JPH06104459A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH06104459A
JPH06104459A JP27667792A JP27667792A JPH06104459A JP H06104459 A JPH06104459 A JP H06104459A JP 27667792 A JP27667792 A JP 27667792A JP 27667792 A JP27667792 A JP 27667792A JP H06104459 A JPH06104459 A JP H06104459A
Authority
JP
Japan
Prior art keywords
region
type
type region
semiconductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27667792A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yagi
一良 八木
Kinji Kudo
欣二 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP27667792A priority Critical patent/JPH06104459A/en
Publication of JPH06104459A publication Critical patent/JPH06104459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To form a monolithic IC so that a parasitic transistor does not occur when forming a diode in a PN junction separating region. CONSTITUTION:An insular region of a PN junction separation surrounded by a P-type semiconductor substrate 11, a P-type region 14 and a P<+>-type region is formed. An N-type cathode region comprising an N<++>-type region 23 and an N<->-type region 16 is formed in the insular region. A P-type anode region comprising a P-type region 15 and a P<+>-type region 20 is formed so as to surround the cathode region. An N<+>-type region 13 and an N<+>-type region 18 are formed so as to surround the anode region. A cathode electrode 36 is connected to the N<++>-type region 23. An anode electrode 35 is connected to the P<+>-type region 20 and the N<+>-type region 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、PN接合分離された領
域に寄生トランジスタ動作が抑制されてPN接合ダイオ
ードが形成された半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which a PN junction diode is formed by suppressing the operation of a parasitic transistor in a region separated from a PN junction.

【0002】[0002]

【従来の技術】集積回路の素子間を分離する手段として
PN接合分離法が公知である。図11はこのPN接合分
離を利用したモノリシックICチップを示す。ここでは
出発母材としてのP形半導体領域1とこの上にエピタキ
シャル成長によって形成されたN- 形半導体領域2とか
ら成る半導体基板を備え、素子形成領域となるN- 形半
導体領域2がP形の拡散分離領域3によって多数の領域
に区画されている。図11では、この1つの素子形成領
域にN+ 形領域4をエミッタ、P形領域5をベース、N
+ 形領域6及びN- 形領域2をコレクタとするNPNト
ランジスタ構造が構成されている。ここでN+ 形領域6
は電極7に隣接されており、N+ 形領域4及びP形領域
5は共通の電極8に隣接している。この結果、図11の
NPNトランジスタはベース・エミッタ間短絡のコレク
タ・ベース間PN接合ダイオードとして動作する。
2. Description of the Related Art A PN junction separation method is known as a means for separating elements of an integrated circuit. FIG. 11 shows a monolithic IC chip using this PN junction separation. Here, a semiconductor substrate including a P-type semiconductor region 1 as a starting base material and an N -type semiconductor region 2 formed by epitaxial growth on the P-type semiconductor region 1 is provided, and the N -type semiconductor region 2 serving as an element forming region is a P-type semiconductor region. It is divided into a large number of regions by the diffusion separation region 3. In FIG. 11, the N + type region 4 is the emitter, the P type region 5 is the base,
An NPN transistor structure is constructed with the + type region 6 and the N − type region 2 as collectors. Where N + type region 6
Are adjacent to electrode 7, and N + type region 4 and P type region 5 are adjacent to common electrode 8. As a result, the NPN transistor of FIG. 11 operates as a collector-base PN junction diode with a shorted base-emitter.

【0003】[0003]

【発明が解決しようとする課題】ところで、図11に示
す素子構造ではP形半導体領域5をエミッタとし、N+
形領域6、N- 形領域2をベースとし、P+ 形領域3及
びP形領域1をコレクタとするPNPトランジスタ構造
が素子の縦方向と横方向に寄生的に形成される。このた
め、電極8と電極7との間に電極8側の電位を大きくす
る電圧を印加してPN接合ダイオードを順方向動作させ
ると、上記の寄生のPNPトランジスタもhfeが0.1
以上のトランジスタとして動作し、電極9にコレクタ電
流が流れこれが漏れ電流となる。この漏れ電流は、電極
9と電極7及び8との電位差が大きい場合に、大きな電
力損失を生じさせることになり、問題となる。
By the way, in the device structure shown in FIG. 11, the P-type semiconductor region 5 is used as an emitter and N +
A PNP transistor structure is formed parasitically in the vertical and horizontal directions of the device, with the P-type region 6, the N -type region 2 as the base, and the P + -type region 3 and the P-type region 1 as the collector. Therefore, when a voltage that increases the potential on the electrode 8 side is applied between the electrodes 8 and 7 to operate the PN junction diode in the forward direction, hfe of the parasitic PNP transistor is 0.1
The transistor operates as described above, and a collector current flows through the electrode 9 and becomes a leak current. This leakage current causes a large power loss when the potential difference between the electrode 9 and the electrodes 7 and 8 is large, which is a problem.

