JPS6348189B2 - - Google Patents

Info

Publication number
JPS6348189B2
JPS6348189B2 JP55109527A JP10952780A JPS6348189B2 JP S6348189 B2 JPS6348189 B2 JP S6348189B2 JP 55109527 A JP55109527 A JP 55109527A JP 10952780 A JP10952780 A JP 10952780A JP S6348189 B2 JPS6348189 B2 JP S6348189B2
Authority
JP
Japan
Prior art keywords
region
semiconductor region
semiconductor
power transistor
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55109527A
Other languages
Japanese (ja)
Other versions
JPS5734357A (en
Inventor
Masaru Yoneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP10952780A priority Critical patent/JPS5734357A/en
Publication of JPS5734357A publication Critical patent/JPS5734357A/en
Publication of JPS6348189B2 publication Critical patent/JPS6348189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • H01L27/0825Combination of vertical direct transistors of the same conductivity type having different characteristics,(e.g. Darlington transistors)

Description

【発明の詳細な説明】 本発明は電力用トランジスタを含む半導体集積
回路の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a semiconductor integrated circuit including a power transistor.

半導体集積回路におけるトランジスタを、PN
接合で分離した島状領域に形成し、エミツタ、ベ
ース、コレクタの各電極を半導体基板の表面から
取出した構造はよく知られている。この構造のト
ランジスタを電力用として大きな出力電流を取出
せるようにする場合、低抵抗のコレクタ領域を島
状領域の底部に埋込み、半導体基板の表面から高
濃度の不純物を拡散して埋込コレクタ領域に達す
るコレクタ引出し領域を形成する方法が一般に行
われている。しかし、半導体基板の表面にコレク
タ電極を形成する限り、コレクタ電流の電流通路
がかなり長くなり、この通路の抵抗値を下げるの
に限界がある。このため、トランジスタのコレク
タ飽和電圧VCE(sat)が大きくなり、半導体基板
内での電力損失が大きいという欠点を生じる。ま
た、コレクタ電極のためにかなりの面積を必要と
することから、半導体基板の面積(チツプサイ
ズ)が大きくなるという欠点もある。
Transistors in semiconductor integrated circuits are called PN
A structure in which the emitter, base, and collector electrodes are formed in island-like regions separated by bonding and taken out from the surface of the semiconductor substrate is well known. When a transistor with this structure is used for power purposes and can draw a large output current, a low-resistance collector region is buried at the bottom of the island-like region, and highly concentrated impurities are diffused from the surface of the semiconductor substrate to form the buried collector region. A commonly used method is to form a collector draw-out area that reaches . However, as long as the collector electrode is formed on the surface of the semiconductor substrate, the current path for the collector current becomes quite long, and there is a limit to reducing the resistance value of this path. Therefore, the collector saturation voltage V CE (sat) of the transistor becomes large, resulting in a drawback that power loss within the semiconductor substrate is large. Furthermore, since a considerable area is required for the collector electrode, there is also the disadvantage that the area of the semiconductor substrate (chip size) becomes large.

これらの欠点を解消できる構造として、デイス
クリートの電力用トランジスタと同じように半導
体基板の裏面からコレクタ電極を取出した構造が
知られている。この構造の集積回路は、第1図〜
第4図に示すように形成される。
As a structure that can overcome these drawbacks, a structure is known in which a collector electrode is taken out from the back surface of a semiconductor substrate, similar to a discrete power transistor. An integrated circuit with this structure is shown in Figs.
It is formed as shown in FIG.

即ち、まず、第1図に示す如くN+型半導体基
板1の上にエピタキシヤル成長法により高抵抗率
(比抵抗)のN型半導体領域2を形成する。次に、
領域2の複数の回路素子(ここでは、小信号トラ
ンジスタと抵抗)を作成すべき部分にP型半導体
領域3を拡散により形成する。更に、小信号トラ
ンジスタの埋込コレクタ領域となるN+型領域4
と抵抗の寄生もれ電流防止領域となるN+型領域
5とを領域3に拡散により形成する。
That is, first, as shown in FIG. 1, an N type semiconductor region 2 having high resistivity (specific resistance) is formed on an N + type semiconductor substrate 1 by epitaxial growth. next,
A P-type semiconductor region 3 is formed by diffusion in a region 2 where a plurality of circuit elements (here, small signal transistors and resistors) are to be formed. Furthermore, there is an N + type region 4 which becomes the buried collector region of the small signal transistor.
and an N + type region 5, which serves as a region for preventing parasitic leakage current of the resistor, are formed in region 3 by diffusion.

次に、第2図に示す如く領域2(但し領域3,
4,5になつた部分を含む)の上にエピタキシヤ
ル成長法により高抵抗率のN型半導体領域6を形
成する。
Next, as shown in FIG.
4 and 5), a high resistivity N-type semiconductor region 6 is formed by epitaxial growth.

次に第3図に示す如く領域6の電力用のトラン
ジスタを作成すべき部分に、電力用トランジスタ
のベース領域となるP型領域7を形成する(領域
7の先端部は領域2に達している)。また、領域
6の複数の回路素子を作成すべき部分を分離させ
るように、領域6にP型領域8を拡散により形成
する。また、領域6の複数の回路素子を作成すべ
き部分において、小信号トランジスタを作成すべ
きN型領域6aと抵抗を作成すべきN型領域6b
とを分離するために、P型領域9を拡散により形
成する。
Next, as shown in FIG. 3, a P-type region 7, which will become the base region of the power transistor, is formed in the region 6 where the power transistor is to be formed (the tip of the region 7 reaches the region 2). ). Further, a P-type region 8 is formed in the region 6 by diffusion so as to separate the portions of the region 6 where a plurality of circuit elements are to be formed. In addition, in the area 6 where a plurality of circuit elements are to be formed, an N-type area 6a where a small signal transistor is to be formed and an N-type area 6b where a resistor is to be formed.
A P-type region 9 is formed by diffusion to separate the two.

