JPH0629374A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0629374A
JPH0629374A JP18138992A JP18138992A JPH0629374A JP H0629374 A JPH0629374 A JP H0629374A JP 18138992 A JP18138992 A JP 18138992A JP 18138992 A JP18138992 A JP 18138992A JP H0629374 A JPH0629374 A JP H0629374A
Authority
JP
Japan
Prior art keywords
layer
buried
buried layer
integrated circuit
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18138992A
Other languages
Japanese (ja)
Inventor
Ken Meguro
謙 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18138992A priority Critical patent/JPH0629374A/en
Publication of JPH0629374A publication Critical patent/JPH0629374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the integration of an integrated circuit device by reducing the chip area to be used by a connecting layer for leading out a terminal for providing a burying layer from the front plane when the burying layer is to be provided at the bottom of a semiconductor area for circuit element for the integrated circuit. CONSTITUTION:A double structure burying layer composed of a first burying layer 2 and a second burying layer 3 is provided at the bottom of a semiconductor area 5 permitting the second burying layer 3 to be uplifted into the semiconductor area 5 and a connecting layer 7 is diffused more shallowly from the surface of the semiconductor area 5 compared with the conventional case and is connected with the second burying layer 3. The horizontal diffusion width of the connecting layer 7 on the surface of the semiconductor area 5 is decreased and a chip area necessitated for the diffusion of the connecting layer 7 is decreased to be the half or less than the half of the conventionally necessitated area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は相互に分離されかつ底部
に埋込層を備える半導体領域内にバイポーラトランジス
タ, 縦形電界効果トランジスタ, 絶縁ゲートバイポーラ
トランジスタ等の回路素子を作り込む半導体集積回路装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device in which circuit elements such as a bipolar transistor, a vertical field effect transistor and an insulated gate bipolar transistor are formed in a semiconductor region which is separated from each other and has a buried layer at the bottom. .

【0002】[0002]

【従来の技術】上述のような回路素子から構成される半
導体集積回路装置では、接合分離等の手段により相互に
分離されたエピタキシャル層等の半導体領域に回路素子
を振り分けて作り込むが、回路素子に電流容量や耐圧等
の必要な特性をもたせるために半導体領域の底部に同導
電形のいわゆる埋込層をそれより高不純物濃度で設け、
それ用の端子を導出するための接続層を半導体領域の表
面からそれに達するよう拡散する構造とすることが多
い。
2. Description of the Related Art In a semiconductor integrated circuit device composed of circuit elements as described above, the circuit elements are distributed in the semiconductor region such as an epitaxial layer which is separated from each other by means such as junction separation. In order to have necessary characteristics such as current capacity and withstand voltage, a so-called buried layer of the same conductivity type is provided at the bottom of the semiconductor region with a higher impurity concentration than that.
In many cases, the connection layer for deriving the terminal for it has a structure that diffuses from the surface of the semiconductor region to reach it.

【0003】よく知られていることではあるが、かかる
集積回路装置の構造例を図3を参照して簡単に説明す
る。図の例ではp形の基板1の表面のトランジスタ10と
30とを作り込むべき範囲にn形の埋込層2を拡散し、か
つp形の埋込分離層4をそれを取り囲むパターンで拡散
した上でn形のエピタキシャル層5を所定の厚みに成長
させ、その表面からp形の分離層6を埋込分離層4に達
するように拡散してエピタキシャル層5を複数の半導体
領域に接合分離する。この半導体領域5にトランジスタ
10と30を作り込む前にそれぞれの表面からn形の接続層
7を埋込層2まで達するように拡散する。
As is well known, a structural example of such an integrated circuit device will be briefly described with reference to FIG. In the illustrated example, the transistor 10 on the surface of the p-type substrate 1
The n-type buried layer 2 is diffused in a range where 30 and 30 are to be formed, and the p-type buried separation layer 4 is diffused in a pattern that surrounds it, and then the n-type epitaxial layer 5 is grown to a predetermined thickness. Then, the p-type isolation layer 6 is diffused from the surface so as to reach the buried isolation layer 4, and the epitaxial layer 5 is junction-separated into a plurality of semiconductor regions. Transistors in this semiconductor region 5
Before forming 10 and 30, the n-type connecting layer 7 is diffused from the respective surfaces to reach the buried layer 2.

【0004】npnトランジスタ10はn形の半導体領域5
をコレクタ領域としてその表面からp形のベース層11と
n形のエミッタ層12とを順次拡散して作り込み、 pnpト
ランジスタ30は半導体領域5をn形のベース領域として
いずれもp形のエミッタ層31およびコレクタ層32を拡散
して作り込む。なお、p形のエミッタ層31とコレクタ層
32をふつうはp形のベース層11と同時拡散し、かつこの
際に分離層6の表面の所定個所にp形の電極接続層8を
拡散する。同様にn形のエミッタ層12の拡散と同時にト
ランジスタ10と30の接続層7の表面にもn形の電極接続
層13と33をそれぞれ拡散する。
The npn transistor 10 is an n-type semiconductor region 5
The p-type base layer 11 and the n-type emitter layer 12 are sequentially diffused from the surface as a collector region, and the pnp transistor 30 uses the semiconductor region 5 as the n-type base region to form the p-type emitter layer. 31 and the collector layer 32 are diffused and formed. The p-type emitter layer 31 and the collector layer
Normally, 32 is simultaneously diffused with the p-type base layer 11 and, at this time, the p-type electrode connecting layer 8 is diffused at a predetermined position on the surface of the separation layer 6. Similarly, at the same time when the n-type emitter layer 12 is diffused, the n-type electrode connection layers 13 and 33 are diffused on the surface of the connection layer 7 of the transistors 10 and 30, respectively.