【0004】そこで、本発明はこのような寄生トランジ
スタが形成されないPN接合ダイオード構造を提供する
ことを目的とする。
Therefore, an object of the present invention is to provide a PN junction diode structure in which such a parasitic transistor is not formed.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、実施例を示す図10の符号を参照して説明
すると、第1の導電形の第1の半導体領域11、14、
19によって島状にPN接合分離された素子形成領域内
に、一方の主面が基板上面に露出した第2の導電形の第
2の半導体領域16、23と、この第2の半導体領域1
6、23をその一方の主面を除いて包囲し且つ基板上面
に露出する部分を有する第1の導電形の第3の半導体領
域15、20と、この第3の半導体領域15、20をそ
の一方の主面を除いて包囲し且つ基板上面に露出する部
分を有する第2の導電形の第4の半導体領域13、18
とを備え、前記第2の半導体領域16、23の一方の主
面に接続された第1の電極36と、前記第3及び第4の
半導体領域15、20、13、18の一方の主面に接続
された第2の電極35とが設けられている半導体装置に
係わるものである。なお、本発明と実施例との対応関係
を説明すると、第1の半導体領域はP形半導体基体11
とP形領域14とP+ 形領域19であり、第2の半導体
領域はN-形領域16とN++形領域23であり、第3の
半導体領域はP形領域15とP+ 形領域20であり、第
4の半導体領域はN+ 形領域13とN+ 形領域18とで
あり、第1の電極はカソード電極36であり、第2の電
極はアノード電極35である。
The present invention for achieving the above object will be described with reference to the reference numerals of FIG. 10 which shows an embodiment. First semiconductor regions 11, 14 of the first conductivity type,
Second semiconductor regions 16 and 23 of the second conductivity type, one main surface of which is exposed at the upper surface of the substrate, in the element formation region separated by the island-shaped PN junction by 19, and the second semiconductor region 1
The third semiconductor regions 15 and 20 of the first conductivity type, which have a portion that surrounds 6 and 23 excluding one main surface thereof and that is exposed to the upper surface of the substrate, and the third semiconductor regions 15 and 20 are The fourth semiconductor regions 13 and 18 of the second conductivity type having a portion which is surrounded except the one main surface and is exposed to the upper surface of the substrate.
And a first electrode 36, which is connected to one main surface of the second semiconductor regions 16 and 23, and one main surface of the third and fourth semiconductor regions 15, 20, 13, and 18. And a second electrode 35 connected to the semiconductor device. The correspondence between the present invention and the embodiment will be described. The first semiconductor region is a P-type semiconductor substrate 11
, P-type region 14 and P + -type region 19, the second semiconductor region is N -type region 16 and N ++ -type region 23, and the third semiconductor region is P-type region 15 and P + -type region. 20, the fourth semiconductor region is the N + -type region 13 and the N + -type region 18, the first electrode is the cathode electrode 36, and the second electrode is the anode electrode 35.

【0006】[0006]

【作用及び効果】本願発明によれば、第2の半導体領域
23と第3の半導体領域15、20との間にPN接合が
形成され、両半導体領域によってPN接合ダイオードが
構成される。ここで、第3の半導体領域15、20はこ
れと共に第2の電極35に接続された反対導電形の第4
の半導体領域13、18に包囲されている。このため、
第2の半導体領域23又は第3の半導体領域15、20
と第1の半導体領域11、14、19との間に漏れ電流
が流れることが抑制される。即ち、PN接合分離された
領域にダイオードを形成したにも拘らず寄生トランジス
タによる漏れ電流を防ぐことができる。
According to the present invention, a PN junction is formed between the second semiconductor region 23 and the third semiconductor regions 15 and 20, and both semiconductor regions form a PN junction diode. Here, the third semiconductor regions 15 and 20 are connected to the third semiconductor regions 15 and 20 and are connected to the second electrode 35.
Is surrounded by the semiconductor regions 13 and 18. For this reason,
Second semiconductor region 23 or third semiconductor region 15, 20
The leakage current is suppressed from flowing between the first semiconductor region 11, 14, and 19. That is, the leakage current due to the parasitic transistor can be prevented even though the diode is formed in the region where the PN junction is separated.

