JPS5914897B2 - semiconductor equipment - Google Patents
semiconductor equipmentInfo
- Publication number
- JPS5914897B2 JPS5914897B2 JP50016561A JP1656175A JPS5914897B2 JP S5914897 B2 JPS5914897 B2 JP S5914897B2 JP 50016561 A JP50016561 A JP 50016561A JP 1656175 A JP1656175 A JP 1656175A JP S5914897 B2 JPS5914897 B2 JP S5914897B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- type
- transistor
- collector
- epitaxial growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 44
- 239000012535 impurity Substances 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 16
- 230000012010 growth Effects 0.000 description 52
- 238000009792 diffusion process Methods 0.000 description 39
- 238000002955 isolation Methods 0.000 description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 230000000295 complement effect Effects 0.000 description 12
- 239000000969 carrier Substances 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 229910052681 coesite Inorganic materials 0.000 description 6
- 229910052906 cristobalite Inorganic materials 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 229910052682 stishovite Inorganic materials 0.000 description 6
- 229910052905 tridymite Inorganic materials 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 238000005036 potential barrier Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/74—Thyristor-type devices, e.g. having four-zone regenerative action
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8222—Bipolar technology
- H01L21/8228—Complementary devices, e.g. complementary transistors
- H01L21/82285—Complementary vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/082—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
- H01L27/0823—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
- H01L27/0826—Combination of vertical complementary transistors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Bipolar Transistors (AREA)
- Bipolar Integrated Circuits (AREA)
Description
【発明の詳細な説明】
本発明は、半導体装置特に相補トランジスタをj 含む
半導体集積回路に係わる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor integrated circuit including complementary transistors.
一般に、相補トランジスタすなわちNPNトランジスタ
及びPNPトランジスタを含む半導体集積回路に於ては
、NPNトランジスタに比して高耐圧で電流特性及び高
周波特性の良い所謂高性能10のPNPトランジスタが
得にくい。Generally, in semiconductor integrated circuits including complementary transistors, that is, NPN transistors and PNP transistors, it is difficult to obtain so-called high performance 10 PNP transistors, which have higher breakdown voltage and better current characteristics and high frequency characteristics than NPN transistors.
すなわち、斯種の相補トランジスタを含む半導体集積回
路は、例えば第1図に示すようvcP形の半導体基体1
上に順次第1及び第2のN形エピタキシャル成長層2及
び3を形成し、夫々P形分離領域4にて夫々15区分さ
れた領域に夫々P形埋込み層及びN形埋込み層を形成し
、一方の領域にコレクタ5、ベース6及びエミッタTを
有するPNPトランジスタ(PNPTr)を形成し、他
方の領域にコレクタ8、ベース9及びエミッタ10を有
するNPNト20ランジスタ(NPNTr)を形成して
構成される。なお、Cl、B、及びE1はPNPトラン
ジスタのコレクタ電極、ベース電極及びエミッタ電極を
示し、C2、B2及びE2はNPNトランジスタのコレ
クタ電極、ベース電極及びエミッタ電極を示す。25然
るに、通常このようにエピタキシャル成長層をベース領
域6としたPNPトランジスタの場合には、ベース領域
6が低濃度のために電流増巾率hFEの電流特性が悪い
。That is, a semiconductor integrated circuit including this type of complementary transistor is, for example, a vcP type semiconductor substrate 1 as shown in FIG.
First and second N-type epitaxial growth layers 2 and 3 are sequentially formed on the top, and a P-type buried layer and an N-type buried layer are respectively formed in 15 divided regions of the P-type isolation region 4, respectively. A PNP transistor (PNPTr) having a collector 5, a base 6, and an emitter T is formed in one region, and an NPN transistor (NPNTr) having a collector 8, a base 9, and an emitter 10 is formed in the other region. . Note that Cl, B, and E1 represent the collector electrode, base electrode, and emitter electrode of the PNP transistor, and C2, B2, and E2 represent the collector electrode, base electrode, and emitter electrode of the NPN transistor. 25 However, in the case of a PNP transistor in which the epitaxially grown layer is used as the base region 6, the current characteristics of the current amplification factor hFE are poor because the base region 6 has a low concentration.
これを改善するにはPNPトランジスタのベース及びエ
ミッタの不純30物濃度プロファイルを二重拡散型にす
るのが望まれるが半導体集積回路では困難である。又、
エミッタ領域T及びコレクタ領域5が高濃度でベース領
域6が低濃度であるために、PNPトランジスタの動作
中、コレクタ接合jcからの空乏層がべ35−ス領域6
側に主として広がり、耐圧がパンチスルーで決定され高
耐圧が得られない。一方耐圧を上げるにはベース巾を大
とすればよいが、周波数特性を主として決定するのがベ
ース巾であることから、この場合、耐圧は上がるも遮断
周波数FTが劣化する。To improve this, it is desirable to make the impurity concentration profile of the base and emitter of the PNP transistor double-diffused, but this is difficult in semiconductor integrated circuits. or,
Since the emitter region T and the collector region 5 are highly doped and the base region 6 is lightly doped, the depletion layer from the collector junction jc flows into the base region 6 during operation of the PNP transistor.
It mainly spreads to the side, and the withstand voltage is determined by punch-through, making it impossible to obtain a high withstand voltage. On the other hand, in order to increase the withstand voltage, the base width may be increased, but since the base width mainly determines the frequency characteristics, in this case, although the withstand voltage increases, the cutoff frequency FT deteriorates.
この遮断周波数FTの劣下を回避する為に、例えば低濃
度のベース領域6にさらに濃度の高いN形不純物を拡散
して濃度の高いベース領域を形成し、エミツタ拡散を深
くしてベース巾を小となすことが考えられるも、この場
合にはコレクタ領域5が高濃度であるので、コレクタ接
合Jcの耐圧が劣下する。本発明は、高耐圧でHFEの
電流特性及び周波 1数特性の良いPNPトランジスタ
を導入して共に高性能の相補トランジスタを有する半導
体集積回路を提供せんとするものである。In order to avoid this deterioration of the cutoff frequency FT, for example, a higher concentration N-type impurity is diffused into the lower concentration base region 6 to form a higher concentration base region, and the emitter diffusion is deepened to increase the base width. Although it is conceivable to reduce the concentration, in this case, since the collector region 5 is highly concentrated, the withstand voltage of the collector junction Jc will be lowered. The present invention aims to introduce a PNP transistor with high breakdown voltage and good HFE current characteristics and frequency characteristics, and to provide a semiconductor integrated circuit having complementary transistors with high performance.
又、本発明は相補トランジスタとして先に出願人の開発
した低濃度エミツタ形トランジスタ(1,(5)Dの導
入を可能にした半導体積積回路を提供するものである。The present invention also provides a semiconductor integrated circuit in which a low concentration emitter type transistor (1,(5)D) previously developed by the applicant can be introduced as a complementary transistor.
第2図を参照してから、先づ、LECトランジスタにつ
いて説明しよう。After referring to FIG. 2, we will first explain the LEC transistor.
NPNトランジスタについて説明するに、この場合、N
形の高不純物濃度を有する半導体サブストレイト11を
設け、これの上にN形の低い不純物濃度を有する半導体
層12をエピタキシヤル成長し、この半導体層12を第
1の領域として、これに接し、これによつて囲まれるP
形の第2の領域13を設け、この領域13と接し、之に
よつて囲まれる如く領域13と同程度若しくは之より充
分低い不純物濃度例えば1015/Crll程度の濃度
を有する第3の領域14を形成し、この第3の領域14
内に、この領域14と第2の領域13との間に形成され
る接合J34に対向して領域13との間隔が領域14に
於ける少数キヤリアの拡散距離より小なる間隔をもつて
ポテンシヤルバリアJBを形成する。このポテンシヤル
バリアJBは例えば領域14と同導電形式を有するも、
これより充分高い濃度を有する高濃度領域15を領域1
4内に形成し、この領域15によつて形成されるL−H
接合によつて構成し得る。このような構成によれば、領
域14をエミツタ領域とし、領域12をコレクタ領域と
するNPNトランジスタが構成される。To explain the NPN transistor, in this case, N
A type semiconductor substrate 11 having a high impurity concentration is provided, an N type semiconductor layer 12 having a low impurity concentration is epitaxially grown on this, and this semiconductor layer 12 is used as a first region to be in contact with this, P surrounded by this
A third region 14 having an impurity concentration equal to or sufficiently lower than that of the region 13, for example, about 1015/Crll, is provided in contact with this region 13 and surrounded by it. and this third region 14
A potential barrier is formed within the region 14 opposite to the junction J34 formed between the region 14 and the second region 13 and having a distance from the region 13 that is smaller than the diffusion distance of minority carriers in the region 14. Form JB. Although this potential barrier JB has the same conductivity type as the region 14, for example,
A high concentration region 15 having a concentration sufficiently higher than this is defined as region 1.