【0005】これらのトランジスタ10と30のベースBと
コレクタCとエミッタE用の端子がそれぞれ図のように
導出され、接地端子Gが基板1と同電位の電極接続層8
から導出されるが、この際に各トランジスタ10と30の下
側にある埋込層2はそれぞれコレクタ端子Cとベース端
子Bに接続される。この埋込層2は、トランジスタ10で
はオン時に電流を縦方向に流してコレクタ抵抗を減少さ
せ、オフ時に空乏層を半導体領域5の中に広がらせてそ
の耐圧を向上させる役目を果たし、 pnpトランジスタ30
ではベース抵抗を減少させてその動作特性を向上させる
役目を果たす。ところが、エミッタ端子Eに電源電圧が
掛かる pnpトランジスタ30ではエミッタ層31と半導体領
域5と分離層6との間に pnp形の寄生トランジスタ40が
存在し、このため漏洩電流が大きくなる問題がある。
Terminals for the base B, collector C, and emitter E of these transistors 10 and 30 are respectively led out as shown in the drawing, and the ground terminal G is the electrode connection layer 8 having the same potential as the substrate 1.
In this case, the buried layer 2 below the transistors 10 and 30 is connected to the collector terminal C and the base terminal B, respectively. In the transistor 10, the buried layer 2 serves to increase the breakdown voltage by allowing a current to flow vertically in the transistor 10 to reduce the collector resistance and to spread the depletion layer into the semiconductor region 5 when the transistor 10 is turned off. 30
Then, it serves to reduce the base resistance and improve its operating characteristics. However, in the pnp transistor 30 in which the power supply voltage is applied to the emitter terminal E, the pnp type parasitic transistor 40 exists between the emitter layer 31, the semiconductor region 5 and the isolation layer 6, which causes a problem that leakage current becomes large.

【0006】図4の pnpトランジスタ30はこの問題点を
解決したものである。この構造では接続層7をエミッタ
層31とコレクタ層32を外側から取り囲む環状パターンを
もついわゆるウォール層に形成して埋込層2の周縁部に
接続する。この構造でも寄生トランジスタはやはり存在
するが、そのベース領域であるn形の半導体領域5に高
不純物濃度の接続層7が介在するのでその電流増幅率が
大幅に低下し、従って漏洩電流が実用上無視できる程度
にまで減少する。
The pnp transistor 30 of FIG. 4 solves this problem. In this structure, the connection layer 7 is formed as a so-called wall layer having an annular pattern that surrounds the emitter layer 31 and the collector layer 32 from the outside and is connected to the peripheral portion of the buried layer 2. Even in this structure, the parasitic transistor still exists, but since the connection layer 7 having a high impurity concentration is interposed in the n-type semiconductor region 5 which is the base region of the parasitic transistor, the current amplification factor is significantly reduced, and therefore the leakage current is practically used. Reduced to a negligible level.

【0007】[0007]

【発明が解決しようとする課題】以上のようにプレーナ
構造の集積回路装置に対して回路素子用の半導体領域の
底部に同導電形の埋込層2を設けることによって回路素
子の動作特性や耐圧値を向上させ得るが、プレーナ構造
であるからにはその表面から埋込層2用の端子を導出す
るために接続層7を埋込層2に達するまで深く拡散する
必要があり、このため接続層7の幅がかなり広がって各
回路素子を作り込むに要するチップ面積が増加する問題
がある。
As described above, by providing the buried layer 2 of the same conductivity type at the bottom of the semiconductor region for the circuit element in the integrated circuit device having the planar structure, the operating characteristics and the breakdown voltage of the circuit element are provided. Although the value can be improved, the connection layer 7 needs to be deeply diffused to reach the buried layer 2 in order to derive the terminal for the buried layer 2 from the surface because of the planar structure. However, there is a problem that the chip area required to build each circuit element increases considerably.

【0008】例えば、図4のトランジスタ10に対し数十
〜100Vの耐圧を賦与するため半導体領域5のエピタキシ
ャル層を10μmの厚みに成長させ、埋込層2のこの成長
時やその後の熱処理時のいわゆる上がり込みを3μm程
度とすると、それと接続するには接続層7を最低7μm
の深さに拡散する必要があり、このため接続層7用の不
純物を8μmのパターン幅でイオン注入するとその熱拡
散時の横方向の広がりにより接続層7の拡散幅は20μm
程度にもなって、ベース層11と同程度のチップ面積を占
領する。また、トランジスタ30のように接続層7を環状
のウォール層とすると、エミッタ層31とコレクタ層32と
その周辺を含めた面積の2倍ものチップ面積を占領して
しまう。さらには、接続層7の拡散深さが5μmを越え
るとその下部の不純物濃度が低下して埋込層2との接続
が必ずしも充分でなくなり、回路素子の特性不良による
歩留まり低下の原因となりやすい。かかる問題点に鑑
み、本発明の目的は埋込層用の接続層の拡散幅を減少さ
せて、集積回路装置のチップ面積の利用効率を向上させ
ることにある。
For example, in order to give the transistor 10 of FIG. 4 a withstand voltage of several tens to 100 V, the epitaxial layer of the semiconductor region 5 is grown to a thickness of 10 μm, and the buried layer 2 is grown at this time or during the subsequent heat treatment. If the so-called rise is about 3 μm, the connection layer 7 must be at least 7 μm to connect to it.
Therefore, if the impurities for the connection layer 7 are ion-implanted with a pattern width of 8 μm, the diffusion width of the connection layer 7 is 20 μm due to the lateral expansion during the thermal diffusion.
As a result, the same chip area as the base layer 11 is occupied. If the connection layer 7 is an annular wall layer like the transistor 30, it occupies twice as much chip area as the area including the emitter layer 31, the collector layer 32 and the periphery thereof. Furthermore, if the diffusion depth of the connection layer 7 exceeds 5 μm, the impurity concentration below the connection layer 7 decreases and the connection with the buried layer 2 is not always sufficient, which tends to cause a reduction in yield due to defective characteristics of circuit elements. In view of such problems, an object of the present invention is to reduce the diffusion width of the connection layer for the buried layer and improve the utilization efficiency of the chip area of the integrated circuit device.