【0007】[0007]

【実施例】次に図1〜図10を参照して本発明の一実施
例に係わるモノリシックIC及びその製造工程を説明す
る。本実施例のモノリシックICを製作する際には、ま
ず、出発母材として図1に示すシリコンから成るP形半
導体基体11を用意する。基体11は後にトランジスタ
素子が形成される領域(以下、第1の素子形成領域と称
す)11aと後にダイオード素子が形成される領域(以
下、第2の素子形成領域と称す)11bとを有してい
る。実際のモノリシックICは、これ等仮想の領域11
a、11bが平面的相互に離間して島状に多数個配置さ
れた構造となっているが、本実施例では本発明の本質に
係わる領域についてのみ図示し、説明する。
1 to 10, a monolithic IC according to an embodiment of the present invention and a manufacturing process thereof will be described. When manufacturing the monolithic IC of this embodiment, first, the P-type semiconductor substrate 11 made of silicon shown in FIG. 1 is prepared as a starting base material. The substrate 11 has a region 11a in which a transistor element will be formed later (hereinafter referred to as a first element forming region) 11a and a region 11b in which a diode element will be formed later (hereinafter referred to as a second element forming region) 11b. ing. In an actual monolithic IC, these virtual areas 11
Although a and 11b have a structure in which a plurality of a and 11b are spaced apart from each other in a plane and are arranged in an island shape, only the region related to the essence of the present invention is shown and described in this embodiment.

【0008】次に、図1の基体11にその一方の主面か
らN形の不純物を導入し、領域11aと11bにそれぞ
れN+ 形領域12及び13を形成する。なお、領域1
2、13を形成する際に、基体11の一方の主面には酸
化膜が形成されるが、本実施例ではその図示を省略して
いる。以下の工程でも同様に酸化膜の図示は省略してい
る。
Next, N type impurities are introduced into the substrate 11 of FIG. 1 from one main surface thereof to form N + type regions 12 and 13 in the regions 11a and 11b, respectively. Area 1
When forming 2 and 13, an oxide film is formed on one main surface of the base 11, but the illustration is omitted in this embodiment. Similarly, in the following steps, the oxide film is not shown.

【0009】次に、図3に示すように基体11の一方の
主面からP形の不純物を導入して、隣り合う素子形成領
域11a、11bの間及びN+ 形領域13にそれぞれP
形領域14及び15を選択的に形成する。なお、N+
領域13は不純物濃度が高いので、P形不純物が選択的
に拡散された領域15は実際にはN形領域もしくはN-
形領域と呼べる状態になっているとも考えられるが、本
実施例では説明の便宜上P形領域とする。
Next, as shown in FIG. 3, P-type impurities are introduced from one main surface of the substrate 11 so that P is introduced between the adjacent element forming regions 11a and 11b and the N + -type region 13, respectively.
The shaped regions 14 and 15 are selectively formed. Since the N + type region 13 has a high impurity concentration, the region 15 in which the P type impurity is selectively diffused is actually the N type region or N −.
Although it can be considered that it can be called a shape region, in this embodiment, it is a P-shaped region for convenience of explanation.

【0010】次に、基体11の上に図4に示すようにN
- 形領域16をエピタキシャル成長で形成する。このN
- 形領域16が形成されるとき、図4に示すように2つ
のN+ 形領域12、13と、2つのP形領域14、15
の不純物がN- 形領域16側にも拡散し、これ等の領域
が拡がる。
Next, as shown in FIG.
The -shaped region 16 is formed by epitaxial growth. This N
When the -shaped region 16 is formed, two N + -shaped regions 12 and 13 and two P-shaped regions 14 and 15 are formed as shown in FIG.
Impurities diffuse into the N -type region 16 side, and these regions expand.