4 and formed by this region 15.
It can be constructed by joining. With such a configuration, an NPN transistor is constructed in which region 14 is an emitter region and region 12 is a collector region.
16,17,18は夫々エミツタ、ベース及びコレクタ
各電極である。16, 17, and 18 are emitter, base, and collector electrodes, respectively.
これら、各電極16,17及び18に夫々領域14及び
13間のPN接合即ちエミツタ接合J34に順方向バイ
アスを与え、領域13及び12間のPN接合、即ちコレ
クタ接合J32に逆バイアスを与える電圧を与えれば、
エミッタ領域14よりベース領域13に注入されたエレ
クトロンは接合J34及びJ32の間隔を領域13に於
ける少数キヤリアの拡散距離より小に選定し置くことに
よつてコレクタ領域12に達することが出来、トランジ
スタ動作をなす。そして、この場合エミツタ注入効率γ
はで表わされるので、HFEしたがつてγを高くするに
はベースへの注入キヤリア、即ち第2図に於て電子の拡
散による電流を一定とした場合、エミツタ領域14に注
入される領域13よりのキヤリア即ちホール電流を出米
るだけ小さくすればよいことになるが、第2図に示した
例では接合J34と対向してL−H接合によるバリアJ
Bが存在するものであり、このバリアJBは例えば領域
14の低濃度部分に於ける不純物濃度を1015,4d
とし、領域15に於ける濃度102度/CJ程度にする
時ホールに対して0.2eV程度のポテンシヤルバリア
が生ずるもので、この場合、領域13より領域4に注入
された少数キャリアはバリアJBによつて押し戻される
ために、この領域14に於ける濃度勾配が平坦化し、領
域13から領域14に向うキヤリア(ホール)の注入が
押えられ、これがため、注入効率γは向上し、HFEも
高くなる。A voltage is applied to each electrode 16, 17, and 18 to apply a forward bias to the PN junction between the regions 14 and 13, that is, the emitter junction J34, and to apply a reverse bias to the PN junction between the regions 13 and 12, that is, the collector junction J32. If you give it,
Electrons injected into the base region 13 from the emitter region 14 can reach the collector region 12 by selecting the spacing between junctions J34 and J32 to be smaller than the diffusion distance of minority carriers in the region 13, and can reach the collector region 12 of the transistor. make an action. In this case, the emitter injection efficiency γ
Therefore, in order to increase HFE and therefore γ, if the carrier injected into the base, that is, the current due to electron diffusion in FIG. In the example shown in FIG. 2, a barrier J formed by an L-H junction is placed opposite the junction J34.
For example, this barrier JB lowers the impurity concentration in the low concentration portion of the region 14 to 1015.4d.
When the concentration in region 15 is set to about 102 degrees/CJ, a potential barrier of about 0.2 eV is generated for holes, and in this case, the minority carriers injected from region 13 into region 4 reach barrier JB. As a result, the concentration gradient in this region 14 is flattened, and the injection of carriers (holes) from the region 13 to the region 14 is suppressed, thereby improving the injection efficiency γ and increasing the HFE. .
しかもエミッタ接合及びコレクタ接合となる接合J34
及びJ3。が形成される部分に於て、不純物濃度は低く
選ばれているので結晶欠陥は小で、通常の高濃度エミツ
タ形トランジスタに比し、充分高いHFEを示す。第2
図に示した例では、第1の領域14に領域15を形成し
てL−H接合によつてバリアJBを形成した場合である
が、第3図に示す如く領域14にこれと異る導電形の第
4の領域19を形成してPN接合によつてバリアJBを
形成することもできる。Moreover, junction J34 becomes emitter junction and collector junction.
and J3. Since the impurity concentration is selected to be low in the region where the transistor is formed, crystal defects are small and the HFE is sufficiently high compared to a normal high concentration emitter type transistor. Second
In the example shown in the figure, a region 15 is formed in the first region 14 and a barrier JB is formed by L-H junction, but as shown in FIG. It is also possible to form a fourth region 19 of the shape and form the barrier JB by a PN junction.
この場合領域13より領域14に注入された少数キヤリ
アが領域19に向い、領域19の電位が領域3と略々同
電位となり、この領域19より領域14VCホールを再
注入させることによつて領域14にホールの濃度勾配を
平坦化してそのホールの拡散電流を減じて、エミツタ注
入効率γを向上させ、電流増巾率HFEを高めるように
なされている。又、第3図の例では領域19を領域14
内に於て領域13とは独立に電気的に浮かして設けた場
合であるが、第4図に示す如く領域19と領域13とを
一部に於て電気的に連結して構成することも出来る。In this case, the minority carriers injected into the region 14 from the region 13 are directed to the region 19, and the potential of the region 19 becomes approximately the same as that of the region 3. By reinjecting the VC holes from the region 19 into the region 14, The hole concentration gradient is flattened to reduce the diffusion current of the holes, thereby improving the emitter injection efficiency γ and increasing the current amplification factor HFE. In addition, in the example of FIG. 3, area 19 is changed to area 14.
Although this is a case in which the region 19 and the region 13 are electrically floating independently of the region 13, the region 19 and the region 13 may be partially electrically connected as shown in FIG. I can do it.
尚、第3図及び第4図に於て第2図と対応する部分には
同一符号を付して重複説明を省略する。そして本発明に
よる相補トランジスタを有する半導体装置に於ては、相
補トランジスタの一方のトランジスタ即ちNPNトラン
ジスタを上述した特殊構成のLECトランジスタをもつ
て形成するを可として構成する。In FIGS. 3 and 4, parts corresponding to those in FIG. 2 are designated by the same reference numerals, and redundant explanation will be omitted. In a semiconductor device having complementary transistors according to the present invention, one transistor of the complementary transistors, that is, an NPN transistor may be formed with the above-mentioned specially constructed LEC transistor.
以下、第5図を参照して本発明の半導体装置の一実施例
をその製法と共に詳述しよう。Hereinafter, one embodiment of the semiconductor device of the present invention will be described in detail together with its manufacturing method with reference to FIG.
なお本例ではNPNトランジスタをLECトランジスタ
にて形成した場合である。先づ、第5図AVC.示すよ
うに、例えば比抵抗が15Ω−m程度(不純物濃度1×
1015/Cd)のP形の半導体サブストレイト21を
用意し、その一主面上の爾後PNPトランジスタを形成
すべき部分に対応する位置に例えば不純物濃度5X10
1×〜程度のN形埋込み層22を拡散によつて形成し、
また爾後NPNトランジスタを形成すべき部分に対応す
る位置に例えば不純物濃度1X1019/Cril程度
のN形埋込み層23を拡散にて形成する(第5図A)。In this example, the NPN transistor is formed of an LEC transistor. First, Figure 5 AVC. As shown, for example, the specific resistance is about 15Ω-m (impurity concentration 1×
A P-type semiconductor substrate 21 of 1015/Cd) is prepared, and an impurity concentration of, for example, 5×10
An N-type buried layer 22 of approximately 1× is formed by diffusion,
Further, an N-type buried layer 23 having an impurity concentration of, for example, about 1.times.10@19 /Cril is formed by diffusion at a position corresponding to a portion where an NPN transistor is to be formed (FIG. 5A).
24はSiO2膜の如き絶縁層である。24 is an insulating layer such as a SiO2 film.
次に、SiO2膜24VC対してフオトエツチングを行
つて一方のN形埋込み層22上に拡散窓を形成し、この
拡散窓を通してP形不純物を拡散し、PNPトランジス
タのコレクタ埋込み層となるP形埋込み層(例えば不純
物濃度が1X1011d程度)25を形成して後、サブ
ストレイト21上の全面に例えば比抵抗が10Ω−?程
度のN形の第1エピタキシヤル成長層26を形成する(
第5図C及びD)。Next, the SiO2 film 24VC is photoetched to form a diffusion window on one of the N-type buried layers 22, and P-type impurities are diffused through this diffusion window to form a P-type buried layer that will become the collector buried layer of the PNP transistor. After forming a layer 25 (for example, with an impurity concentration of about 1×10 11 d), a layer 25 with a resistivity of 10Ω-? Form a first epitaxial growth layer 26 of N type (
Figure 5 C and D).