次に第4図に示す如く、電力用トランジスタの
エミツタ領域となるN+型領域10と小信号トラ
ンジスタのコレクタ引出し領域となるN+型領域
11とをそれぞれ領域7、領域6aに拡散により
形成する。次に、小信号トランジスタのベース領
域となるP型領域12と抵抗領域となるP型領域
13とをそれぞれ領域6a、領域6bに拡散によ
り形成する。さらに、電力用トランジスタのエミ
ツタ直列抵抗として作用するN+型領域14と小
信号トランジスタのエミツタ領域となるN+型領
域15を拡散により形成する。最後に、電力用ト
ランジスタのエミツタ、ベース、コレクタの各電
極16,17,18と、小信号トランジスタのエ
ミツタ、ベース、コレクタの各電極19,20,
21と、抵抗の電極22,23を形成する。半導
体基板の表面はSiO2膜24で被覆し保護してい
る。
Next, as shown in FIG. 4, an N + type region 10 which will become the emitter region of the power transistor and an N + type region 11 which will serve as the collector extraction region of the small signal transistor are formed by diffusion in the regions 7 and 6a, respectively. . Next, a P-type region 12 that will become a base region of a small signal transistor and a P-type region 13 that will become a resistance region are formed by diffusion in regions 6a and 6b, respectively. Furthermore, an N + type region 14 which acts as an emitter series resistance of a power transistor and an N + type region 15 which serves as an emitter region of a small signal transistor are formed by diffusion. Finally, the emitter, base, and collector electrodes 16, 17, and 18 of the power transistor, and the emitter, base, and collector electrodes 19, 20, and
21 and resistor electrodes 22 and 23 are formed. The surface of the semiconductor substrate is covered and protected with a SiO 2 film 24.

なお第1図〜第3図では、選択拡散のマスクな
どに使用するために形成されているSiO2膜を省
略して図示している。また第4図では、半導体集
積回路内部の各素子を接続する配線電極を省略し
て図示している。また電力用トランジスタのエミ
ツタ領域である領域10,14は複数個形成して
マルチエミツタ構造とするのが普通であるが、こ
こではシングルエミツタ構造として図示してい
る。
Note that in FIGS. 1 to 3, the SiO 2 film formed for use as a selective diffusion mask is omitted. Further, in FIG. 4, wiring electrodes connecting each element inside the semiconductor integrated circuit are omitted. Further, although it is common to form a plurality of regions 10 and 14, which are emitter regions of a power transistor, to form a multi-emitter structure, they are shown here as a single-emitter structure.

このような半導体集積回路では、領域1,2
が、その上に複数の回路素子を構成するための基
板であるとともに、電力用トランジスタのコレク
タ領域ともなる。従つて、電力用トランジスタの
コレクタ飽和電圧VCE(sat)は個別素子なみに小
さくできるし、電力用トランジスタのコレクタ電
極に要する面積によりチツプサイズが大きくなる
こともない。
In such a semiconductor integrated circuit, regions 1 and 2
This serves as a substrate on which a plurality of circuit elements are constructed, and also serves as a collector region of a power transistor. Therefore, the collector saturation voltage V CE (sat) of the power transistor can be made as small as that of an individual element, and the chip size does not increase due to the area required for the collector electrode of the power transistor.

しかし、まだ解決すべき問題が残されている。
すなわち、領域2,6はエピタキシヤル成長法で
成長させた領域を2層重ねした領域、いわゆるダ
ブルエピタキシヤル領域として形成されるのが普
通である。この場合、2層目のエピタキシヤル領
域である領域6は一層目の領域2と比べるとどう
しても結晶欠陥(転移、積層欠陥など)が多く発
生し、この結晶性の悪い領域6に電力用トランジ
スタと複数の回路素子の活性領域を形成すること
になる。この結晶性の悪さは、あまり高耐圧を要
求しない複数の回路素子には影響が少ないが、比
較的高耐圧で面積も大きい電力用トランジスタに
は影響が少なくない。電力用トランジスタでは一
般に、耐圧特性(コレクタ・ベース間電圧VCBO
コレクタ・エミツタ間電圧VCEO)が劣化する。及
び製造歩留りが低下するなどの悪影響が現われ
る。なお、高抵抗率のN型基板に長時間の高濃度
拡散を行つて領域1を形成して残部を領域2とす
る方法もあり、この方法によればダブルエピタキ
シヤル成長を行う必要はない。しかし、この場合
でも、特に半導体集積回路のように拡散を始めと
する種々の処理工程を非常に多く経る場合は、最
上層である領域6の表面付近には結晶欠陥(転
移、積層欠陥、キズなど)がかなり多く発生す
る。この領域6の表面付近の結晶性の悪さが、上
述と同様に、電力用トランジスタの耐圧特性の劣
化や製造歩留りの低下をまねいている。
However, there are still problems to be solved.
That is, regions 2 and 6 are usually formed as a so-called double epitaxial region, in which two regions grown by epitaxial growth are stacked one on top of the other. In this case, region 6, which is the epitaxial region of the second layer, inevitably has more crystal defects (dislocations, stacking faults, etc.) than region 2 of the first layer, and this region 6 with poor crystallinity is used as a power transistor. This will form active regions for a plurality of circuit elements. This poor crystallinity has little effect on a plurality of circuit elements that do not require a very high breakdown voltage, but it does have a considerable effect on power transistors that have a relatively high breakdown voltage and a large area. Power transistors generally have high breakdown voltage characteristics (collector-base voltage V CBO ,
The collector-emitter voltage ( VCEO ) deteriorates. There are also negative effects such as a decrease in manufacturing yield. Note that there is also a method of forming region 1 by performing high concentration diffusion for a long time in a high resistivity N type substrate, and forming the remaining region 2. According to this method, it is not necessary to perform double epitaxial growth. However, even in this case, crystal defects (dislocations, stacking faults, scratches, etc.) occur quite often. The poor crystallinity near the surface of the region 6 causes deterioration of the breakdown voltage characteristics of the power transistor and a decrease in manufacturing yield, as described above.