【0011】次に、図5に示すように、エピタキシャル
層形成後の半導体基板の一方の主面からN形の不純物を
選択的に導入し、N+ 形領域12及びN+ 形領域13に
連続するN+ 形領域17及び18を形成する。N+ 形領
域18はN- 形領域16を囲むように平面環状形状に形
成されている。
Next, as shown in FIG. 5, N-type impurities are selectively introduced from one main surface of the semiconductor substrate after the epitaxial layer is formed, and N + -type regions 12 and N + -type regions 13 are continuously formed. N + type regions 17 and 18 are formed. The N + type region 18 is formed in a plane annular shape so as to surround the N − type region 16.

【0012】次に、図6に示すように、基板の一方の主
面からP形の不純物を選択的に導入して、P形領域14
に連続するP+ 形領域19と、P形領域15に連続する
+形領域20を形成する。P形領域14とP+ 形領域
19は、隣り合う2つの素子形成領域11a、11bの
間に位置して両領域をPN接合分離させるための領域と
して機能し、P形領域11と連続して第1及び第2の素
子形成領域11a、11bを相互に島状に離間させる。
Next, as shown in FIG. 6, P-type impurities are selectively introduced from one main surface of the substrate to form a P-type region 14.
To form a P + -type region 19 and a P + -type region 20 continuous to the P-type region 15. The P-type region 14 and the P + -type region 19 are located between two adjacent element forming regions 11a and 11b and function as regions for separating the two regions by PN junction, and are continuous with the P-type region 11. The first and second element forming regions 11a and 11b are separated from each other in an island shape.

【0013】次に、第1の素子形成領域11aのN-
領域16にP形の不純物を選択的に導入して、図7に示
すようにP形領域21を形成する。
Next, a P-type impurity is selectively introduced into the N --type region 16 of the first element forming region 11a to form a P-type region 21 as shown in FIG.

【0014】次に、図7に示す、基板の一方の主面にN
形の不純物を導入し、図8に示すように第1の素子形成
領域11aのP形領域21にN++形領域22を形成す
る。また、第2の素子形成領域11bのN- 形領域16
にN++形領域23を形成する。
Next, as shown in FIG. 7, N is formed on one main surface of the substrate.
Type impurity is introduced to form an N ++ type region 22 in the P type region 21 of the first element forming region 11a as shown in FIG. In addition, the N -type region 16 of the second element formation region 11b
An N + + type region 23 is formed at

【0015】次に、図9に示すように、上記の拡散工程
において形成されたシリコン酸化膜から成る絶縁膜24
に6個の開口25〜31を形成する。第1の素子形成領
域11aに設けられた3つの開口25、26、27から
はそれぞれN+ 形領域22、P+ 形領域21及びN+
領域17が露出する。また、第2の素子形成領域11b
に設けられた3つの開口28、29、30からはそれぞ
れN+ 形領域18、P+ 形領域20、N++形領域23が
露出する。また、2つの領域11a、11bの間に設け
られた開口31からはP+ 形領域19が露出する。
Next, as shown in FIG. 9, an insulating film 24 made of a silicon oxide film formed in the above diffusion process.
Six openings 25 to 31 are formed in the. The N + -type region 22, the P + -type region 21, and the N + -type region 17 are exposed from the three openings 25, 26, and 27 provided in the first element formation region 11a, respectively. In addition, the second element formation region 11b
The N + -type region 18, the P + -type region 20, and the N ++ -type region 23 are exposed from the three openings 28, 29, and 30 provided in, respectively. Further, the P + -type region 19 is exposed from the opening 31 provided between the two regions 11a and 11b.

【0016】次に、基板の上面全体にアルミニウムを真
空蒸着してから、これを所望のパターンにエッチングす
ることによって、図10に示すように互いに電気的に離
間した6個の電極32、33、34、35、36、37
を形成する。以上により、モノシリックICチップが完
成する。
Next, aluminum is vacuum-deposited on the entire upper surface of the substrate and then etched into a desired pattern to form six electrodes 32, 33, which are electrically separated from each other, as shown in FIG. 34, 35, 36, 37
To form. By the above, a monolithic IC chip is completed.