【0009】[0009]

【課題を解決するための手段】上述の目的は本発明の集
積回路装置によれば、相互に分離された半導体領域の表
面からそれぞれ所定の導電形とパターンで拡散された半
導体層と, 半導体層の拡散範囲を含むパターンで半導体
領域の底部に埋め込まれたそれと同じ導電形の第1埋込
層と, 第1埋込層に重ねて所定のパターンで埋め込まれ
た同じ導電形の第2埋込層と, 第2埋込層と接続するよ
う半導体領域の表面から拡散された同じ導電形の接続層
を備える回路素子を作り込み、その各半導体層および接
続層からそれぞれ端子を導出することによって達成され
る。
According to the integrated circuit device of the present invention, the above-mentioned object is to provide a semiconductor layer diffused in a predetermined conductivity type and a pattern from the surfaces of the semiconductor regions separated from each other, and a semiconductor layer. A first buried layer of the same conductivity type as that buried in the bottom of the semiconductor region in a pattern including the diffusion range of the first buried layer, and a second buried layer of the same conductivity type buried in a predetermined pattern over the first buried layer This is achieved by forming a circuit element having a layer and a connection layer of the same conductivity type diffused from the surface of the semiconductor region so as to be connected to the second buried layer, and deriving terminals from each of the semiconductor layer and the connection layer. To be done.

【0010】なお、上記構成にいう第2埋込層用の不純
物には第1埋込層用の不純物よりも熱拡散速度の高い不
純物を用いるのがよく、埋込層が通例のようにn形の場
合は第1埋込層の不純物にアンチモンと砒素のいずれ
か, 第2埋込層の不純物に燐をそれぞれ用いるのが有利
である。第2埋込層用の不純物の導入濃度を第1埋込層
より高めるのがよく、例えば第1埋込層の不純物を面抵
抗が10〜50Ω/□になる濃度で導入する場合、第2埋込
層用の不純物をその面抵抗が1〜10Ω/□になる濃度で
導入するのがよい。第2埋込層の拡散パターンは接続層
のパターンを含むようにし、ふつう両パターンを一致さ
せるが場合により第2埋込層のパターンを第1埋込層の
パターンとほぼ重ね合わせる。
It should be noted that it is preferable to use an impurity having a higher thermal diffusion rate than the impurity for the first buried layer as the impurity for the second buried layer in the above-mentioned structure, and the buried layer is usually n. In the case of the shape, it is advantageous to use either antimony or arsenic as the impurity of the first buried layer and phosphorus as the impurity of the second buried layer. It is preferable that the impurity concentration for the second buried layer is higher than that for the first buried layer. For example, if the impurity for the first buried layer is doped at a concentration that gives a sheet resistance of 10 to 50 Ω / □, It is preferable to introduce the impurities for the buried layer in a concentration such that the sheet resistance is 1 to 10 Ω / □. The diffusion pattern of the second embedding layer should include the pattern of the connecting layer, and the two patterns are usually matched, but the pattern of the second embedding layer is almost overlapped with the pattern of the first embedding layer in some cases.

【0011】また、回路素子が半導体領域をベース領域
とするトランジスタである場合は、前述の寄生トランジ
スタ効果を減殺するために第2埋込層とウォール層とし
ての接続層をエミッタ層とコレクタ層を外側から取り囲
み第1埋込層の周縁部に沿う環状パターンに形成するの
が有利である。さらに、集積回路装置が低圧用の場合に
は第2埋込層に熱拡散速度の高い不純物を用いかつそれ
を高不純物濃度で導入してそのいわゆる上がり込みを大
きくし、接続層を同じ導電形のエミッタ層等と同時拡散
させるのが有利である。なお、本発明はバイポーラトラ
ンジスタのほか縦形の電界効果トランジスタや絶縁ゲー
トバイポーラトランジスタを回路素子とする集積回路装
置への適用に有利である。
When the circuit element is a transistor having a semiconductor region as a base region, the second buried layer, the connection layer as a wall layer, the emitter layer and the collector layer are formed in order to reduce the parasitic transistor effect. It is advantageous to form an annular pattern that surrounds from the outside and runs along the periphery of the first buried layer. Further, when the integrated circuit device is used for low voltage, an impurity having a high thermal diffusion rate is used for the second buried layer and it is introduced at a high impurity concentration to increase the so-called rise, and the connecting layer is made of the same conductivity type. It is advantageous to co-diffuse with the emitter layer and the like. The present invention is advantageous for application to an integrated circuit device having not only bipolar transistors but also vertical field effect transistors and insulated gate bipolar transistors as circuit elements.