また、電力用トランジスタでは、電流集中によ
る二次破壊を防止するための安定化バランス抵抗
としてエミツタ直列抵抗を付与することが多い。
第4図の従来構造では、領域14の横方向抵抗を
利用してエミツタ直列抵抗を付与している。この
ため、領域14はある程度の面積を必要とし、そ
の分チツプサイズが大きくなるという欠点があ
る。大電流を流したとき、領域14の電流密度が
極度に大きくなり、エミツタ直列抵抗の焼損破壊
が起り易いという欠点もある。
Furthermore, in power transistors, an emitter series resistor is often provided as a stabilizing balance resistor to prevent secondary damage due to current concentration.
In the conventional structure shown in FIG. 4, the lateral resistance of region 14 is utilized to provide emitter series resistance. Therefore, region 14 requires a certain amount of area, which has the drawback of increasing the chip size accordingly. Another disadvantage is that when a large current is passed, the current density in the region 14 becomes extremely large, and the emitter series resistor is likely to be destroyed by burning.

そこで、本発明の目的は、上述の如き欠点を解
決することが可能な電力用トランジスタを含む半
導体集積回路を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor integrated circuit including a power transistor that can solve the above-mentioned drawbacks.

上記目的を達成するための本発明は、理解を容
易にするために実施例の図面第5図〜第11図の
符号を参照して説明すると、第1導電型で低抵抗
率の第1の半導体領域31と、前記第1の半導体
領域31に隣接する第1導電型で高抵抗率の第2
の半導体領域32と、その一部が前記第2の半導
体領域32で囲まれるように形成された第1導電
型とは反対の第2導電型の第3の半導体領域33
と、その一部が前記第2の半導体領域32で囲ま
れるように形成され且つ前記第3の半導体領域3
3とは分離された第2導電型の第4の半導体領域
34と、その一部が第3の半導体領域33で囲ま
れるように形成された第1導電型の第5の半導体
領域35と、少なくとも前記第2の半導体領域3
2と前記第3の半導体領域33と前記第4の半導
体領域34と前記第5の半導体領域35とを被覆
するように形成された第1導電型で高抵抗率のエ
ピタキシヤル成長層38と、前記エピタキシヤル
成長層38を貫通して前記第3の半導体領域33
に達するように形成された第2導電型の第6の半
導体領域39と、前記エピタキシヤル成長層38
の一部に基づいて少なくとも前記第5の半導体領
域35の上に設けられた第1導電型の第7の半導
体領域38aと、前記エピタキシヤル成長層38
を貫通して前記第4の半導体領域34に達すると
共に前記エピタキシヤル成長層38の一部を環状
に囲むように形成された第2導電型の第8の半導
体領域40と、前記第8の半導体領域40によつ
て囲まれた前記エピタキシヤル成長層38の一部
から成る第9の半導体領域38b,38cと、前
記第9の半導体領域38b,38cの中に形成さ
れた例えば小信号のトランジスタ、抵抗等の回路
素子と、前記第1の半導体領域31に設けられた
電力用トランジスタのコレクタ電極50と、前記
第6の半導体領域39に設けられた電力用トラン
ジスタのベース電極49と、前記第7の半導体領
域38aに接続されるように設けられた前記電力
用トランジスタのエミツタ電極48と、を具備
し、前記第1及び第2の半導体領域31,32が
前記電力用トランジスタのコレクタ領域、前記第
3の半導体領域33が前記電力用トランジスタの
ベース領域、前記第5の半導体領域35が前記電
力用トランジスタのエミツタ領域、前記第6の半
導体領域39が前記電力用トランジスタのベース
引出し領域、及び前記第7の半導体領域38aが
エミツタ直列抵抗領域として働くように構成され
た半導体集積回路に係わるものである。
To achieve the above object, the present invention will be explained with reference to the reference numerals in FIGS. 5 to 11 of the embodiment drawings for ease of understanding. a semiconductor region 31 and a second semiconductor region of a first conductivity type and high resistivity adjacent to the first semiconductor region 31;
a third semiconductor region 33 of a second conductivity type opposite to the first conductivity type formed so as to be partially surrounded by the second semiconductor region 32;
, a portion thereof is surrounded by the second semiconductor region 32 and the third semiconductor region 3
3, a fourth semiconductor region 34 of the second conductivity type separated from the third semiconductor region 3; a fifth semiconductor region 35 of the first conductivity type formed so as to be partially surrounded by the third semiconductor region 33; at least the second semiconductor region 3
2, an epitaxial growth layer 38 of a first conductivity type and high resistivity formed to cover the third semiconductor region 33, the fourth semiconductor region 34, and the fifth semiconductor region 35; The third semiconductor region 33 extends through the epitaxial growth layer 38.
a second conductivity type sixth semiconductor region 39 formed to reach the epitaxial growth layer 38;
a seventh semiconductor region 38a of the first conductivity type provided on at least the fifth semiconductor region 35 based on a portion of the epitaxial growth layer 38;
an eighth semiconductor region 40 of a second conductivity type formed to extend through the fourth semiconductor region 34 and annularly surround a part of the epitaxial growth layer 38; a ninth semiconductor region 38b, 38c consisting of a part of the epitaxial growth layer 38 surrounded by the region 40; a small signal transistor, for example, formed in the ninth semiconductor region 38b, 38c; A circuit element such as a resistor, a collector electrode 50 of a power transistor provided in the first semiconductor region 31, a base electrode 49 of a power transistor provided in the sixth semiconductor region 39, and the seventh an emitter electrode 48 of the power transistor provided to be connected to the semiconductor region 38a of the power transistor, and the first and second semiconductor regions 31 and 32 are connected to the collector region of the power transistor and the emitter electrode 48 of the power transistor The third semiconductor region 33 is a base region of the power transistor, the fifth semiconductor region 35 is an emitter region of the power transistor, the sixth semiconductor region 39 is a base lead-out region of the power transistor, and the fifth semiconductor region 35 is an emitter region of the power transistor. This example relates to a semiconductor integrated circuit in which the semiconductor region 38a of No. 7 functions as an emitter series resistance region.