【0017】図10に示すモノシリックICチップで
は、第1の素子形成領域11aにおいてN+ 形領域1
2、17及びN- 形領域16をコレクタ領域、P形領域
21をベース領域、N++形領域22をエミッタ領域とす
るNPNトランジスタが形成されており、3つの電極3
2、33、34がそれぞれエミッタ電極、ベース電極、
コレクタ電極として機能する。このNPNトランジスタ
の構造及び動作は従来のモノシリックICに形成される
トランジスタと何ら変らない。第2の素子形成領域11
bにおいては、N+ 形領域18、13及びN- 形領域1
6をコレクタ領域とし、P+ 形領域20及びP形領域1
5をベース領域とし、N++形領域23及びN- 形領域1
6をエミッタ領域とするNPNトランジスタが構成され
ている。ここで、このNPNトランジスタはそのベース
・コレクタ間が電極35によって電気的に短絡されてお
り、結果として上記ベース領域とエミッタ領域をそれぞ
れアノード領域及びカソード領域とするPN接合ダイオ
ードとして動作する。したがって、電極35及び36は
それぞれアノード電極及びカソード電極と呼べる。
In the monolithic IC chip shown in FIG. 10, the N + type region 1 is formed in the first element forming region 11a.
2, 17 and an NPN transistor having the N − type region 16 as a collector region, the P type region 21 as a base region, and the N ++ type region 22 as an emitter region are formed, and three electrodes 3 are formed.
2, 33 and 34 are an emitter electrode, a base electrode,
Functions as a collector electrode. The structure and operation of this NPN transistor are no different from those of the transistor formed in the conventional monolithic IC. Second element formation region 11
In b, N + type regions 18, 13 and N − type region 1
6 as a collector region, P + type region 20 and P type region 1
5 as a base region, N ++ type region 23 and N − type region 1
An NPN transistor having 6 as an emitter region is constructed. Here, the NPN transistor has its base and collector electrically short-circuited by the electrode 35, and consequently operates as a PN junction diode having the base region and the emitter region as the anode region and the cathode region, respectively. Therefore, the electrodes 35 and 36 can be called an anode electrode and a cathode electrode, respectively.

【0018】本実施例の素子構造によれば、第2の素子
形成領域11bと拡散分離のP+ 形領域19との間に従
来技術で説明したような寄生PNPトランジスタが形成
されない。即ち、本実施例の構造によれば、寄生トラン
ジスタのエミッタとなるP+形領域20及びP形領域1
5と、これを島状に包囲したベースとなるN+ 形領域1
3、18とが同一の電極35に接続されて、エミッタ・
ベース間が電気的に短絡した構造になっている。したが
って、P+ 形領域20及びP形領域15と拡散分離領域
との間、更には基体11との間にキャリアの移動が生じ
ることがなく、寄生トランジスタの動作が完全に防止さ
れている。この結果、アノード電極35とカソード電極
36との間にアノード電極35側の電位を高くする電圧
を印加して、第2の素子形成領域11bのPN接合ダイ
オードを動作させて電極35から36に電流を流したと
きに、その電流の一部が電極37に流れ込むことがな
い。このため、領域11bのPN接合ダイオードの導通
時に、電極37と電極35及び36との間に大きな電位
差が生じる場合にあっても、電力損失を従来例に比べて
著しく低減することができる。
According to the element structure of this embodiment, the parasitic PNP transistor as described in the prior art is not formed between the second element forming region 11b and the diffusion-isolated P + type region 19. That is, according to the structure of this embodiment, the P + type region 20 and the P type region 1 which become the emitters of the parasitic transistors are formed.
5 and an N + type region 1 which is a base that surrounds the island 5
3 and 18 are connected to the same electrode 35,
The base is electrically short-circuited. Therefore, carriers do not move between the P + type region 20 and P type region 15 and the diffusion isolation region and further between the substrate 11 and the parasitic transistor, and the operation of the parasitic transistor is completely prevented. As a result, a voltage that raises the potential on the side of the anode electrode 35 is applied between the anode electrode 35 and the cathode electrode 36, and the PN junction diode in the second element formation region 11b is operated to cause a current to flow from the electrodes 35 to 36. When a current is passed through, part of the current does not flow into the electrode 37. Therefore, even when a large potential difference occurs between the electrode 37 and the electrodes 35 and 36 during conduction of the PN junction diode in the region 11b, the power loss can be significantly reduced as compared with the conventional example.