【0012】[0012]

【作用】本発明は従来からの埋込層である第1埋込層に
重ねて同導電形の第2埋込層を拡散して半導体領域内に
下方から上方に向け突出ないしは上がり込ませ、半導体
領域の表面から拡散する接続層をこの第2埋込層の上端
部と繋ぎ合わせることにより、接続層を拡散すべき深さ
を従来より実質的に減少させてその半導体領域の表面に
おける横方向の広がりないしは拡散幅を抑制して接続層
に食われるチップ面積を減少させるとともに、接続層と
第1埋込層ないしは第2埋込層との接続を従来より確実
にするものである。
According to the present invention, the first buried layer, which is a conventional buried layer, is overlaid and the second buried layer of the same conductivity type is diffused so as to project or rise upward from below into the semiconductor region. By connecting the connection layer diffusing from the surface of the semiconductor region to the upper end portion of the second buried layer, the depth at which the connection layer should be diffused is substantially reduced as compared with the prior art, and the lateral direction on the surface of the semiconductor region is The width or diffusion width of the connection layer is suppressed to reduce the chip area consumed by the connection layer, and the connection between the connection layer and the first burying layer or the second burying layer is made more reliable than before.

【0013】例えば半導体領域の厚みが10μmの場合、
第1埋込層の3μmの上がり込みに加えて第2埋込層を
3〜4μm上がり込ませると接続層をこれと接続するよ
うに拡散すべき深さは4〜5μmで済み、この接続層の
不純物を通例のように深さとほぼ同じ4μmのパターン
幅で導入すると、その熱拡散後の半導体領域の表面にお
ける接続層の横方向の拡散幅は10〜12μmとなり、従来
は7〜8μmの深さに拡散していた接続層の拡散幅が前
述のように20μmに広がるのと比べて約半分で済む。従
って本発明では接続層により占領されるチップ面積を従
来の半分程度に減少させることができ、さらに接続層が
環状パターンのウォール層の時は従来の3分の1以下に
減少させることができる。
For example, when the thickness of the semiconductor region is 10 μm,
When the second buried layer is raised by 3 to 4 μm in addition to the first buried layer being raised by 3 μm, the connection layer has a diffusion depth of 4 to 5 μm. When the impurity of (4) is introduced with a pattern width of 4 μm, which is almost the same as the depth, the lateral diffusion width of the connection layer on the surface of the semiconductor region after the thermal diffusion is 10 to 12 μm, which is conventionally 7 to 8 μm. The diffusion width of the connection layer, which has been diffused, is about half that of 20 μm as described above. Therefore, according to the present invention, the chip area occupied by the connection layer can be reduced to about half that of the conventional case, and when the connection layer is a wall layer having an annular pattern, it can be reduced to one third or less of the conventional case.

【0014】[0014]

【実施例】以下、図を参照して本発明の実施例を説明す
る。図1は本発明による集積回路装置の第1実施例をそ
の主な製造工程ごとの状態と完成状態で示し、図2はそ
の第2実施例を完成状態で示し、これらの前に説明した
図3や図4との対応部分に同じ符号が付されているので
重複部分に対する説明は適宜省略することとする。な
お、これらの実施例では集積回路装置を構成する回路素
子をバイポーラトランジスタとするが、本発明はもちろ
んこれに限らず縦形の電界効果トランジスタや絶縁ゲー
トバイポーラトランジスタ等を回路素子とする集積回路
装置一般に広く適用することができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of an integrated circuit device according to the present invention in a state of each main manufacturing process and a completed state, and FIG. 2 shows a second embodiment of the same in a completed state. 3 and FIG. 4 are denoted by the same reference numerals, and the description of the overlapping portions will be appropriately omitted. In these embodiments, the circuit element forming the integrated circuit device is a bipolar transistor, but the present invention is not limited to this, and a general integrated circuit device having a vertical field effect transistor, an insulated gate bipolar transistor or the like as a circuit element is generally used. It can be widely applied.

【0015】図1(a) は第1埋込層用の不純物導入工程
であり、この例ではp形の基板1の表面の同図(g) に示
す回路素子10〜30を作り込むべき各範囲に第1埋込層2
用のn形不純物として例えばアンチモンSbをフォトレジ
スト膜や酸化膜をマスクM2とするイオン注入法により導
入する。基板1には例えば10〜20Ωcmの比抵抗をもつも
のを用い、アンチモンSbは熱拡散後に例えば10〜50Ω/
□の面抵抗が得られる濃度で導入するのがよい。なお、
この第1埋込層2用の不純物にはアンチモンと同様に熱
拡散速度が比較的低い砒素を用いてもよい。
FIG. 1 (a) shows an impurity introducing step for the first buried layer. In this example, the circuit elements 10 to 30 shown in FIG. 1 (g) on the surface of the p-type substrate 1 are to be formed. First buried layer 2 in range
For example, antimony Sb is introduced as an n-type impurity for use by an ion implantation method using a photoresist film or an oxide film as a mask M2. For the substrate 1, for example, one having a specific resistance of 10 to 20 Ωcm is used, and antimony Sb is, for example, 10 to 50 Ω / after thermal diffusion.
It is preferable to introduce it at a concentration at which the sheet resistance of □ can be obtained. In addition,
As the impurity for the first buried layer 2, arsenic having a relatively low thermal diffusion rate may be used similarly to antimony.