上記本発明によれば、電力用トランジスタの活
性領域が半導体基板の表面から遠ざけられて形成
されているので、半導体基板の表面付近に発生し
易い結晶欠陥の悪影響が軽減され、電力用トラン
ジスタの耐圧特性の劣化や製造歩留りの低下とい
つた不利益が減少する。また、電力用トランジス
タのエミツタ直列抵抗を形成するために余分な面
積を必要としないことから、チツプサイズの節約
となる。さらに、このエミツタ直列抵抗は電流容
量が大きく、エミツタ直列抵抗の焼損破壊が起り
難い。
According to the present invention, since the active region of the power transistor is formed away from the surface of the semiconductor substrate, the adverse effects of crystal defects that are likely to occur near the surface of the semiconductor substrate are reduced, and the breakdown voltage of the power transistor is reduced. Disadvantages such as deterioration of characteristics and reduction in manufacturing yield are reduced. Additionally, no extra area is required to form the emitter series resistor of the power transistor, resulting in chip size savings. Furthermore, this emitter series resistor has a large current capacity, so that burnout and destruction of the emitter series resistor is unlikely to occur.

以下、第5図〜第11図を参照して本発明の実
施例に係わる集積回路の製造方法及び構造につい
て述べる。
Hereinafter, a method and structure for manufacturing an integrated circuit according to an embodiment of the present invention will be described with reference to FIGS. 5 to 11.

第5図〜第11図は半導体シリコン基板を使用
して電力用トランジスタを含む集積回路を形成す
る際の各工程に於ける断面を示すものである。ま
ず第5図に示す如く、厚さ約250μmのN+型(第
1導電型)基板から成る第1の半導体領域31の
上にエピタキシヤル成長法により燐を軽くドープ
したN型の第2の半導体領域32を形成する。こ
の第1及び第2の半導体領域31,32は、集積
回路の基板としての働きを有する他、電力用トラ
ンジスタのコレクタ領域としての働きも有する。
なお領域32の抵抗率は10〜15Ω・cmと高抵抗率
であり、厚さは約40μmである。次に、領域32
の電力用トランジスタを作成すべき部分に、電力
用トランジスタのベース領域となるP型(第2導
電型)の第3の半導体領域33を形成する。ま
た、領域32の複数の回路素子(通常はトランジ
スタ、ダイオード、抵抗など多数の回路素子を形
成するが、ここでは説明を簡略化するために小信
号トランジスタ1個と抵抗1個の簡単な例とす
る。)を形成すべき部分にP型の第4の半導体領
域34を形成する。領域33と34はP型不純物
である硼素を領域32の表面より拡散して同時に
形成しており、表面不純物濃度は約1×
1016atoms/cm3、深さは約10μmである。なお、
領域33の真下の領域31,32およびこれらの
周辺領域が電力用トランジスタのコレクタ領域と
なる。
FIGS. 5 to 11 show cross sections at various steps in forming an integrated circuit including power transistors using a semiconductor silicon substrate. First, as shown in FIG. 5, a second N - type semiconductor region 31 lightly doped with phosphorus is grown by epitaxial growth on a first semiconductor region 31 made of an N + type (first conductivity type) substrate with a thickness of approximately 250 μm. A semiconductor region 32 is formed. The first and second semiconductor regions 31 and 32 not only function as a substrate for an integrated circuit, but also function as a collector region of a power transistor.
Note that the resistivity of the region 32 is as high as 10 to 15 Ω·cm, and the thickness is about 40 μm. Next, area 32
A P-type (second conductivity type) third semiconductor region 33, which will become a base region of the power transistor, is formed in the portion where the power transistor is to be formed. In addition, a plurality of circuit elements in the region 32 (usually a large number of circuit elements such as transistors, diodes, and resistors are formed, but to simplify the explanation, we will use a simple example of one small signal transistor and one resistor). ) is to be formed, a P-type fourth semiconductor region 34 is formed. Regions 33 and 34 are formed simultaneously by diffusing boron, which is a P-type impurity, from the surface of region 32, and the surface impurity concentration is approximately 1×.
10 16 atoms/cm 3 , and the depth is approximately 10 μm. In addition,
Regions 31 and 32 directly below region 33 and their surrounding regions become collector regions of the power transistor.

次に、第6図に示す如く、電力用トランジスタ
のエミツタ領域となるN+型の第5の半導体領域
35を領域33の中に形成する。また、小信号ト
ランジスタの埋込コレクタ領域となるN+型半導
体領域36と抵抗の寄生もれ電流防止領域となる
N+型半導体領域37を領域34の中に形成する。
領域35,36,37はN型不純物であるアンチ
モンまたは砒素を領域33あるいは34の表面よ
り拡散して同時に形成しており、表面不純物濃度
は約8+1019atoms/cm3深さは約5μmである。
Next, as shown in FIG. 6, a fifth N + type semiconductor region 35 is formed in the region 33 to serve as the emitter region of the power transistor. Also, the N + type semiconductor region 36 becomes the buried collector region of the small signal transistor and the region to prevent parasitic leakage current of the resistor.
An N + type semiconductor region 37 is formed within region 34.
Regions 35, 36, and 37 are simultaneously formed by diffusing antimony or arsenic, which is an N-type impurity, from the surface of region 33 or 34, and the surface impurity concentration is approximately 8+10 19 atoms/cm 3 and the depth is approximately 5 μm. .

次に第7図に示す如く、領域32〜37の上に
エピタキシヤル成長法により燐を軽くドープした
N型のエピタキシヤル成長層から成る領域38を
形成する。このエピタキシヤル成長層から成る領
域38の抵抗率は約10〜15Ω・cmと高抵抗率であ
り、厚さは約12μmである。
Next, as shown in FIG. 7, a region 38 consisting of an N-type epitaxial growth layer lightly doped with phosphorous is formed on the regions 32 to 37 by an epitaxial growth method. The region 38 made of this epitaxially grown layer has a high resistivity of about 10 to 15 Ω·cm, and has a thickness of about 12 μm.