次に、SiO2膜24に対しフオトエツチングを行つて
PNPトランジスタ及びNPNトランジスタを形成すべ
き部分を区分する位置に上方よりみて格子状に分離領域
を形成すべき拡散窓を形成し、この拡散窓を通してP形
不純物を拡散し、サブスノフ
トレィト21に達するP形の分離領域27を形成する(
第5図E)。Next, photoetching is performed on the SiO2 film 24 to form diffusion windows in which isolation regions are to be formed in a lattice shape when viewed from above at positions that separate the parts where PNP transistors and NPN transistors are to be formed, and through these diffusion windows. P-type impurity is diffused to form a P-type isolation region 27 that reaches the sub-snoft rate 21 (
Figure 5E).
次に、第1エピタキシヤル成長層26の分離領域27に
て区分された一方の領域即ちPNPトランジスタを形成
すべき領域26AにP形埋込み層25より低濃度の、即
ち例えば5×1015/Crl程度のP形領域28をP
形埋込み層25に到達するように拡散によつて形成し、
続いて他方の領域即NPNトランジスタを形成すべき領
域26Bに、例えばイオン・インプランテイシヨンによ
るP形領域29を形成する。Next, one region divided by the isolation region 27 of the first epitaxial growth layer 26, that is, the region 26A where a PNP transistor is to be formed, is coated with a lower concentration than the P-type buried layer 25, for example, about 5×10 15 /Crl. The P-shaped region 28 of P
Formed by diffusion so as to reach the shape buried layer 25,
Subsequently, a P-type region 29 is formed, for example, by ion implantation in the other region, that is, the region 26B where the NPN transistor is to be formed.
このP形領域29は最終的にLEC構造のNPNトラン
ジスタのベース領域となるものである。然る後第1エピ
タキシヤル成長層26上にN形の第2エピタキシャル成
長層30を形成する。この場合の第2エピタキシヤル成
長層30の不純物濃度は例えば5X101′/Cd程度
とする(第5図F及びG)。次に、第2エピタキシヤル
成長層30に対し、高濃度のP形不純物を選択的に拡散
し、PNPトランジスタ及びNPNトランジスタを形成
すべき部分を区分する分離領域31を下層の分離領域2
7に達する如く形成し、同時に第2エピタキシヤル成長
層30の分離領域27で区分された夫々の領域30A及
び30Bに於て、夫々P形領域28及び29に達する上
方よりみて環状の高濃度のP形領域32及び33を拡散
にて形成する(第5図H)。This P-type region 29 will eventually become the base region of an NPN transistor of LEC structure. Thereafter, an N-type second epitaxial growth layer 30 is formed on the first epitaxial growth layer 26. In this case, the impurity concentration of the second epitaxial growth layer 30 is, for example, about 5×101'/Cd (FIGS. 5F and G). Next, a high concentration P-type impurity is selectively diffused into the second epitaxial growth layer 30, and the isolation region 31 that separates the portions where the PNP transistor and the NPN transistor are to be formed is formed into the lower isolation region 2.
At the same time, in the respective regions 30A and 30B separated by the isolation region 27 of the second epitaxial growth layer 30, an annular high-concentration layer is formed so as to reach the P-type regions 28 and 29, respectively. P-type regions 32 and 33 are formed by diffusion (FIG. 5H).
次に、第2エピタキシヤル成長層よりなり、P形領域3
2にて囲まれた低濃度のN形領域30A内に最終的にP
NPトランジスタのベース領域となるN形の拡散領域3
4を形成する。Next, a second epitaxial growth layer is formed, consisting of a P-type region 3.
Finally, P is formed in the low concentration N-type region 30A surrounded by
N-type diffusion region 3 that becomes the base region of the NP transistor
form 4.
このN形拡散領域34VCP形領域28に接し、且つP
形領域28より高い不純物濃度、例えば1×101′d
程度を有するものである。(第5図1)。次に、このN
形拡散領域34内にエミツタ領域となる例えば不純物濃
度が1X1020/Cil程度のP形領域35を形成し
(第5図J)、次で選択的に高濃度のN形不純物を拡散
し、N形拡散領域34にベース電極取出用の高濃度領域
36を、第2エピタキシャル成長層よりなる区分された
領域30B内のP形領域33で囲まれたエミッタとなる
低濃度領域37内に高濃度領域38を、又領域30Bの
P形領域33で囲まれざる領域部にコレクタ電極取出用
の高濃度領域39を夫々形成する。This N-type diffusion region 34 is in contact with the VCP-type region 28 and P
a higher impurity concentration than the shaped region 28, for example 1×101'd
It has a certain degree. (Figure 5 1). Next, this N
For example, a P-type region 35 with an impurity concentration of about 1×1020/Cil is formed in the type diffusion region 34 to serve as an emitter region (FIG. 5J), and then a high concentration of N-type impurity is selectively diffused to form an N-type region. A high concentration region 36 for taking out the base electrode is provided in the diffusion region 34, and a high concentration region 38 is provided in the low concentration region 37 which becomes the emitter surrounded by the P type region 33 in the divided region 30B made of the second epitaxial growth layer. In addition, a high concentration region 39 for extracting the collector electrode is formed in a region not surrounded by the P-type region 33 of the region 30B.
この場合、領域38はエミツタ電極取出用に供されると
同時に、低濃度領域37との間で領域37内に於ける少
数キヤリアのポテンシヤルバリアとなるL−H接合JB
を形成する付加領域となるものであり、このL−H接合
JBは領域37及び29との間VC!形成される接合J
eと対向してその間の間隔が領域37内の少数キャリア
の拡散距離より小なる間隔となるように形成し得る(第
5図K)。然る後、領域32,35及び36にPNPト
ランジスタのコレクタ電極Cl、エミツタ電極E1及び
ベース電極Blを夫々形成し、又領域39,33及び3
8にNPNトランジスタのコレクタ電極C2、ベース電
極B2及びエミツタ電極E2を夫々形成する。In this case, the region 38 is used for taking out the emitter electrode, and at the same time, the L-H junction JB serves as a potential barrier for minority carriers in the region 37 between the region 38 and the low concentration region 37.
This L-H junction JB is an additional region forming VC! between regions 37 and 29. The joint J formed
They may be formed so that they face each other and the distance therebetween is smaller than the diffusion distance of minority carriers in the region 37 (FIG. 5K). Thereafter, the collector electrode Cl, the emitter electrode E1, and the base electrode Bl of the PNP transistor are formed in the regions 32, 35, and 36, respectively, and the regions 39, 33, and 3
8, a collector electrode C2, a base electrode B2, and an emitter electrode E2 of the NPN transistor are formed, respectively.
斯くして、第5図Lに示すように分離領域27,31に
て区分された第1の島領域内にP形領域25及び38を
コレクタ領域とし、N形拡散領域34をベース領域とし
、P形領域35をエミツタ領域として成るPNPトラン
ジスタTrlが形成され、又、区分された第2の島領域
内に第1及び第2エピタキシヤル成長層よりなる領域2
6B,30Bをコレクタ領域とし、例えばイオン・イン
プランテイシヨンよりなるP形領域29をベース領域と
し、第2エピタキシヤル成長層よりなり、L−H接合J
Bを有するN形低濃度領域37をエミツタ領域として成
るLEC構造のNPNトランジスタTr2が形成され成
る目的とする相補トランジスタを有する半導体装置を得
る。Thus, as shown in FIG. 5L, in the first island region divided by the separation regions 27 and 31, the P-type regions 25 and 38 are used as collector regions, the N-type diffusion region 34 is used as a base region, A PNP transistor Trl is formed using the P-type region 35 as an emitter region, and a region 2 consisting of the first and second epitaxial growth layers is formed in the divided second island region.
6B and 30B are collector regions, the P type region 29 made of, for example, ion implantation is used as a base region, and the L-H junction J is made of a second epitaxial growth layer.
A semiconductor device having an intended complementary transistor is obtained in which an NPN transistor Tr2 having an LEC structure is formed and has an N-type low concentration region 37 containing B as an emitter region.
上述せる半導体装置によれば、耐圧、HFEの電流特性
及び高周波特性の優れた高性能のNPNトランジスタと
共存する同様の高性能のPNPトランジスタが得られる
。According to the semiconductor device described above, it is possible to obtain a high-performance PNP transistor that coexists with a high-performance NPN transistor having excellent breakdown voltage, HFE current characteristics, and high-frequency characteristics.