【0016】図1(b) に第2埋込層用の不純物導入工程
を示す。この第2埋込層3用のn形不純物には熱拡散速
度が高い燐Pを用いるのがよく、これをイオン注入法に
よりマスクM3で指定されたパターンで第1埋込層2より
高い不純物濃度に導入する。第2埋込層3のパターンは
第1埋込層2と重ねられ、この実施例では図の左側の第
1埋込層2に対してはその右側周縁に沿うパターンに,
中央の第1埋込層2に対してはその全面を覆うパターン
に, 右側の第1埋込層2に対してはその周縁に沿う環状
のパターンにそれぞれ形成される。この第2埋込層3用
の不純物としての燐Pは熱拡散後に第1埋込層2よりか
なり低い例えば1〜10Ω/□の面抵抗が得られる高濃度
で導入するのがよい。
FIG. 1B shows an impurity introducing step for the second buried layer. It is preferable to use phosphorus P having a high thermal diffusion rate as the n-type impurity for the second buried layer 3, which is higher than the first buried layer 2 in a pattern designated by the mask M3 by an ion implantation method. Introduce to concentration. The pattern of the second burying layer 3 is overlapped with the first burying layer 2, and in this embodiment, for the first burying layer 2 on the left side of the drawing, the pattern along the right peripheral edge is formed.
The central first buried layer 2 is formed in a pattern covering the entire surface, and the right first buried layer 2 is formed in an annular pattern along the periphery thereof. Phosphorus P as an impurity for the second buried layer 3 is preferably introduced at a high concentration so that a sheet resistance of, for example, 1 to 10 Ω / □, which is considerably lower than that of the first buried layer 2, can be obtained after thermal diffusion.

【0017】図1(c) は埋込分離層4用の不純物導入工
程であり、p形不純物として例えばボロンBをマスクM4
で指定された各第1埋込層2を囲む枠状のパターンでイ
オン注入法により導入する。次の図1(d) はエピタキシ
ャル層5の成長工程であり、通例のように熱CVD法に
よって基板1の全面上にn形のエピタキシャル層5をこ
の実施例では10μmの厚みに成長させる。この図1(d)
のエピタキシャル成長工程と次の図1(e) の工程中に掛
かる高温により第1埋込層2と第2埋込層3と埋込分離
層4内の不純物が熱拡散され、それぞれ図のようにエピ
タキシャル層5内に上がり込む。この実施例でのこの上
がり込みの程度は例えば第1埋込層2が3μmに, 第2
埋込層3が第1埋込層2に加えて3〜4μmに, 埋込分
離層4が4μm程度にそれぞれなる。
FIG. 1C shows an impurity introduction step for the buried isolation layer 4, for example, boron B is used as a mask M4 as a p-type impurity.
The ion implantation method is carried out in a frame-like pattern surrounding each first buried layer 2 designated by. Next, FIG. 1 (d) shows a step of growing the epitaxial layer 5. As usual, the n-type epitaxial layer 5 is grown to a thickness of 10 .mu.m in this embodiment on the entire surface of the substrate 1 by the thermal CVD method. This Figure 1 (d)
The impurities in the first buried layer 2, the second buried layer 3, and the buried separation layer 4 are thermally diffused by the high temperature applied during the epitaxial growth process of FIG. 1 and the process of FIG. It goes up into the epitaxial layer 5. The degree of this rise in this embodiment is, for example, 3 μm for the first buried layer 2 and 2
The buried layer 3 has a thickness of 3 to 4 μm in addition to the first buried layer 2, and the buried separation layer 4 has a thickness of about 4 μm.

【0018】続く図1(e) は分離層6の拡散工程であ
り、p形の分離層6をボロンを不純物として埋込分離層
4に対応する枠状パターンでそれに達するように深く拡
散することにより、n形のエピタキシャル層を基板1か
らおよび相互に接合分離された複数個の半導体領域5に
分割する。次の図1(f) は接続層7の拡散工程であり、
各半導体領域5の表面から燐を不純物としてn形の接続
層7をその表面面抵抗が例えば10〜50Ω/□になる程度
の濃度でこの例では4〜5μmの深さに拡散して第2埋
込層3と接続する。この際の不純物を導入するパターン
は深さと同程度の4μm幅でよいので、その熱拡散後の
接続層7の横方向の広がりを10〜12μmに抑えることが
できる。なお、図の中央の第2埋込層3に対しては接続
層7をその右側の周縁部に沿って接続するように拡散す
る。
FIG. 1 (e) shows the diffusion process of the separation layer 6, in which the p-type separation layer 6 is diffused deeply so as to reach it by using boron as an impurity in a frame pattern corresponding to the buried separation layer 4. Thus, the n-type epitaxial layer is divided from the substrate 1 into a plurality of semiconductor regions 5 which are junction-separated from each other. The following Fig. 1 (f) shows the diffusion process of the connection layer 7,
From the surface of each semiconductor region 5, phosphorus is used as an impurity to diffuse the n-type connection layer 7 to a depth of 4 to 5 μm in this example at a concentration such that the surface resistance is 10 to 50 Ω / □. Connect to the buried layer 3. At this time, the pattern for introducing the impurities may have a width of 4 μm, which is almost the same as the depth, so that the lateral spread of the connection layer 7 after the thermal diffusion can be suppressed to 10 to 12 μm. Note that the connection layer 7 is diffused so as to be connected to the second buried layer 3 in the center of the figure along the peripheral portion on the right side thereof.