次に第8図に示す如く、電力用トランジスタの
ベース領域となる第3の半導体領域33に連結し
てベース引出し領域となるP型の第6の半導体領
域39を領域に形成する。領域39は、電力用ト
ランジスタのエミツタ直列抵抗領域となるN型の
第7の半導体領域38aを環状に包囲して、領域
38aを電力用トランジスタのコレクタ領域から
絶縁分離している。また、第4の半導体領域34
と連結して分離領域となるP型の第8の半導体領
域40,41を領域38に形成する。領域40
は、領域38のうちの複数の回路素子を作成すべ
き部分を環状包囲して、この部分を電力用トラン
ジスタのコレクタ領域から絶縁分離している。領
域41は小信号トランジスタを作成すべきN型の
第9の半導体領域38bと抵抗を作成すべき領域
38cとを絶縁分離している。領域39,40,
41は、P型不純物である硼素を領域38の表面
より拡散して同時に形成しており、表面不純物濃
度は約1×1019atoms/cm3、深さは約10μm(領
域33,34が上方に拡大するため、領域38の
厚さより少し浅くともよい)である。
Next, as shown in FIG. 8, a P-type sixth semiconductor region 39 is formed to be connected to the third semiconductor region 33 to be a base region of the power transistor and to be a base lead-out region. The region 39 annularly surrounds the N-type seventh semiconductor region 38a, which serves as the emitter series resistance region of the power transistor, and isolates the region 38a from the collector region of the power transistor. Further, the fourth semiconductor region 34
Eighth P-type semiconductor regions 40 and 41 are formed in the region 38 to be connected to and serve as isolation regions. area 40
In this embodiment, a portion of the region 38 where a plurality of circuit elements are to be formed is surrounded in an annular shape, and this portion is insulated and isolated from the collector region of the power transistor. The region 41 insulates and isolates the N-type ninth semiconductor region 38b in which a small signal transistor is to be formed and the region 38c in which a resistor is to be formed. Area 39, 40,
41 is simultaneously formed by diffusing boron, which is a P-type impurity, from the surface of region 38, and the surface impurity concentration is approximately 1×10 19 atoms/cm 3 and the depth is approximately 10 μm (regions 33 and 34 are located above). (It may be slightly shallower than the thickness of the region 38 in order to expand the thickness of the region 38.)

次に、第9図に示す如く、エミツタ電極接続領
域となるN+型の第10の半導体領域42と、領域
39から領域38aへ注入される正孔電流を減少
させるように作用するN+型の第11の半導体領域
43とを領域38aに形成する。また、領域38
bに小信号トランジスタのコレクタ引出し領域と
なるN+型の半導体領域44を形成する。尚領域
42は島状に分散して形成する。領域43は領域
39の表面側の部分に隣接している。領域42,
43,44はN型不純物である燐を領域38の表
面より拡散して同時に形成しており、表面不純物
濃度は約1×1020atoms/cm3、深さは約5μmであ
る。
Next, as shown in FIG. 9, there is formed a tenth N + type semiconductor region 42 which serves as an emitter electrode connection region, and an N + type which acts to reduce the hole current injected from the region 39 to the region 38a. An eleventh semiconductor region 43 is formed in the region 38a. Also, area 38
An N + type semiconductor region 44 is formed at b to serve as a collector lead-out region of a small signal transistor. Note that the regions 42 are formed in a dispersed manner in the form of islands. Region 43 is adjacent to the surface side portion of region 39 . area 42,
43 and 44 are simultaneously formed by diffusing phosphorus, which is an N-type impurity, from the surface of the region 38, and the surface impurity concentration is about 1×10 20 atoms/cm 3 and the depth is about 5 μm.

次に第10図に示す如く、領域38bに小信号
トランジスタのベース領域となるP型半導体領域
45を形成する。また、領域38cに抵抗領域と
なるP型領域46を形成する。領域45,46は
P型不純物である硼素を領域38の表面より拡散
して同時に形成しており、表面不純物濃度は約5
×1018atoms/cm3、深さは約3μmである。
Next, as shown in FIG. 10, a P-type semiconductor region 45, which will become the base region of the small signal transistor, is formed in the region 38b. Further, a P-type region 46 which becomes a resistance region is formed in the region 38c. Regions 45 and 46 are simultaneously formed by diffusing boron, which is a P-type impurity, from the surface of region 38, and the surface impurity concentration is approximately 5.
×10 18 atoms/cm 3 , and the depth is approximately 3 μm.

次に、第11図に示す如く、領域45の表面よ
りN型不純物である燐を拡散して、領域45に小
信号トランジスタのエミツタ領域となるN+型領
域47を形成する。領域47の表面不純物濃度は
約1×1020atoms/cm3、深さは約1.5μmである。
次に、第1の半導体領域31に電力用トランジス
タのコレクタ電極50、第6の半導体領域39に
電力用トランジスタのベース電極49、第7の半
導体領域38aと第10の半導体領域42との上に
電力用トランジスタのエミツタ電極48、小信号
トランジスタのエミツタ、ベース、コレクタの各
電極51,52,53、及び抵抗の電極54,5
5をアルミニウムの蒸着によりそれぞれ形成す
る。半導体基板の表面はSiO2膜56で被覆し保
護されている。なお、第5図〜第11図では、選
択拡散マスクなどに使用するために形成されてい
るSiO2膜を省略して図示している。また第11
図では、半導体集積回路内部の各素子を接続する
配線電極を省略して図示している。
Next, as shown in FIG. 11, phosphorus, which is an N type impurity, is diffused from the surface of the region 45 to form an N + type region 47 in the region 45, which will become the emitter region of the small signal transistor. The surface impurity concentration of the region 47 is about 1×10 20 atoms/cm 3 and the depth is about 1.5 μm.
Next, the collector electrode 50 of the power transistor is placed on the first semiconductor region 31, the base electrode 49 of the power transistor is placed on the sixth semiconductor region 39, and the electrode is placed on the seventh semiconductor region 38a and the tenth semiconductor region 42. The emitter electrode 48 of the power transistor, the emitter, base, and collector electrodes 51, 52, 53 of the small signal transistor, and the resistor electrodes 54, 5
5 are formed by vapor deposition of aluminum. The surface of the semiconductor substrate is covered and protected with a SiO 2 film 56. Note that in FIGS. 5 to 11, the SiO 2 film formed for use as a selective diffusion mask or the like is omitted. Also the 11th
In the figure, wiring electrodes connecting each element inside the semiconductor integrated circuit are omitted.

上述のように半導体集積回路を構成することに
よつて次の利点が得られる。
By configuring the semiconductor integrated circuit as described above, the following advantages can be obtained.