すなわち、、NPNトランジスタについては既に高性能
トランジスタが得られることが明らかなので説明を省略
するも、円中トランジスタTrlに於ては、第1エピタ
キシヤル成長層26に低濃度拡散によるP形領域28を
コレクタ領域とし、この領域28上に形成した第2エピ
タキシヤル成長層30をして所謂二重拡散によつてベー
ス領域34及びエミッタ領域35が形成されるので、ベ
ース巾が小となり高い遮断周波数FTが得られて高周波
判性が向上し、同時にHFEの電流肴性が改善され大電
流用のPNPトランジスタが得られる。又、耐圧に関し
てはベース領域34と接するコレクタ領域38が低濃度
でノあることからコレクタ接合Jc,の空乏層は主とし
て低濃度のコレクタ領域38側に広がりエミツタ領域3
5VC対するパンチスルーが回避され、耐圧の改善が図
れる。That is, as for the NPN transistor, it is already clear that a high-performance transistor can be obtained, so the explanation will be omitted, but in the circular transistor Trl, the P-type region 28 is formed by low concentration diffusion in the first epitaxial growth layer 26. Since the base region 34 and the emitter region 35 are formed by so-called double diffusion using the second epitaxial growth layer 30 formed on the collector region 28, the base width is small and the cut-off frequency FT is high. As a result, high-frequency recognition is improved, and at the same time, the current performance of the HFE is improved, and a PNP transistor for large currents can be obtained. Regarding breakdown voltage, since the collector region 38 in contact with the base region 34 has a low concentration, the depletion layer of the collector junction Jc mainly spreads toward the low concentration collector region 38 side.
Punch-through with respect to 5VC is avoided, and the withstand voltage can be improved.
因みに第5図の実施例に於ける不純物濃度プロフアイル
を有するときは遮断周波数FTを100MHz以上、耐
圧を50V以上、又低コレクタ飽和抵抗することができ
る。さらに、このPNPトランジスタTrlはLEC構
造の高性能のNPNトランジスタTr2と共存させるこ
とができる。Incidentally, when having the impurity concentration profile in the embodiment shown in FIG. 5, the cutoff frequency FT can be 100 MHz or more, the withstand voltage can be 50 V or more, and the collector saturation resistance can be low. Furthermore, this PNP transistor Trl can coexist with a high-performance NPN transistor Tr2 having an LEC structure.
現在の望ましいLEC(7)NPNトランジスタを含む
半導体集積回路は2回のエピタキシヤル成長を必要とす
るので、乏に本発明のPNPトランジスタTrlを含ま
せる場合にもエピタキシヤル成長を増加することなく形
成できる。尚、図示せざるも第5図に於ける低濃度のP
形領域28を拡散速度の速い例えばアルミニウムを用い
第1及び第2エピタキシヤル成長層26及び30の形成
後、第2エピタキシヤル成長層30の表面より拡散して
形成することも出来、この場合には、ベース領域34及
びエミッタ領域35を含めて三重拡散による形成となる
。第6図は他の実施例である。Since a semiconductor integrated circuit including a currently desirable LEC (7) NPN transistor requires two epitaxial growths, even if the PNP transistor Trl of the present invention is included, it can be formed without increasing epitaxial growth. can. Furthermore, although not shown, the low concentration of P in Figure 5
The shaped region 28 can also be formed by using aluminum, which has a high diffusion rate, for example, and diffusing from the surface of the second epitaxial growth layer 30 after the first and second epitaxial growth layers 26 and 30 are formed. is formed by triple diffusion including the base region 34 and emitter region 35. FIG. 6 shows another embodiment.
先づ、第6図Aに示すように、例えば比抵抗が3〜5Ω
−?のP形半導体サブストレイト41を用意し、その一
主面上の爾後PNPトランジスタを形成すべき部分に対
応する位置に例えばイオン・インプランテイシヨンによ
つてドーズ量が2X1012/Cri.程度のN形埋込
み層42を形成する。First, as shown in Figure 6A, for example, the specific resistance is 3 to 5Ω.
−? A P-type semiconductor substrate 41 is prepared, and a dose amount of 2X1012/Cri. An N-type buried layer 42 of about 100 mL is formed.
43はSiO2膜の如き絶縁層である(第6図B)。43 is an insulating layer such as a SiO2 film (FIG. 6B).
次に、N形埋込み層42内及びサブストレイト41上の
最終的にPNPトランジスタ及びNPNトランジスタを
分離する部分に対応した位置に夫夫比較的高濃度のP形
領域44及び上方よりみて格子状のP形分離領賊45を
形成する。このP形領域44はPNPトランジスタのコ
レクタ埋込み層となるものである。なお、P形領域44
及び分離領域45のシート抵抗ρ8は例えば250皐イ
]程度とすることができる(第6図C)。次に、分離領
域45に囲まれる如くサブストレイト41上のNPNト
ランジスタを形成すべき部分に対応した位置に比較的高
濃度のN形埋込み層46を拡散によつて形成すると同時
にN形埋込み層42内のP形領域44を取囲む位置に分
離用のN形領域47を形成する(第6図D)。Next, in the N-type buried layer 42 and on the substrate 41, a relatively high concentration P-type region 44 is formed at a position corresponding to the part where the PNP transistor and the NPN transistor are finally separated. P-type separated pirates 45 are formed. This P-type region 44 becomes a buried collector layer of a PNP transistor. Note that the P-type region 44
The sheet resistance ρ8 of the separation region 45 can be set to, for example, about 250 koi (FIG. 6C). Next, a relatively high concentration N-type buried layer 46 is formed by diffusion at a position on the substrate 41 corresponding to a portion where an NPN transistor is to be formed so as to be surrounded by the isolation region 45, and at the same time, the N-type buried layer 46 is An N-type region 47 for isolation is formed at a position surrounding the P-type region 44 (FIG. 6D).
このN形埋込み層46及び分離用のN形領域47のシー
ト抵抗ρ8は例えば5皐4]程度とすることができる。
そして、特に従米LEC構造のNPNトランジスタと{
VCPNPトランジスタを特性よく作ることは難しかつ
たが、LECトランジスタのエミツタ領域とPNPトラ
ンジスタのベース領域を同一エピタキシヤル成長層とす
るときに、そこにN+拡散してその中にPNPトランジ
スタのエミッタ領域を形成すると周波数特性を向上させ
ることができる。また、PNPトランジスタのコレクタ
領域をエピタキシヤル成長層の上下に形成したP形埋込
層25,28を接続して構成することによりコレクタ抵
抗を充分低くすることができる。次にサブストレイト4
1上に幀次例えば比抵抗が5Ω−mで厚さ8μ程度のP
形の第1エピタキシヤル成長層48及び例えば比抵抗が
2Ω−mで厚さ4μ程度のN形の第2エピタキシヤル成
長層49を形成する(第6図E)。次に、第2エピタキ
シヤル成長層49の表面より選択的に比較的高濃度のP
形不純物を拡散し、P形領域44に対向する位置及びP
形分離領域45に対応する位置に夫々第1エピタキシヤ
ル成長層48VC達する上方よりみて環状のP形領域5
0及び上方よりみて格子状のP形分離領域51を形成す
る。The sheet resistance .rho.8 of the N-type buried layer 46 and the N-type isolation region 47 can be, for example, approximately 5.5 mm.
In particular, NPN transistors with a conventional LEC structure and {
It was difficult to make a VCPNP transistor with good characteristics, but when the emitter region of the LEC transistor and the base region of the PNP transistor are made into the same epitaxial growth layer, N+ is diffused there and the emitter region of the PNP transistor is formed in it. When formed, frequency characteristics can be improved. Further, by configuring the collector region of the PNP transistor by connecting the P-type buried layers 25 and 28 formed above and below the epitaxial growth layer, the collector resistance can be made sufficiently low. Next, Substrate 4
For example, a P with a specific resistance of 5 Ω-m and a thickness of about 8 μm is placed on top of 1.
A first epitaxial growth layer 48 of a type N-type and a second epitaxial growth layer 49 of an N-type, for example, having a resistivity of 2 Ω-m and a thickness of about 4 μm are formed (FIG. 6E). Next, a relatively high concentration of P is selectively applied to the surface of the second epitaxial growth layer 49.