【0019】図1(g) に集積回路装置の完成状態を簡略
に示す。 npnトランジスタ10と20に対しボロン拡散によ
りp形のベース層11と21を例えば3μmの深さに作り込
むと同時に pnpトランジスタ30に対しエミッタ層31とコ
レクタ層32を作り込み、かつ図の右端の分離層6の表面
に電極接続層8を拡散する。また、 npnトランジスタ10
と20に対し燐拡散によりn形のエミッタ層12と22を例え
ば2μmの深さに作り込むと同時にトランジスタ10〜30
用の接続層7の表面に電極接続層13〜33をそれぞれ拡散
した上で、端子B,C,E,G を導出して図の完成状態とす
る。
FIG. 1 (g) schematically shows a completed state of the integrated circuit device. The p-type base layers 11 and 21 are formed in the npn transistors 10 and 20 by boron diffusion to a depth of, for example, 3 μm, and at the same time, the emitter layer 31 and the collector layer 32 are formed in the pnp transistor 30. The electrode connection layer 8 is diffused on the surface of the separation layer 6. Also, npn transistor 10
For n and 20, the n-type emitter layers 12 and 22 are formed to a depth of, for example, 2 μm by phosphorus diffusion, and at the same time, the transistors 10 to 30 are formed.
After the electrode connection layers 13 to 33 are diffused on the surface of the connection layer 7 for use respectively, the terminals B, C, E and G are derived to complete the figure.

【0020】この実施例の集積回路装置を構成する回路
素子中で、 npnトランジスタ10ではベース層11の下側の
第1埋込層2との間に存在する厚い半導体領域5により
高い耐圧が得られ、 npnトランジスタ20ではベース層21
と第2埋込層3の間の半導体領域5が薄いので耐圧は低
いが低いコレクタ抵抗が得られ、 pnpトランジスタ30で
はエミッタ層31とコレクタ層32を外側から環状の接続層
7で囲んで寄生トランジスタ効果を抑制できる。また、
いずれについても接続層7の拡散幅を従来より減少させ
てそれに要するチップ面積を節約することができ、かつ
接続層7の第1埋込層2ないしは第2埋込層3との接続
を改善して回路素子の特性のばらつきを従来より減少さ
せることができる。
In the circuit element constituting the integrated circuit device of this embodiment, the npn transistor 10 has a high breakdown voltage due to the thick semiconductor region 5 existing between the npn transistor 10 and the first buried layer 2 below the base layer 11. In the npn transistor 20, the base layer 21
Since the semiconductor region 5 between the first buried layer 3 and the second buried layer 3 is thin, a low collector resistance can be obtained although the breakdown voltage is low. In the pnp transistor 30, the emitter layer 31 and the collector layer 32 are surrounded by the ring-shaped connection layer 7 from the outside, and parasitic. The transistor effect can be suppressed. Also,
In either case, the diffusion width of the connection layer 7 can be reduced as compared with the conventional case, and the chip area required for the reduction can be saved, and the connection of the connection layer 7 with the first embedded layer 2 or the second embedded layer 3 can be improved. It is possible to reduce variations in the characteristics of the circuit elements as compared with the conventional case.

【0021】図2に本発明の通常の低耐圧の集積回路装
置を高集積化するに適する実施例を完成状態で示す。こ
の実施例では第1埋込層2と第2埋込層3を拡散する要
領は前の実施例とほぼ同じであってよいが、エピタキシ
ャル層5をそれより薄いめの例えば7〜8μmの厚みに
成長させ、第2埋込層3を熱拡散速度が高い不純物の高
濃度拡散により作り込むことにより接続層7を2〜3μ
mの深さに拡散すれば済むようにし、これを利用して n
pnトランジスタ10と20用のエミッタ層12と22と同時に同
じn形の接続層7を拡散することにより製造工程を簡単
化する。これに応じ npnトランジスタ10, 20のベース層
11, 21と pnpトランジスタ30のエミッタ層31とコレクタ
層32用のp形拡散の深さは3〜4μmとされ、かつ図1
のトランジスタ10〜30用の電極接続層13〜33は省略され
る。
FIG. 2 shows, in a completed state, an embodiment suitable for highly integrating the usual low breakdown voltage integrated circuit device of the present invention. In this embodiment, the procedure for diffusing the first buried layer 2 and the second buried layer 3 may be substantially the same as the previous embodiment, but the epitaxial layer 5 is made thinner, for example, 7 to 8 μm thick. And the second buried layer 3 is formed by high-concentration diffusion of impurities having a high thermal diffusion rate to form the connection layer 7 by 2 to 3 μm.
It only needs to be diffused to a depth of m.
Simplifying the manufacturing process by diffusing the same n-type connection layer 7 at the same time as the emitter layers 12 and 22 for the pn transistors 10 and 20. Accordingly, the base layers of npn transistors 10 and 20
The depth of the p-type diffusion for the emitter layer 31 and the collector layer 32 of the 11, 21 and pnp transistor 30 is 3 to 4 μm, and FIG.
The electrode connection layers 13 to 33 for the transistors 10 to 30 are omitted.

【0022】この実施例では接続層7の拡散深さが2〜
3μmでよいのでそれ用の不純物を導入するパターン幅
を2μmにすることにより、不純物の熱拡散後の接続層
7の横方向の広がり幅を7μm程度に抑えて集積回路装
置を高集積化できる。なお、図2の例ではトランジスタ
10と30は前の実施例より小形化が容易なほかはそれと耐
圧が異なるだけであるが、トランジスタ20ではp形のベ
ース層21がn形の第2埋込層3と接しているので耐圧は
低いが順方向電圧降下がダイオード並みに低い大電流制
御等に適する特性をこれに持たせることができる。この
ように本発明は実施例に限らず種々の態様で実施をする
ことができる。
In this embodiment, the diffusion depth of the connection layer 7 is 2 to
Since 3 μm is sufficient, the width of the pattern for introducing impurities for that purpose is set to 2 μm, whereby the lateral width of the connection layer 7 after thermal diffusion of impurities can be suppressed to about 7 μm and the integrated circuit device can be highly integrated. Note that in the example of FIG.
The transistors 10 and 30 differ from the previous embodiment only in that they are easier to miniaturize and have a different breakdown voltage, but in the transistor 20, the breakdown voltage is because the p-type base layer 21 is in contact with the n-type second buried layer 3. Although it has a low voltage drop, the forward voltage drop thereof is as low as that of a diode, so that it can be provided with characteristics suitable for large current control. As described above, the present invention is not limited to the embodiments and can be implemented in various modes.