(a) 電力用トランジスタの活性領域の主要部分
は、ダブルエピタキシヤル領域の1層目である
第2の半導体領域32に形成され、最終的に表
面領域になるダブルエピタキシヤル領域の2層
目であるエピタキシヤル成長層から成る領域3
8には形成されず、このエピタキシヤル成長層
から成る領域38は、電力用トランジスタに関
しては主としてエミツタ直列抵抗を得るための
第7の半導体領域38aとして使用されてい
る。したがつて、エピタキシヤル成長層から成
る領域38に多く発生してしまう結晶欠陥が電
力用トランジスタの耐圧劣化や製造歩留りの低
下といつた不利益に結びつく確率が大幅に減少
した。その結果、電力用高耐圧トランジスタを
含む半導体集積回路を製造歩留りよく製造する
ことが可能となつた。
(a) The main part of the active region of the power transistor is formed in the second semiconductor region 32, which is the first layer of the double epitaxial region, and is formed in the second layer of the double epitaxial region, which will eventually become the surface region. Region 3 consisting of a certain epitaxially grown layer
The region 38 made of this epitaxially grown layer, which is not formed in the epitaxial layer 8, is mainly used as a seventh semiconductor region 38a for obtaining an emitter series resistance with respect to the power transistor. Therefore, the probability that crystal defects, which occur in large numbers in the region 38 made of the epitaxially grown layer, will lead to disadvantages such as deterioration of the breakdown voltage of the power transistor and reduction in manufacturing yield is greatly reduced. As a result, it has become possible to manufacture semiconductor integrated circuits including high-voltage transistors for power use with a high manufacturing yield.

(b) 電力用トランジスタのエミツタ直列抵抗領域
である領域38aはエミツタ領域である領域3
5の上部にあり、エミツタ直列抵抗は領域38
aの縦方向のバルク抵抗を利用している。この
ため、電力用トランジスタにエミツタ直列抵抗
を付与したことによりチツプサイズが大きくな
ることはなく、チツプサイズ増大に基づくコス
トアツプや製造歩留りの低下といつた問題もな
い。
(b) Region 38a, which is the emitter series resistance region of the power transistor, is region 3, which is the emitter region.
5 and the emitter series resistance is in area 38
The vertical bulk resistance of a is used. Therefore, adding an emitter series resistor to the power transistor does not increase the chip size, and there are no problems such as increased costs or decreased manufacturing yield due to increased chip size.

(c) 電力用トランジスタのエミツタ直列抵抗を流
れる電流の通路が領域38aのほゞ全域(全横
断面)に渡つている。したがつて、エミツタ直
列抵抗の電流容量が大きく、エミツタ直列抵抗
の焼損事故が起り難い。なお、高抵抗率の領域
38aにエミツタ電極48を低抵抗接続するた
めに、電極接続領域として低抵抗率領域を形成
するのは通常行われる手段である。上記実施例
では、エミツタ電極接続領域として、第7の半
導体領域38aの表面側にN+型(第1導電型)
で低抵抗率の複数の第10の半導体領域42が島
状に分散配置している。この場合、エミツタ直
列抵抗は、領域42の先端部と領域35の間の
領域38aの持つバルク抵抗を利用することに
なり、領域42が領域38aに分散配置されて
いることから、エミツタ直列抵抗が領域38a
に分配配置されることになる。したがつて、エ
ミツタ直列抵抗領域である領域38aに電流が
分散して流れることになり、エミツタ直列抵抗
は一層焼損し難くなつている。しかも、この電
流分散の効果は、エミツタ領域である領域35
からベース領域である領域33に流れる電流を
集中させない方向に作用するため、電力用トラ
ンジスタの二次破壊耐量が向上するという利点
も生んでいる。
(c) The path of the current flowing through the emitter series resistor of the power transistor extends over substantially the entire area (entire cross section) of the region 38a. Therefore, the current capacity of the emitter series resistor is large, and a burnout accident of the emitter series resistor is unlikely to occur. Note that in order to connect the emitter electrode 48 to the high resistivity region 38a with low resistance, it is a common practice to form a low resistivity region as an electrode connection region. In the above embodiment, an N + type (first conductivity type) is provided on the surface side of the seventh semiconductor region 38a as the emitter electrode connection region.
A plurality of tenth semiconductor regions 42 having low resistivity are arranged in a dispersed manner in the form of islands. In this case, the emitter series resistance uses the bulk resistance of the region 38a between the tip of the region 42 and the region 35, and since the region 42 is distributed in the region 38a, the emitter series resistance Area 38a
It will be distributed and arranged. Therefore, the current flows in a distributed manner in the region 38a, which is the emitter series resistance region, and the emitter series resistance becomes more difficult to burn out. Moreover, the effect of this current dispersion is
Since it acts in a direction that prevents the current flowing from the base region to the region 33, which is the base region, to concentrate, there is also an advantage that the secondary breakdown resistance of the power transistor is improved.

(d) 電力用トランジスタのベース引出し領域であ
る領域39とエミツタ直列抵抗領域である領域
38aの境界即ち第7の半導体領域38aの表
面側であつて第6の半導体領域39と隣接する
部分に形成された第11の半導体領域43は、領
域39から領域38aへ注入される正孔(領域
39の多数キヤリア)による電流を減少させ、
電力用トランジスタの電流増幅率hFEのリニア
リテイを改善する役目を果している。領域43
が存在しないと、拡散による不純物濃度が高い
領域39の表面近傍から低不純物濃度の領域3
8aに注入される正孔電流が大きくなり、この
正孔電流のベース電流に占める割合が低電流領
域で大きいため、低電流領域でのhFEが低下し
てhFEのリニアリテイが悪くなる。領域39の
下部の方は拡散による不純物濃度がかなり低く
なつているので、そこから領域38aに注入さ
れる正孔電流は少ない。したがつて、領域39
の下部の方まで領域43が延在していなくても
実用上問題はない。
(d) Formed at the boundary between the region 39 that is the base extraction region of the power transistor and the region 38a that is the emitter series resistance region, that is, on the surface side of the seventh semiconductor region 38a and adjacent to the sixth semiconductor region 39. The eleventh semiconductor region 43 reduced in current due to holes (majority carriers in the region 39) injected from the region 39 to the region 38a,
It plays a role in improving the linearity of the current amplification factor h FE of the power transistor. area 43
If there is no impurity concentration, the region 39 with a low impurity concentration will be moved from near the surface of the region 39 with a high impurity concentration due to diffusion.
The hole current injected into 8a becomes large and the proportion of this hole current in the base current is large in the low current region, so h FE in the low current region decreases and the linearity of h FE deteriorates. Since the impurity concentration due to diffusion is considerably lower in the lower part of the region 39, the hole current injected from there into the region 38a is small. Therefore, area 39
There is no practical problem even if the region 43 does not extend to the bottom of the screen.