The P type impurity is diffused into a position opposite to the P type region 44 and a P type impurity.
The P-type regions 5 are annular when viewed from above and reach the first epitaxial growth layer 48VC at positions corresponding to the type isolation regions 45, respectively.
0 and a grid-like P-type isolation region 51 is formed when viewed from above.
このとき同時に、N形埋込み層46及び分離用N形領域
47が再拡散され第1エピタキシヤル成長層48を通し
て第2エピタキシヤル成長層49にまで達する(第6図
F)。次に、P形分離領域51にて区分された第2エピ
タキシャル成長層よりなる領域49B内に例えばイオン
・インプランティシヨン(例えばドーズ量が1×101
3?程度)によつてNPNトランジスタのベース領域と
なるP形領域52を形成し(第6図G)、然る後、第2
エピタキシヤル成長層49上に例えば比抵抗が2Ω−m
程度のN形の第3エピタキシャル成長層53を形成する
(第6図H)。At the same time, the N-type buried layer 46 and the isolation N-type region 47 are re-diffused and reach the second epitaxial growth layer 49 through the first epitaxial growth layer 48 (FIG. 6F). Next, for example, ion implantation (for example, at a dose of 1×101
3? A P-type region 52, which will become the base region of the NPN transistor, is formed (FIG. 6G), and then a second
For example, on the epitaxial growth layer 49, a resistivity of 2Ω-m is formed.
A third epitaxial growth layer 53 of approximately N type is formed (FIG. 6H).
次に、第3エピタキシャル成長層53の表面よりN形不
純物の選択拡散を行つてPNPトランジスタのベース領
域を形成する部分にP形の第2エピタキシヤル成長層4
8に達するベース領域となるN形拡散領域54を、NP
Nトランジスタのコレクタ領域を形成する部分にベース
となるP形領域52を取り囲みN形埋込み層46に連続
するN形領域55を又、N形分離領域47に対応した位
置に分離領域47に連続するN形分離領域56を夫々形
成する。Next, N-type impurities are selectively diffused from the surface of the third epitaxial growth layer 53 to form a P-type second epitaxial growth layer 4 in a portion where the base region of the PNP transistor is to be formed.
The N-type diffusion region 54, which becomes the base region reaching 8.
An N-type region 55 that surrounds the P-type region 52 serving as a base and is continuous with the N-type buried layer 46 is formed in a portion forming the collector region of the N-transistor, and is also continuous with the isolation region 47 at a position corresponding to the N-type isolation region 47. N type isolation regions 56 are respectively formed.
なおこの各領域54,55及び56のシート抵抗ρ8は
120Ω/?とすることができる(第6図)。次に、高
濃度のP形不純物の選択拡散を行つて、N形領域54内
に最終的にPNPトランジスタのエミツタ領域となるP
形領域57を、P形領域50と連続し、最終的にPNP
トランジスタのコレクタ電極取出用領域となる高濃度領
域58を、最終的VCNPNトランジスタのベース電極
取出用領域となる高濃度領域59を、及びP形分離領域
51と連続するP形分離領域60を夫々形成する。Note that the sheet resistance ρ8 of each region 54, 55, and 56 is 120Ω/? (Figure 6). Next, a high concentration of P-type impurity is selectively diffused into the N-type region 54 to form a P-type impurity that will eventually become the emitter region of the PNP transistor.
The shaped region 57 is continuous with the P-shaped region 50 and finally becomes PNP.
A high concentration region 58 that will become a region for taking out the collector electrode of the transistor, a high concentration region 59 that will become a region for taking out the base electrode of the final VCNPN transistor, and a P-type isolation region 60 that is continuous with the P-type isolation region 51 are formed. do.
このときの各領域57,58,59及び60のシート抵
抗Psは10美イ]とすることができる(第6図J)。
次に、高濃度のN形不純物の選択拡散を行つて、最終的
に、NPNトランジスタの低濃度エミツタ領域となる第
3エピタキシヤル成長層よりなるN形領域61内にL−
H接合を形成する高濃度領域62を、N形領域55にN
PNトランジスタのコレクタ電極取出用の高濃度領域6
3を、PNPトランジスタのベース領域となるN形拡散
領域54にベース電極取出用の高濃度領域64を、さら
にN形分離領域56に分離用の電極取出のための高濃度
領域65を夫々形成する。At this time, the sheet resistance Ps of each region 57, 58, 59, and 60 can be set to 10mm (FIG. 6J).
Next, selective diffusion of high-concentration N-type impurities is performed, and finally, L-
The high concentration region 62 forming the H junction is connected to the N type region 55.
High concentration region 6 for extracting the collector electrode of the PN transistor
3, a high concentration region 64 for taking out the base electrode is formed in the N type diffusion region 54 which becomes the base region of the PNP transistor, and a high concentration region 65 for taking out the electrode for isolation is formed in the N type isolation region 56. .
このときの各領域62,63,64及び65のシート抵
抗ρ8は109jとすることができる(第6図K)。然
る後、領域57,64及び58に夫々PNPトランジス
タのエミツタ電極E,、ベース電極B,及びコレクタ電
極C,を夫々形成し、又領域62、59及び63VCN
PNトランジスタのエミツタ電極E2、ベース電極B2
及びコレクタ電極C2を形成し、さらに領域65に分離
用電極66を形成する。斯くして、第6図Lに示すよう
に埋込み層42及び分離領域47,56にて区分された
第1の島領域内にp+形領域44及び第1エピタキシヤ
ル成長層よりなるP形領域48Aをコレクタ領域とし、
N形拡散領域54をベース領域とし、P形領域57をエ
ミツタ領域として成るPNPトランジスタTrlが形成
され、又P形分離領域45,51及び60vcて区分さ
れた第2の島領域内VCN形の第2エピタシキヤル成長
層よりなる領域49Bをコレクタ領域とし.、例えばイ
オン・インプランテイシヨンよりなるP形領域52をベ
ース領域とし、N形の第3エピタキシヤル成長層よりな
るL一H接合JBの形成されたN形低濃度領域61をエ
ミッタ領域として成るLECf)NPNトランジスタT
r2が形成されて成る自的の相補トランジスタを有する
半導体装置を得る。At this time, the sheet resistance ρ8 of each region 62, 63, 64, and 65 can be set to 109j (FIG. 6K). Thereafter, emitter electrodes E, base electrodes B, and collector electrodes C of PNP transistors are formed in regions 57, 64, and 58, respectively, and regions 62, 59, and 63VCN are formed.
Emitter electrode E2 and base electrode B2 of PN transistor
A collector electrode C2 is formed, and a separation electrode 66 is further formed in the region 65. Thus, as shown in FIG. 6L, a P type region 48A consisting of a p+ type region 44 and a first epitaxial growth layer is formed in the first island region divided by the buried layer 42 and isolation regions 47 and 56. Let be the collector area,
A PNP transistor Trl is formed with the N-type diffusion region 54 as a base region and the P-type region 57 as an emitter region. A region 49B consisting of two epitaxially grown layers is used as a collector region. For example, a P-type region 52 made of ion implantation is used as a base region, and an N-type low concentration region 61 formed with an L-H junction JB made of an N-type third epitaxial growth layer is used as an emitter region. LECf) NPN transistor T
A semiconductor device having its own complementary transistor formed by r2 is obtained.
斯る半導体装置によれば、構成上第5図にて得られた半
導体装置と同様である。According to such a semiconductor device, the structure is similar to the semiconductor device obtained in FIG. 5.