【0023】[0023]

【発明の効果】以上のとおり本発明の集積回路装置で
は、相互に分離された半導体領域の表面からそれぞれ所
定の導電形とパターンで拡散された半導体層と, それら
の範囲を含むパターンで半導体領域の底部に埋め込んだ
それと同導電形の第1埋込層と,第1埋込層に重ねて所
定のパターンで埋め込んだ同導電形の第2埋込層と, 第
2埋込層と接続するよう半導体領域の表面から拡散した
同導電形の接続層を備える回路素子を作り込み、その各
半導体層および接続層からそれぞれ端子を導出すること
によって次の効果を上げることができる。
As described above, in the integrated circuit device of the present invention, the semiconductor regions diffused from the surfaces of the semiconductor regions separated from each other in a predetermined conductivity type and a pattern, and the semiconductor regions in a pattern including the range thereof. Connect to the first buried layer of the same conductivity type that is buried in the bottom of the second buried layer, the second buried layer of the same conductivity type that is buried in the predetermined pattern and is overlaid on the first buried layer, and the second buried layer By forming a circuit element including a connection layer of the same conductivity type diffused from the surface of the semiconductor region and deriving terminals from the respective semiconductor layers and connection layers, the following effects can be obtained.

【0024】(a) 第1埋込層に重ねて第2埋込層を拡散
して半導体領域内に上がり込ませ、これに半導体領域の
表面から拡散する接続層を繋ぎ合わせることにより接続
層を拡散すべき深さ減少させてその横方向の拡散幅を抑
制し、接続層の拡散に要するチップ面積を従来の半分な
いしそれ以下に減少させることができる。 (b) 接続層を第2埋込層を介して第1埋込層と接続する
ことにより、従来からばらつきやすかった接続層と埋込
層との間の接続を確実にして回路要素の特性のばらつき
を減少させ、集積回路装置の製造歩留まりを向上でき
る。
(A) The second buried layer is diffused so as to be overlaid on the first buried layer to rise into the semiconductor region, and the connection layer diffused from the surface of the semiconductor region is connected to the second buried layer to form the connection layer. The depth to be diffused can be reduced to suppress the lateral diffusion width, and the chip area required for diffusion of the connection layer can be reduced to half or less of the conventional chip area. (b) By connecting the connection layer to the first buried layer via the second buried layer, the connection between the connection layer and the buried layer, which has been liable to vary from the past, is ensured and the characteristics of the circuit element are improved. It is possible to reduce variations and improve the manufacturing yield of integrated circuit devices.

【0025】(c) 第2埋込層用に第1埋込層より熱拡散
速度の高い不純物を用い、あるいはその不純物濃度を第
1埋込層より高める態様によれば、第2埋込層の半導体
領域内への上がり込みを増加させて接続層の拡散深さを
浅くすることにより接続層の拡散に要するチップ面積を
一層減少させることができる。 (d) 第2埋込層を熱拡散速度の高い不純物の高濃度で作
り込んで上がり込みを大きくして接続層をエミッタ層等
と同時拡散させる態様では、製造工程を簡単化するとと
もに接続層に要するチップ面積を一層縮小して集積回路
装置を高集積化することができる。
(C) According to the aspect in which an impurity having a higher thermal diffusion rate than that of the first buried layer is used for the second buried layer or the impurity concentration thereof is higher than that of the first buried layer, the second buried layer It is possible to further reduce the chip area required for diffusion of the connection layer by increasing the rise of the connection layer into the semiconductor region and making the diffusion depth of the connection layer shallow. (d) In the aspect in which the second buried layer is formed with a high concentration of impurities having a high thermal diffusion rate to increase the rise and thereby simultaneously diffuse the connecting layer with the emitter layer and the like, the manufacturing process is simplified and the connecting layer is formed. It is possible to further reduce the chip area required for high integration of the integrated circuit device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体集積回路装置の第1実施例
を主な工程ごとの状態で示し、同図(a) は第1埋込層用
の不純物の導入工程、同図(b) は第2埋込層用の不純物
の導入工程、同図(c) は埋込分離層用の不純物の導入工
程、同図(d) はエピタキシャル成長工程、同図(e) は分
離層の拡散工程、同図(f) は接続層の拡散工程、同図
(g) は完成時の状態をそれぞれ示す要部拡大断面図であ
る。
FIG. 1 shows a first embodiment of a semiconductor integrated circuit device according to the present invention in a state of main steps, FIG. 1A is a step of introducing impurities for a first buried layer, and FIG. The step of introducing impurities for the second buried layer, the figure (c) shows the step of introducing impurities for the buried isolation layer, the figure (d) shows the epitaxial growth step, the figure (e) shows the diffusion step of the isolation layer, Figure (f) shows the connection layer diffusion process.
(g) is an enlarged cross-sectional view of a main part showing a state at the time of completion.

【図2】本発明の第2実施例を完成状態で示す要部拡大
断面図である。
FIG. 2 is an enlarged sectional view of an essential part showing a second embodiment of the present invention in a completed state.