(e) 第5図〜第11図で説明した製造方法では、
領域33と34、領域35と36と37、領域
39と40と41を同時に形成するので、半導
体集積回路を合理的に製造することが可能にな
る。
(e) In the manufacturing method explained in FIGS. 5 to 11,
Since regions 33 and 34, regions 35, 36 and 37, and regions 39, 40 and 41 are formed at the same time, it becomes possible to rationally manufacture a semiconductor integrated circuit.

以上、実施例について説明したが、本発明はこ
の実施例に限定されることなく、本発明の趣旨を
逸脱しない範囲で種々の変更が可能である。例え
ば、電力用トランジスタを、マルチエミツタ構造
としたり、ダーリントン接続された2個のトラン
ジスタとしてもよい。また不純物を拡散して形成
した領域を、不純物をイオン注入法でイオンを打
込んで形成するようにしてもよい。また各領域の
抵抗率や不純物濃度および寸法等を所望の特性に
応じて種々変更してもよい。また、電力用トラン
ジスタのコレクタ高抵抗領域となる第2の半導体
領域32はエピタキシヤル成長法で形成するのが
普通で、この場合に本発明の効果が顕著である。
しかし、高抵抗率の半導体基板に電力用トランジ
スタのコレクタ低抵抗領域となる第1の半導体領
域31を拡散により形成して残部を第2の半導体
領域32としても本発明の効果は十分に発揮され
る。
Although the embodiments have been described above, the present invention is not limited to these embodiments, and various changes can be made without departing from the spirit of the invention. For example, the power transistor may have a multi-emitter structure, or may have two transistors connected in a Darlington connection. Alternatively, the region formed by diffusing impurities may be formed by implanting impurity ions using an ion implantation method. Further, the resistivity, impurity concentration, dimensions, etc. of each region may be variously changed depending on desired characteristics. Further, the second semiconductor region 32, which serves as the collector high resistance region of the power transistor, is usually formed by epitaxial growth, and the effects of the present invention are significant in this case.
However, even if the first semiconductor region 31, which serves as the collector low resistance region of the power transistor, is formed on a high resistivity semiconductor substrate by diffusion, and the remaining region is used as the second semiconductor region 32, the effects of the present invention will not be sufficiently exhibited. Ru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、及び第4図は、従来
の集積回路の各製造工程の状態を示す断面図、第
5図、第6図、第7図、第8図、第9図、第10
図、及び第11図は本発明の1実施例に係わる集
積回路の各製造工程の状態を示す断面図である。 尚図面に用いられている符号に於いて、31は
第1の半導体領域、32は第2の半導体領域、3
3は第2の半導体領域、34は第4の半導体領
域、35は第5の半導体領域、38はエピタキシ
ヤル成長層、38aは第7の半導体領域、40は
第8の半導体領域、38b,38cは第9の半導
体領域である。
1, 2, 3, and 4 are cross-sectional views showing the state of each manufacturing process of conventional integrated circuits, and FIG. 5, FIG. 6, FIG. 7, FIG. 8, and FIG. Figures 9 and 10
11 and 11 are cross-sectional views showing states of each manufacturing process of an integrated circuit according to an embodiment of the present invention. In the reference symbols used in the drawings, 31 is the first semiconductor region, 32 is the second semiconductor region, and 3 is the first semiconductor region.
3 is a second semiconductor region, 34 is a fourth semiconductor region, 35 is a fifth semiconductor region, 38 is an epitaxial growth layer, 38a is a seventh semiconductor region, 40 is an eighth semiconductor region, 38b, 38c is the ninth semiconductor region.

Claims (1)

