
l... High concentration impurity diffusion region forming the emitter region of the PNPh transistor, Pl... P-type cavity doped polycrystalline silicon layer, ■1... Insulating protective film, ■2... Dielectric material for element isolation Insulating layer, D1 to D4... Leading electrode, X,
, X2...Diffusion distance. X2 Hirototo distance Figure 3 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  半導体基板表面に形成される半導体素子を相互に分離
する素子間分離用誘電体絶縁層に隣接してN型またはP
型の不純物拡散領域を形成する半導体装置において、前
記不純物拡散領域は前記誘電体絶縁層に側面の一つを完
全に接する高ドープの埋込み多結晶シリコン層と該多結
晶シリコン層からの熱拡散で形成される多結晶シリコン
層表面近傍の高濃度不純物領域とから形成されているこ
とを特徴とする半導体装置。
An N type or P
In a semiconductor device in which a type of impurity diffusion region is formed, the impurity diffusion region is formed by thermal diffusion from a highly doped buried polycrystalline silicon layer that completely contacts one side surface of the dielectric insulating layer and the polycrystalline silicon layer. 1. A semiconductor device comprising a high concentration impurity region near the surface of a polycrystalline silicon layer to be formed.
JP63258668A 1988-10-13 1988-10-13 Semiconductor device Pending JPH02105456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63258668A JPH02105456A (en) 1988-10-13 1988-10-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63258668A JPH02105456A (en) 1988-10-13 1988-10-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02105456A true JPH02105456A (en) 1990-04-18

Family

ID=17323440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63258668A Pending JPH02105456A (en) 1988-10-13 1988-10-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02105456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161655A (en) * 1990-08-13 1992-11-10 Oiles Corporation Vibration energy absorbing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161655A (en) * 1990-08-13 1992-11-10 Oiles Corporation Vibration energy absorbing apparatus

Similar Documents

Publication Publication Date Title
US4323913A (en) Integrated semiconductor circuit arrangement
JPS61210662A (en) Semiconductor structural body
JPH07326773A (en) Diode and its preparation
US4717677A (en) Fabricating a semiconductor device with buried oxide
US5397912A (en) Lateral bipolar transistor
KR920010595B1 (en) Vertical bipolar transistor and its manufacturing method
JPH06216144A (en) Bipolar transistor
EP0034341B1 (en) Method for manufacturing a semiconductor device
JPH02105456A (en) Semiconductor device
JPS6323335A (en) Isolation and substrate connection for bipolar integrated circuit
JPH10189755A (en) Semiconductor device and its manufacturing method
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JPS60105265A (en) Manufacture of complementary type semiconductor device
KR100262802B1 (en) Integrated injection logic device application of a lateral bipolar transistor
JPH0436578B2 (en)
JP2638431B2 (en) Bipolar transistor
JP3186057B2 (en) Method of manufacturing bipolar IC and junction capacitor of bipolar IC
KR940005448B1 (en) Manufacturing method of bipolar npn transistor
JPH0574790A (en) Semiconductor device and manufacture thereof
JPH0638484B2 (en) Semiconductor memory device
JPH08321553A (en) Manufacture of semiconductor device
JPH08222576A (en) Bipolar transistor and its manufacture
JPS63138764A (en) Semiconductor integrated circuit and manufacture thereof
JPH0426222B2 (en)
JPH118252A (en) Manufacture of semiconductor device