【図3】従来構造の集積回路装置の要部拡大断面図であ
る。
FIG. 3 is an enlarged cross-sectional view of a main part of an integrated circuit device having a conventional structure.

【図4】異なる従来構造の集積回路装置の要部拡大断面
図である。
FIG. 4 is an enlarged sectional view of an essential part of an integrated circuit device having a different conventional structure.

【符号の説明】[Explanation of symbols]

2 第1埋込層 3 第2埋込層 4 半導体領域の接合分離用の埋込分離層 5 半導体領域ないしはエピタキシャル層 6 半導体領域の接合分離用の分離層 7 接続層 10 回路要素としての npnトランジスタ 20 回路要素としての npnトランジスタ 30 回路要素としての pnpトランジスタ P 第2埋込層用不純物としての燐 Sb 第1埋込層用不純物としてのアンチモン 2 First buried layer 3 Second buried layer 4 Buried separation layer for junction separation of semiconductor region 5 Semiconductor region or epitaxial layer 6 Separation layer for junction separation of semiconductor region 7 Connection layer 10 npn transistor as circuit element 20 npn Transistor as Circuit Element 30 pnp Transistor as Circuit Element P Phosphorus Sb as Impurity for Second Buried Layer Sb Antimony as Impurity for First Buried Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】相互に分離された半導体領域に回路素子を
作り込んでなる集積回路装置であって、半導体領域の表
面から回路素子用にそれぞれ所定の導電形とパターンで
拡散された半導体層と、半導体層の拡散範囲を含むパタ
ーンで半導体領域の底部に埋め込まれた同導電形の第1
埋込層と、第1埋込層に重ねて所定のパターンで埋め込
まれた同導電形の第2埋込層と、第2埋込層と接続する
ように半導体領域の表面から拡散された同導電形の接続
層とを備え、半導体層と接続層からそれぞれ端子を導出
してなることを特徴とする半導体集積回路装置。
1. An integrated circuit device in which circuit elements are formed in mutually separated semiconductor regions, and a semiconductor layer diffused from the surface of the semiconductor region for the circuit elements in a predetermined conductivity type and a pattern, respectively. A first conductivity type buried in the bottom of the semiconductor region in a pattern including the diffusion range of the semiconductor layer.
A buried layer, a second buried layer of the same conductivity type that is buried in a predetermined pattern so as to be overlaid on the first buried layer, and the same diffused from the surface of the semiconductor region so as to be connected to the second buried layer. A semiconductor integrated circuit device, comprising: a conductive type connection layer, wherein terminals are respectively derived from the semiconductor layer and the connection layer.
【請求項2】請求項1に記載の半導体装置において、第
1埋込層用の不純物よりも第2埋込層用に熱拡散速度の
高い不純物を用いることを特徴とする半導体集積回路装
置。
2. A semiconductor integrated circuit device according to claim 1, wherein an impurity having a higher thermal diffusion rate is used for the second buried layer than for the first buried layer.
【請求項3】請求項1に記載の半導体装置において、第
1埋込層よりも第2埋込層の不純物濃度が高められるこ
とを特徴とする半導体集積回路装置。
3. A semiconductor integrated circuit device according to claim 1, wherein the impurity concentration of the second buried layer is higher than that of the first buried layer.
JP18138992A 1992-07-09 1992-07-09 Semiconductor integrated circuit device Pending JPH0629374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18138992A JPH0629374A (en) 1992-07-09 1992-07-09 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18138992A JPH0629374A (en) 1992-07-09 1992-07-09 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0629374A true JPH0629374A (en) 1994-02-04

Family

ID=16099888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18138992A Pending JPH0629374A (en) 1992-07-09 1992-07-09 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0629374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448829B1 (en) * 2002-08-13 2004-09-16 현대자동차주식회사 front wheel house of a car
JP2008506256A (en) * 2004-07-08 2008-02-28 インターナショナル レクティファイアー コーポレイション Resurf diffusion method for high voltage MOSFETs.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448829B1 (en) * 2002-08-13 2004-09-16 현대자동차주식회사 front wheel house of a car
JP2008506256A (en) * 2004-07-08 2008-02-28 インターナショナル レクティファイアー コーポレイション Resurf diffusion method for high voltage MOSFETs.

Similar Documents

Publication Publication Date Title
KR100683100B1 (en) Semiconductor integrated circuit device and method for manufacturing the same
US6573146B2 (en) Methods of manufacturing complementary bipolar transistors
JPH09129741A (en) Semiconductor integrated circuit and manufacture thereof
JPH07326773A (en) Diode and its preparation
JPS6229904B2 (en)
JPH0216017B2 (en)
JPH06104459A (en) Semiconductor device
JP2979554B2 (en) Method for manufacturing semiconductor device
JPH0629374A (en) Semiconductor integrated circuit device
US4097888A (en) High density collector-up structure
JPH0582534A (en) Semiconductor device
JP3149913B2 (en) Method for manufacturing transistor
JP2653019B2 (en) Bipolar transistor and method of manufacturing the same
JPH0828373B2 (en) Junction separation semiconductor region structure for integrated circuit device
JP3135615B2 (en) Semiconductor device and manufacturing method thereof
JPH02144924A (en) Vertical-type bipolar transistor
JPH02114645A (en) Bipolar transistor
JPS6031105B2 (en) semiconductor equipment
JP3070284B2 (en) Method of making circuit element for integrated circuit device
JP2518880B2 (en) Semiconductor device
JPS6348189B2 (en)
JPH0428148B2 (en)
JPH02220445A (en) Semiconductor device
JPH11260831A (en) Manufacture of transistor
JPH0294527A (en) Semiconductor device