すなわち、円卯トランジスタTrlに於ては、コレクタ
領域を第1エピタキシヤル成長層よりなる低濃度の領域
48A.1!:坤込みによる濃度の高い領域44にて形
成し、且第2及び第3エピタキシヤル成長層をして二重
拡散によるベース領域54及びエミツタ領域57を形成
して構成している。従つて高周波特性及びHFEの電流
特性がよくなり、且つコレクタ接合の耐圧が向上する等
、高性能のPNPトランジスタが得られる。尚、製造に
関しては、P形及びN形のエピタキシヤル成長層48及
び49を形成し、予め埋込まれた中濃度(例えば101
7〜1018/Cd)のP形領域44と高濃度(例えば
1028/Cd)のN形埋込み層46のP形エピタキシ
ヤル成長層48への拡散距離の差を利用して、PNPト
ランジスタ側に於てコレクタとなる低濃度部分48A及
び高濃度部分44を形成し、NPNトランジスタ側に於
てコレクタとなる低濃度部分49B及び高濃度部分46
を形成し、その後、NPNトランジスタのベース領域5
2を形成し、N形の第3エピタキシヤル成長層53を形
成し、次いで、PNPトランジスタのベース及びエミツ
タ拡散を深く行うようにしている。さらに、PNPトラ
ンジスタのエミツタ拡散をNPNトランジスタのベース
電極取出用の高濃度拡散と同時工程で行つている。従つ
て、工程数は比較的少なく斯種の半導体装置の製造が容
易となる。第7図は更に他の実施例である。That is, in the circular transistor Trl, the collector region is formed by forming the low concentration region 48A. 1! : A region 44 with a high concentration is formed by embedding, and a base region 54 and an emitter region 57 are formed by double diffusion using second and third epitaxial growth layers. Therefore, a high-performance PNP transistor with improved high frequency characteristics and HFE current characteristics and improved collector junction breakdown voltage can be obtained. Regarding manufacturing, P-type and N-type epitaxial growth layers 48 and 49 are formed, and medium concentration (for example, 101
7 to 1018/Cd) and the N-type buried layer 46 with a high concentration (for example, 1028/Cd) to the P-type epitaxial growth layer 48. On the NPN transistor side, a low concentration portion 48A and a high concentration portion 44 are formed as a collector, and a low concentration portion 49B and a high concentration portion 46 as a collector are formed on the NPN transistor side.
is formed, and then the base region 5 of the NPN transistor is formed.
2 is formed, a third N-type epitaxial growth layer 53 is formed, and then the base and emitter of the PNP transistor are deeply diffused. Furthermore, the emitter diffusion of the PNP transistor is performed in the same process as the high concentration diffusion for extracting the base electrode of the NPN transistor. Therefore, the number of steps is relatively small, making it easy to manufacture this type of semiconductor device. FIG. 7 shows yet another embodiment.
なお、この例ではLEC(7)NPNトランジスタとP
NPトランジスタと抵抗器とを組合せた半導体集積回路
に適用した場合である。先づ、第7図Aに示すように、
例えば比抵抗が3〜5Ω−m程度のP形半導体サブスト
レイト71を用意し、その一面上の爾後NPNトランジ
スタを形成すべき部分に対応する位置及び爾後PNPト
ランジスタと抵抗器を形成すべき部分に対応する共通の
位置に、例えばシート抵抗ρ8が20Ω/口程度の高濃
度のN形埋込み層72及び73を拡散にて形成する(第
7図B)。In addition, in this example, LEC (7) NPN transistor and P
This is a case where the present invention is applied to a semiconductor integrated circuit that combines an NP transistor and a resistor. First, as shown in Figure 7A,
For example, a P-type semiconductor substrate 71 with a specific resistance of about 3 to 5 Ω-m is prepared, and a P-type semiconductor substrate 71 with a specific resistance of about 3 to 5 Ω-m is prepared, and a P-type semiconductor substrate 71 is placed on one surface thereof at a position corresponding to a portion where an NPN transistor is to be formed and a portion where a PNP transistor and a resistor are to be formed. High concentration N-type buried layers 72 and 73 having a sheet resistance ρ8 of about 20 Ω/hole, for example, are formed at corresponding common positions by diffusion (FIG. 7B).
なお、74はSiO2膜等よりなる絶縁層である。次に
、サブストレイト71上に夫々のN形埋込み層72及び
73を分割する上方よりみて格子状のP形分離領域75
(シート抵抗ρ8は10Ω泊程度)を拡散にて形成し、
然る後、サブストレイト71上の全面に例えば比抵抗が
4〜7Ω−?程度の第1のN形エピタキシヤル成長層7
6を形成する。74′はSiO2膜の如き絶縁層である
(第7図D)。Note that 74 is an insulating layer made of a SiO2 film or the like. Next, on the substrate 71, P-type isolation regions 75 are formed in a lattice shape when viewed from above dividing the N-type buried layers 72 and 73, respectively.
(Sheet resistance ρ8 is about 10Ω) is formed by diffusion,
After that, the entire surface of the substrate 71 has a specific resistance of, for example, 4 to 7 Ω-? The first N-type epitaxial growth layer 7 of
form 6. 74' is an insulating layer such as a SiO2 film (FIG. 7D).
次にN形エピタキシヤル成長層76にP形不純物の選択
拡散し、P形分離領域75と対向する部分に領域75と
連続するP形分離領域77を形成し、同時にPNPトラ
ンジスタを形成すべき部分にコレクタ領域となるP形領
域78を形成する(第7図E)。Next, P-type impurities are selectively diffused into the N-type epitaxial growth layer 76 to form a P-type isolation region 77 continuous with the region 75 in a portion facing the P-type isolation region 75, and at the same time to form a P-type isolation region 77 in a portion where a PNP transistor is to be formed. A P-type region 78 is formed to serve as a collector region (FIG. 7E).
次に、N形エピタキシヤル成長層76のNPNトランジ
スタを形成すべき部分に対応する位置に爾後ベース領域
となるP形領域79を拡散にて形成し、同時工程で抵抗
器を形成すべき部分に抵抗体となるP形領域80を形成
する。Next, a P-type region 79, which will later become a base region, is formed by diffusion at a position corresponding to a portion of the N-type epitaxial growth layer 76 where an NPN transistor is to be formed, and a P-type region 79, which will later become a base region, is formed by diffusion in a portion where a resistor is to be formed in the N-type epitaxial growth layer 76. A P-type region 80 that becomes a resistor is formed.
この場合の領域79及び80のシート抵抗としては10
00皐イjとすることができる(第7図F)。然る後、
N形エピタキシヤル成長層76上に第2のN形エピタキ
シヤル成長層81を形成する(第7図G)。次に、第2
のN形エピタキシヤル成長層81に対してP形不純物の
選択拡散を行つて、分離領域77に連続するP形分離領
域82を、P形領域79に連続してNPNトランジスタ
のベース領域の一部を構成するP形領域83を、P形領
域78ど連続してPNPトランジスタのコレクタ領域の
一部を構成するP形領域84を、及び抵抗体となるP形
領域80の両端に夫々連続するP形領域85A,85B
を夫々形成する(第7図H)。次に、第2のN形エピタ
キシヤル成長層81ffC対してN形不純物の選択拡散
を行い(シート抵抗100皐イコ程度)、NPNトラン
ジスタのコレクタとなる部分にコレクタ電極取出用のN
形高濃度領域88を、ベース領域83にて囲まれた低濃
度エミツタとなる領域86にL−H接合JBを形成する
N形高濃度領域87を、PNPトランジスタのベースと
なる部分にコレクタとなるP形領域78との間に低濃度
領域89を残す如くN形の高濃度領域部90を、さらに
P形分離領域82で区分され、PNPトランジスタ及び
抵抗器の形成される側のN型領域部に分離に供する電極
取出用の高濃度領域91を夫々形成する(第7図1)。
次に、高濃度のP形不純物の選択拡散を行い(シート抵
抗が10Ω/口程度)、夫々PNPトランジスタのベー
ス電極取出用の高濃度領域92、PNPトランジスタの
エミツタとなるP形領域93、PNPトランジスタのコ
レクタ電極取出用の高濃度領域94及び抵抗体となるP
形領域80の電極取出用の高濃度領域95A,95Bを
形成する。然る後、領域87、92及び88に夫々NP
Nトランジスタのエミツタ電極E1、ベース電極B1及
びコレクタ電極C1を形成し、領域93、90及び94
に夫々PNPトランジスタのエミツタ電極E2、ベース
電極B2及びコレクタ電極C2を形成し、領域9.5A
及び95Bに夫々抵抗器の対の電極R1文凪.を形成し
、さらに領域91VC分離用電極96を形成する。In this case, the sheet resistance of regions 79 and 80 is 10
It can be set to 00 甐Ij (FIG. 7F). After that,
A second N-type epitaxial growth layer 81 is formed on the N-type epitaxial growth layer 76 (FIG. 7G). Next, the second
By selectively diffusing P-type impurities into the N-type epitaxial growth layer 81, a P-type isolation region 82 continuous to the isolation region 77 and a part of the base region of the NPN transistor The P-type region 83 constituting the P-type region 78 is continuous to the P-type region 84 constituting a part of the collector region of the PNP transistor. Shape areas 85A, 85B
(Fig. 7H). Next, N-type impurities are selectively diffused into the second N-type epitaxial growth layer 81ffC (sheet resistance is approximately 100 mm), and N-type impurities are deposited on the portion that will become the collector of the NPN transistor to take out the collector electrode.