【特許請求の範囲】 1 第1導電型で低抵抗率の第1の半導体領域3
1と、 前記第1の半導体領域31に隣接する第1導電
型で高抵抗率の第2の半導体領域32と、 その一部が前記第2の半導体領域32で囲まれ
るように形成された第1導電型とは反対の第2導
電型の第3の半導体領域33と、 その一部が前記第2の半導体領域32で囲まれ
るように形成され且つ前記第3の半導体領域33
とは分離された第2導電型の第4の半導体領域3
4と、 その一部が第3の半導体領域33で囲されるよ
うに形成された第1導電型の第5の半導体領域3
5と、 少なくとも前記第2の半導体領域32と前記第
3の半導体領域33と前記第4の半導体領域34
と前記第5の半導体領域35とを被覆するように
形成された第1導電型で高抵抗率のエピタキシヤ
ル成長層38を貫通して前記第3の半導体領域3
3に達するように形成された第2導電型の第6の
半導体領域39と、 前記エピタキシヤル成長層38の一部に基づい
て少なくとも前記第5の半導体領域35の上に設
けられた第1導電型の第7の半導体領域38a
と、 前記エピタキシヤル成長層38を貫通して前記
第4の半導体領域34に達すると共に前記エピタ
キシヤル成長層38の一部を環状に囲むように形
成された第2導電型の第8の半導体領域40と、 前記第8の半導体領域40によつて囲まれた前
記エピタキシヤル成長層38の一部から成る第9
の半導体領域と、 前記第9の半導体領域の中に形成された半導体
回路素子と、 前記第1の半導体領域31に設けられた電力用
トランジスタのコレクタ電極50と、 前記第6の半導体領域39に設けられた電力用
トランジスタのベース電極49と、 前記第7の半導体領域38aに接続されるよう
に設けられた前記電力用トランジスタのエミツタ
電極48と、 を具備し、前記第1及び第2の半導体領域31,
32が前記電力用トランジスタのコレクタ領域、
前記第3の半導体領域33が前記電力用トランジ
スタのベース領域、前記第5の半導体領域35が
前記電力用トランジスタのエミツタ領域、前記第
6の半導体領域39が前記電力用トランジスタの
ベース引出し領域、及び前記第7の半導体領域3
8aがエミツタ直列抵抗領域として働くように構
成された半導体集積回路。 2 前記第2の半導体領域32はエピタキシヤル
成長法で形成された領域である特許請求の範囲第
1項記載の半導体集積回路。 3 前記第7の半導体領域38aは、その表面側
に、前記エミツタ電極48に接続され且つ島状に
分散された複数個の第1導電型で低抵抗率の領域
42を有するものである特許請求の範囲第1項又
は第2項記載の半導体集積回路。 4 前記第7の半導体領域38aは、その表面側
において前記第6の半導体領域39と隣接する部
分に、第1導電型で低抵抗率の領域43を有する
ものである特許請求の範囲第1項又は第2項又は
第3項記載の半導体集積回路。
[Claims] 1. First semiconductor region 3 of first conductivity type and low resistivity.
1, a second semiconductor region 32 of a first conductivity type and high resistivity adjacent to the first semiconductor region 31, and a second semiconductor region 32 formed so as to be partially surrounded by the second semiconductor region 32. a third semiconductor region 33 of a second conductivity type opposite to the first conductivity type; a third semiconductor region 33 formed so as to be partially surrounded by the second semiconductor region 32;
a fourth semiconductor region 3 of the second conductivity type separated from the
4, and a fifth semiconductor region 3 of the first conductivity type formed so as to be partially surrounded by the third semiconductor region 33.
5, and at least the second semiconductor region 32, the third semiconductor region 33, and the fourth semiconductor region 34.
The third semiconductor region 3 is formed by penetrating the first conductivity type and high resistivity epitaxial growth layer 38 formed to cover the third semiconductor region 35 and the fifth semiconductor region 35 .
a sixth semiconductor region 39 of the second conductivity type formed so as to reach 3; and a first conductivity type provided on at least the fifth semiconductor region 35 based on a part of the epitaxial growth layer 38; seventh semiconductor region 38a of the mold
and an eighth semiconductor region of a second conductivity type formed to penetrate through the epitaxial growth layer 38 to reach the fourth semiconductor region 34 and to annularly surround a part of the epitaxial growth layer 38. 40, and a ninth region comprising a portion of the epitaxial growth layer 38 surrounded by the eighth semiconductor region 40.
a semiconductor region formed in the ninth semiconductor region, a collector electrode 50 of a power transistor provided in the first semiconductor region 31, and a semiconductor circuit element formed in the ninth semiconductor region 39; a base electrode 49 of a power transistor provided; and an emitter electrode 48 of the power transistor provided so as to be connected to the seventh semiconductor region 38a; Area 31,
32 is a collector region of the power transistor;
The third semiconductor region 33 is a base region of the power transistor, the fifth semiconductor region 35 is an emitter region of the power transistor, the sixth semiconductor region 39 is a base extraction region of the power transistor, and Said seventh semiconductor region 3
A semiconductor integrated circuit configured such that 8a acts as an emitter series resistance region. 2. The semiconductor integrated circuit according to claim 1, wherein the second semiconductor region 32 is a region formed by an epitaxial growth method. 3. The seventh semiconductor region 38a has, on its surface side, a plurality of regions 42 of the first conductivity type and low resistivity connected to the emitter electrode 48 and distributed in an island shape. The semiconductor integrated circuit according to the range 1 or 2. 4. The seventh semiconductor region 38a has a region 43 of the first conductivity type and low resistivity in a portion adjacent to the sixth semiconductor region 39 on its surface side. Or the semiconductor integrated circuit according to item 2 or 3.
JP10952780A 1980-08-09 1980-08-09 Semiconductor integrated circuit Granted JPS5734357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10952780A JPS5734357A (en) 1980-08-09 1980-08-09 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10952780A JPS5734357A (en) 1980-08-09 1980-08-09 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS5734357A JPS5734357A (en) 1982-02-24
JPS6348189B2 true JPS6348189B2 (en) 1988-09-28

Family

ID=14512513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10952780A Granted JPS5734357A (en) 1980-08-09 1980-08-09 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5734357A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1214808B (en) * 1984-12-20 1990-01-18 Ates Componenti Elettron TICO AND SEMICONDUCTOR PROCESS FOR THE FORMATION OF A BURIED LAYER AND OF A COLLECTOR REGION IN A MONOLI DEVICE
IT1252102B (en) * 1991-11-26 1995-06-02 Cons Ric Microelettronica VERTICAL STRUCTURE MONOLITHIC SEMICONDUCTOR DEVICE WITH DEEP BASE POWER TRANSISTOR AND FINGER EMITTER WITH BALLAST RESISTANCE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141979A (en) * 1974-05-01 1975-11-15
JPS5570063A (en) * 1978-11-22 1980-05-27 Hitachi Ltd Transistor and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141979A (en) * 1974-05-01 1975-11-15
JPS5570063A (en) * 1978-11-22 1980-05-27 Hitachi Ltd Transistor and its preparation

Also Published As

Publication number Publication date
JPS5734357A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
JPS6322070B2 (en)
JP2700180B2 (en) pnp vertical isolated collector transistor
JPS5914897B2 (en) semiconductor equipment
JPH06104459A (en) Semiconductor device
JPS6348189B2 (en)
JPS5917544B2 (en) semiconductor integrated circuit
JPS6133261B2 (en)
JP2504547B2 (en) Bipolar thin film semiconductor device
JP2504529B2 (en) Bipolar thin film semiconductor device
JPS6022504B2 (en) Manufacturing method of semiconductor device
JPH0424866B2 (en)
JP2558472B2 (en) Semiconductor integrated circuit
JPH0425706B2 (en)
JP2729059B2 (en) Semiconductor device
JPH0629374A (en) Semiconductor integrated circuit device
JP3135615B2 (en) Semiconductor device and manufacturing method thereof
JPS6132823B2 (en)
JPS6364058B2 (en)
JPH0338747B2 (en)
EP0052465A2 (en) I2L semiconductor device
JPH03259533A (en) Semiconductor integrated circuit device
JPS6236864A (en) Lateral transistor
JPS59168663A (en) Semiconductor integrated circuit
JPS6341062A (en) Semiconductor integrated circuit
JPH01286356A (en) Semiconductor integrated circuit