【0019】本実施例のモノシリックICチップ構造の
利点を要約すると以下の通りである。 (1) 寄生PNPトランジスタのエミッタ・ベース間
が短絡されており、ダイオードに順方向電流を流しても
この寄生トランジスタは実質的に動作しない。このた
め、従来構造に比べてグランドへの漏れ電流が著しく小
さく、電力損失が十分に低減される。 (2) 本構造のダイオードは、NPNトランジスタの
コレクタ・ベース間短絡のエミッタ・ベース間PN接合
ダイオードとなっている。このため、導通時の電荷蓄積
総量が少なく且つ接合容量も小さく、従来構造に比べて
スイッチング特性の点で優れている。 (3) 従来の製造工程にプロセスを追加することなし
に製作できる。 (4) N- 形領域16やP+ 形領域19の不純物濃
度、トランジスタを構成する拡散領域の不純物濃度、拡
散深さ等は、モノシリックICに組込まれる他の素子の
要求特性によって決定されるため、従来構造ではアノー
ド・グランド間の耐圧を向上することが困難であった。
本構造では、N+ 形領域13の拡散深さを若干変えるこ
とでアノード・グランド間の耐圧を制御できる。この場
合、他の素子特性を変えることはほとんどない。
The advantages of the monolithic IC chip structure of this embodiment are summarized as follows. (1) Since the emitter and base of the parasitic PNP transistor are short-circuited, the parasitic transistor does not substantially operate even when a forward current is passed through the diode. Therefore, the leakage current to the ground is significantly smaller than that of the conventional structure, and the power loss is sufficiently reduced. (2) The diode of this structure is an emitter-base PN junction diode in which the collector-base of the NPN transistor is short-circuited. For this reason, the total amount of accumulated charges when conducting is small and the junction capacitance is small, which is superior to the conventional structure in switching characteristics. (3) It can be manufactured without adding a process to the conventional manufacturing process. (4) The impurity concentration of the N − type region 16 and the P + type region 19, the impurity concentration of the diffusion region forming the transistor, the diffusion depth, etc. are determined by the required characteristics of other elements incorporated in the monolithic IC. In the conventional structure, it was difficult to improve the breakdown voltage between the anode and the ground.
In this structure, the breakdown voltage between the anode and the ground can be controlled by slightly changing the diffusion depth of the N + type region 13. In this case, other element characteristics are hardly changed.

【0020】[0020]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) 第3の半導体領域としてのP+ 形領域20と第
4の半導体領域としてのN+ 形領域18に個別に電極を
形成し、これ等を外部的に接続して実質的に同電位にし
てもよい。 (2) N+ 形領域18とP+ 形領域20との間のN-
形領域16にも電極35が接していてもよい。但し、ダ
イオードの順方向電圧が大きくならない点において、実
施例のようにN- 形領域16上に酸化膜24を残存させ
るのが望ましい。 (3) 図10においてN+ 形領域23を囲むN- 形領
域が生じないように形成することができる。また、N+
形領域18の一方又は両方の側のN- 形領域16が生じ
ないように形成することができる。
MODIFICATION The present invention is not limited to the above-mentioned embodiments, and the following modifications are possible. (1) Electrodes are individually formed in the P + -type region 20 as the third semiconductor region and the N + -type region 18 as the fourth semiconductor region, and these are externally connected to have substantially the same potential. You may (2) between the N + form region 18 and the P + region 20 N -
The electrode 35 may also be in contact with the shaped region 16. However, in that the forward voltage of the diode does not increase, it is desirable to leave the oxide film 24 on the N − type region 16 as in the embodiment. (3) In FIG. 10, it can be formed so that an N − type region surrounding the N + type region 23 does not occur. Also, N +
It may be formed such that the N - shaped regions 16 on one or both sides of the shaped region 18 do not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のICを製造するために使用す
る半導体基体を示す断面図である。
FIG. 1 is a sectional view showing a semiconductor substrate used for manufacturing an IC according to an embodiment of the present invention.

【図2】図1の基体にN+ 形領域を形成した状態を示す
断面図である。
FIG. 2 is a cross-sectional view showing a state in which an N + type region is formed on the base body of FIG.

【図3】図2の基体にP形領域を形成した状態を示す断
面図である。
3 is a cross-sectional view showing a state where a P-type region is formed on the base body of FIG.

【図4】図3の基板上にエピタキシャル層を形成した半
導体基板を示す断面図である。
4 is a cross-sectional view showing a semiconductor substrate in which an epitaxial layer is formed on the substrate of FIG.