An L-H junction JB is formed in a region 86 surrounded by a base region 83 which becomes a low concentration emitter, and an N type high concentration region 87 is formed into a part which becomes a base of a PNP transistor and becomes a collector. The N-type high concentration region 90 is further divided by a P-type isolation region 82 so as to leave a low concentration region 89 between it and the P-type region 78, and an N-type region on the side where the PNP transistor and resistor are formed. High concentration regions 91 for taking out electrodes for separation are formed respectively (FIG. 7, 1).
Next, selective diffusion of high concentration P type impurity is performed (sheet resistance is about 10Ω/hole), and the high concentration region 92 for extracting the base electrode of the PNP transistor, the P type region 93 which will become the emitter of the PNP transistor, and the P High concentration region 94 for extracting the collector electrode of the transistor and P serving as a resistor
High concentration regions 95A and 95B for electrode extraction in the shaped region 80 are formed. After that, NP is applied to areas 87, 92, and 88, respectively.
The emitter electrode E1, base electrode B1 and collector electrode C1 of the N transistor are formed, and the regions 93, 90 and 94 are formed.
An emitter electrode E2, a base electrode B2, and a collector electrode C2 of a PNP transistor are respectively formed in the area 9.5A.
and 95B, a pair of resistor electrodes R1 and 95B, respectively. A region 91VC isolation electrode 96 is further formed.
斯くして、第7図Jに示すように第1エピタキシヤル成
長層よりなるN形領域78Aをコレクタ領域とし、P形
領域79をベース領域とし、第2エピタキシヤル成長層
よりなり領域87との間に於てL−H接合JBが形成さ
れてなるN形低濃度領域86をエミツタ領域として成る
LECPNトランジスタTr2が形成され、又、P形領
域78をコレクタ領域とし、第2エピタキシヤル成長よ
りなるN形低濃度領域89及び拡散によるN形領域90
をベース領域とし、拡散によるP形領域93をエミツタ
領域として成るPNPトランジスタTrlが形成され、
さらにP形領域80にて抵抗器Rが形成されて成る目的
の半導体集積回路を得る。In this way, as shown in FIG. 7J, the N-type region 78A made of the first epitaxial growth layer is used as a collector region, the P-type region 79 is made a base region, and the region 87 made of the second epitaxial growth layer is used as a collector region. A LECPN transistor Tr2 is formed in which the N-type low concentration region 86 in which the L-H junction JB is formed is used as an emitter region, and the P-type region 78 is used as a collector region, and is formed by second epitaxial growth. N-type low concentration region 89 and N-type region 90 due to diffusion
A PNP transistor Trl is formed, which has a base region and a diffused P-type region 93 as an emitter region,
Further, a target semiconductor integrated circuit in which a resistor R is formed in the P-type region 80 is obtained.
斯る半導体集積回路に依れば、第5図及び第6図と同様
に高性能のNPNトランジスタと共存する高性能のPN
Pトランジスタが得られる。According to such a semiconductor integrated circuit, a high-performance PN transistor coexists with a high-performance NPN transistor as shown in FIGS. 5 and 6.
A P transistor is obtained.
すなわちNPNトランジスタについては説明を省略する
も、PNPトランジスタTrlに於ては、第2エピタキ
シヤル成長層76をしてベース領域90及びエミツタ領
域93を二重拡散にて形成されるので高周波特性及びH
FEの電流特性がよくなる。又、ベース領域はそのコレ
クタ領域と接する部分がエピタキシヤル成長層による低
濃度領域89であるので、コレクタ接合の耐圧がとれ、
然もベース領域のコレクタ接合より離れる部分は濃度の
高い領域90であるので動作時のパンチスルーが回避さ
れ、耐圧の向上が図れる。上述せる如く、本発明によれ
ば、高性能のNPNトランジスタと共に高耐圧で電流特
性及び周波数特性の良い高性能のPNPトランジスタが
得られ優れた相補トランジスタを有する半導体集積回路
が得られるものである。In other words, although a description of the NPN transistor will be omitted, in the PNP transistor Trl, the base region 90 and emitter region 93 are formed by double diffusion using the second epitaxial growth layer 76, so that high frequency characteristics and H
The current characteristics of FE are improved. Further, since the portion of the base region in contact with the collector region is a low concentration region 89 formed by an epitaxial growth layer, the withstand voltage of the collector junction can be maintained.
However, since the portion of the base region away from the collector junction is a highly concentrated region 90, punch-through during operation can be avoided and the withstand voltage can be improved. As described above, according to the present invention, it is possible to obtain a high-performance NPN transistor as well as a high-performance PNP transistor with high breakdown voltage and good current characteristics and frequency characteristics, thereby obtaining a semiconductor integrated circuit having excellent complementary transistors.
又、本発明に於ては、そのPNPトランジスタTrlが
LECf)NPNトランジスタTr2と共存して形成さ
れ得るので、LECトランジスタの半導体集積回路への
導入に好適である。Further, in the present invention, the PNP transistor Trl can be formed coexisting with the LECf)NPN transistor Tr2, so it is suitable for introducing the LEC transistor into a semiconductor integrated circuit.
なお、上例ではNPNトランジスタをLECトランジス
タをもつて形成した場合であるが、通常の高濃度エミッ
タのトランジスタをもつて形成することもできる。In the above example, the NPN transistor is formed using an LEC transistor, but it can also be formed using a normal high-concentration emitter transistor.
又、上例のLECのNPNトランジスタはL−H接合を
有する構成であるが、第3図及び第4図のLEC構成と
することもできる。Furthermore, although the NPN transistor of the LEC in the above example has a configuration having an L-H junction, the LEC configuration shown in FIGS. 3 and 4 can also be used.
第1図は従来の相補トランジスタを有する半導体装置の
一例を示す断面図、第2図乃至第4図は夫々本発明に適
用されるLECトランジスタの例を示す断面図、第5図
は本発明による半導体装置の一実施例を示す工程順の断
面図、第6図及び第7図は夫々他の実施例を示す工程順
の断面図である。
21は第1導電形の半導体サブストレイト、26,30
は第2導電形のエピタキシヤル成長層、35は第1導電
形のエミツタ領域、34は拡散による第2導電形のベー
ス領域、38は第1導電形のコレクタ領域、37はエピ
タキシャル成長層よりなる第2導電形のエミッタ領域、
29は第1導電形のベース領域、26Bはエピタキシヤ
ル成長層よりなるコレクタ領域、El,B,,ClはP
NPトランジスタのエミツタ、ベース及びコレクタ各電
極、E2,B2,C2はNPNトランジスタのエミッタ
、ベース及びコレクタ各電極である。FIG. 1 is a cross-sectional view showing an example of a semiconductor device having a conventional complementary transistor, FIGS. 2 to 4 are cross-sectional views showing examples of an LEC transistor applied to the present invention, and FIG. 5 is a cross-sectional view showing an example of a semiconductor device having a conventional complementary transistor. FIGS. 6 and 7 are cross-sectional views showing steps in order of steps showing one embodiment of a semiconductor device, and FIGS. 6 and 7 are cross-sectional views showing steps in order of steps showing other embodiments, respectively. 21 is a semiconductor substrate of the first conductivity type, 26, 30
35 is an epitaxial growth layer of the second conductivity type, 35 is an emitter region of the first conductivity type, 34 is a base region of the second conductivity type formed by diffusion, 38 is a collector region of the first conductivity type, and 37 is an epitaxial growth layer of the first conductivity type. emitter region of two conductivity types,
29 is a base region of the first conductivity type, 26B is a collector region made of an epitaxial growth layer, El, B, Cl are P
The emitter, base and collector electrodes of the NP transistor, E2, B2 and C2 are the emitter, base and collector electrodes of the NPN transistor.
Claims (1)
た第2導電形の第1及び第2の半導体層と、第1及び第
2の部分の間の半導体層を分離する第1導電形の分離領
域と上記基体と上記第1半導体層の間の上記第1及び第
2部分に夫々形成された第2導電形の第1及び第2の領
域と、該第1領域上に形成された第1導電形の第3領域
と、上記第1及び第2半導体層の間の上記第1及び第2
部分に夫々形成された第1導電形の第4及び第5の領域
と、該第4領域に接続する第1導電形の第6領域により
他部と分離された第2半導体層の第7領域と、上記第5
領域に接続する第1導電形の第8領域により他部と分離
された第2半導体層の第9領域と、上記第7領域中に形
成されたより高不純物濃度の部分と、上記第7領域の上
記部分中に形成された第1導電形の第10領域と、上記
第9領域表面に形成されたより高不純物濃度の部分と、
上記第10、第7、第4領域を有する第1のトランジス
タと、上記第9、第5、第2領域を有する第2のトラン
ジスタとを有する半導体装置。1 A semiconductor substrate of a first conductivity type, first and second semiconductor layers of a second conductivity type sequentially formed on the substrate, and a first conductivity that separates the semiconductor layer between the first and second portions. first and second regions of a second conductivity type formed in the first and second portions, respectively, between the substrate and the first semiconductor layer; a third region of the first conductivity type; and the first and second semiconductor layers between the first and second semiconductor layers.
a seventh region of the second semiconductor layer separated from other parts by fourth and fifth regions of the first conductivity type formed in the portion, and a sixth region of the first conductivity type connected to the fourth region; and the fifth above
a ninth region of the second semiconductor layer separated from other parts by an eighth region of the first conductivity type connected to the region; a higher impurity concentration portion formed in the seventh region; a tenth region of the first conductivity type formed in the portion; a portion with a higher impurity concentration formed on the surface of the ninth region;
A semiconductor device comprising a first transistor having the tenth, seventh and fourth regions, and a second transistor having the ninth, fifth and second regions.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50016561A JPS5914897B2 (en) | 1975-02-08 | 1975-02-08 | semiconductor equipment |
US05/654,758 US4038680A (en) | 1972-12-29 | 1976-02-03 | Semiconductor integrated circuit device |
GB440076A GB1533156A (en) | 1975-02-08 | 1976-02-04 | Semiconductor integrated circuits |
IT1995076A IT1055132B (en) | 1975-02-08 | 1976-02-05 | INTEGRATED CIRCUIT SEMICONDUCTOR DEVICE |
CA76245057A CA1048655A (en) | 1975-02-08 | 1976-02-05 | Semiconductor integrated circuit device |
FR7603362A FR2300417A1 (en) | 1975-02-08 | 1976-02-06 | INTEGRATED SEMICONDUCTOR CIRCUIT WITH COMPLEMENTARY PNP-NPN TRANSISTORS |
DE19762604735 DE2604735A1 (en) | 1975-02-08 | 1976-02-06 | INTEGRATED SEMI-CONDUCTOR COMPONENT |
CH146276A CH607332A5 (en) | 1975-02-08 | 1976-02-06 | |
NL7601307A NL7601307A (en) | 1975-02-08 | 1976-02-09 | SEMI-CONDUCTOR DEVICE WITH INTEGRATED CIRCUIT. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50016561A JPS5914897B2 (en) | 1975-02-08 | 1975-02-08 | semiconductor equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5191680A JPS5191680A (en) | 1976-08-11 |
JPS5914897B2 true JPS5914897B2 (en) | 1984-04-06 |
Family
ID=11919681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50016561A Expired JPS5914897B2 (en) | 1972-12-29 | 1975-02-08 | semiconductor equipment |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS5914897B2 (en) |
CA (1) | CA1048655A (en) |
CH (1) | CH607332A5 (en) |
DE (1) | DE2604735A1 (en) |
FR (1) | FR2300417A1 (en) |
GB (1) | GB1533156A (en) |
IT (1) | IT1055132B (en) |
NL (1) | NL7601307A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61164399U (en) * | 1985-03-30 | 1986-10-11 | ||
JPS632549Y2 (en) * | 1983-10-04 | 1988-01-22 | ||
JPS6386192U (en) * | 1986-11-19 | 1988-06-06 | ||
JPH02296994A (en) * | 1989-05-09 | 1990-12-07 | Fujita Corp | Cutter head for slurry shield machine |
JPH03128793U (en) * | 1990-04-10 | 1991-12-25 | ||
JPH0450493U (en) * | 1990-08-31 | 1992-04-28 | ||
JPH053587Y2 (en) * | 1986-11-19 | 1993-01-28 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56126960A (en) * | 1980-03-11 | 1981-10-05 | Nec Corp | Manufacture of semiconductor device |
EP0093304B1 (en) * | 1982-04-19 | 1986-01-15 | Matsushita Electric Industrial Co., Ltd. | Semiconductor ic and method of making the same |
IT1218471B (en) * | 1985-05-09 | 1990-04-19 | Ates Componenti Elettron | BIPOLAR INTEGRATED CIRCUIT INCLUDING VERTICAL PNP TRANSISTORS WITH COLLECTOR ON THE SUBSTRATE |
EP0301468B1 (en) * | 1987-07-29 | 1993-08-25 | Fairchild Semiconductor Corporation | Process for fabricating complementary contactless vertical bipolar transistors |
FR3106931B1 (en) | 2020-01-30 | 2022-02-18 | St Microelectronics Crolles 2 Sas | Method for manufacturing a device comprising a PNP bipolar transistor and an NPN bipolar transistor for radio frequency applications |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4991191A (en) * | 1972-12-29 | 1974-08-30 |
-
1975
- 1975-02-08 JP JP50016561A patent/JPS5914897B2/en not_active Expired
-
1976
- 1976-02-04 GB GB440076A patent/GB1533156A/en not_active Expired
- 1976-02-05 CA CA76245057A patent/CA1048655A/en not_active Expired
- 1976-02-05 IT IT1995076A patent/IT1055132B/en active
- 1976-02-06 DE DE19762604735 patent/DE2604735A1/en not_active Withdrawn
- 1976-02-06 FR FR7603362A patent/FR2300417A1/en active Granted
- 1976-02-06 CH CH146276A patent/CH607332A5/xx not_active IP Right Cessation
- 1976-02-09 NL NL7601307A patent/NL7601307A/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4991191A (en) * | 1972-12-29 | 1974-08-30 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS632549Y2 (en) * | 1983-10-04 | 1988-01-22 | ||
JPS61164399U (en) * | 1985-03-30 | 1986-10-11 | ||
JPS6386192U (en) * | 1986-11-19 | 1988-06-06 | ||
JPH053587Y2 (en) * | 1986-11-19 | 1993-01-28 | ||
JPH02296994A (en) * | 1989-05-09 | 1990-12-07 | Fujita Corp | Cutter head for slurry shield machine |
JPH03128793U (en) * | 1990-04-10 | 1991-12-25 | ||
JPH0450493U (en) * | 1990-08-31 | 1992-04-28 |
Also Published As
Publication number | Publication date |
---|---|
FR2300417A1 (en) | 1976-09-03 |
DE2604735A1 (en) | 1976-08-19 |
FR2300417B1 (en) | 1980-03-21 |
CA1048655A (en) | 1979-02-13 |
GB1533156A (en) | 1978-11-22 |
IT1055132B (en) | 1981-12-21 |
JPS5191680A (en) | 1976-08-11 |
CH607332A5 (en) | 1978-12-15 |
NL7601307A (en) | 1976-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4038680A (en) | Semiconductor integrated circuit device | |
JPH0795596B2 (en) | Thyristor and manufacturing method thereof | |
US4051506A (en) | Complementary semiconductor device | |
KR0171128B1 (en) | A vertical bipolar transistor | |
JPS5914897B2 (en) | semiconductor equipment | |
US4639757A (en) | Power transistor structure having an emitter ballast resistance | |
JP3898024B2 (en) | Integrated circuit and manufacturing method thereof | |
JP3260561B2 (en) | Insulated gate semiconductor device | |
JPS6241427B2 (en) | ||
JPH10335346A (en) | Lateral pnp bipolar electronic device and manufacturing method thereof | |
JPH10189755A (en) | Semiconductor device and its manufacturing method | |
JPH10242456A (en) | Horizontal insulating gate bipolar transistor | |
JP3120441B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0574790A (en) | Semiconductor device and manufacture thereof | |
JPH1174366A (en) | Semiconductor device and manufacture therefor | |
JPH04323832A (en) | Semiconductor device and manufacture thereof | |
JP3135615B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH05109748A (en) | Semiconductor device and manufacture of the same | |
JPH01187868A (en) | Semiconductor device | |
JPH09293798A (en) | Semiconductor integrated circuit device | |
JPH0697275A (en) | Semiconductor device | |
JPH05109745A (en) | Semiconductor device | |
JPS6236864A (en) | Lateral transistor | |
JPH0982722A (en) | Manufacture of transistor | |
JPH02220445A (en) | Semiconductor device |