【図5】図4の半導体基板にN+ 形領域を形成した状態
を示す断面図である。
5 is a cross-sectional view showing a state where an N + type region is formed on the semiconductor substrate of FIG.

【図6】図5の半導体基板にP+ 形領域を形成した状態
を示す断面図である。
6 is a cross-sectional view showing a state where a P + type region is formed on the semiconductor substrate of FIG.

【図7】図6の半導体基板にP形領域を形成した状態を
示す断面図である。
7 is a cross-sectional view showing a state where a P-type region is formed on the semiconductor substrate of FIG.

【図8】図7の半導体基板にN+ 形領域を形成した状態
を示す断面図である。
FIG. 8 is a cross-sectional view showing a state where an N + type region is formed on the semiconductor substrate of FIG.

【図9】酸化膜に開口を形成した状態を示す断面図であ
る。
FIG. 9 is a cross-sectional view showing a state in which an opening is formed in an oxide film.

【図10】電極を形成した状態を示す断面図である。FIG. 10 is a cross-sectional view showing a state in which electrodes are formed.

【図11】従来のICの一部を示す断面図である。FIG. 11 is a sectional view showing a part of a conventional IC.

【符号の説明】[Explanation of symbols]

20 P+ 形領域 23 N+ 形領域 35 アノード電極 36 カソード電極20 P + type region 23 N + type region 35 Anode electrode 36 Cathode electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電形の第1の半導体領域(1
1)(14)(19)によって島状にPN接合分離され
た素子形成領域内に、一方の主面が基板上面に露出した
第2の導電形の第2の半導体領域(16)(23)と、
この第2の半導体領域(16)(23)をその一方の主
面を除いて包囲し且つ基板上面に露出する部分を有する
第1の導電形の第3の半導体領域(15)(20)と、
この第3の半導体領域(15)(20)をその一方の主
面を除いて包囲し且つ基板上面に露出する部分を有する
第2の導電形の第4の半導体領域(13)(18)とを
備え、前記第2の半導体領域(16)(23)の一方の
主面に接続された第1の電極(36)と、前記第3及び
第4の半導体領域(15)(20)(13)(18)の
一方の主面に接続された第2の電極(35)とが設けら
れていることを特徴とする半導体装置。
1. A first semiconductor region (1) of a first conductivity type.
1) Second semiconductor regions (16) (23) of the second conductivity type, one main surface of which is exposed on the upper surface of the substrate, in the element formation region separated by island-shaped PN junctions by (14) (19). When,
A third semiconductor region (15) (20) of the first conductivity type which has a portion which surrounds the second semiconductor region (16) (23) except for one main surface thereof and is exposed to the upper surface of the substrate; ,
A fourth semiconductor region (13) (18) of the second conductivity type which has a portion which surrounds the third semiconductor region (15) (20) except for one main surface thereof and which is exposed on the upper surface of the substrate; A first electrode (36) connected to one main surface of the second semiconductor region (16) (23), and the third and fourth semiconductor regions (15) (20) (13). And a second electrode (35) connected to one main surface of the semiconductor device (18).
JP27667792A 1992-09-21 1992-09-21 Semiconductor device Pending JPH06104459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27667792A JPH06104459A (en) 1992-09-21 1992-09-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27667792A JPH06104459A (en) 1992-09-21 1992-09-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH06104459A true JPH06104459A (en) 1994-04-15

Family

ID=17572783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27667792A Pending JPH06104459A (en) 1992-09-21 1992-09-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH06104459A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019647A1 (en) * 1994-01-12 1995-07-20 Daewoo Corporation Diode and production method thereof
US5798560A (en) * 1995-10-31 1998-08-25 Sanyo Electric Co., Ltd. Semiconductor integrated circuit having a spark killer diode
US6590273B2 (en) 2000-12-25 2003-07-08 Sanyo Electric Co., Ltd. Semiconductor integrated circuit device and manufacturing method thereof
US6972476B2 (en) * 2003-11-12 2005-12-06 United Microelectronics Corp. Diode and diode string structure
US7067899B2 (en) 2003-09-29 2006-06-27 Sanyo Electric Co., Ltd. Semiconductor integrated circuit device
CN1309080C (en) * 2003-09-29 2007-04-04 三洋电机株式会社 Semiconductor integrated circuit device
KR100800252B1 (en) * 2002-03-05 2008-02-01 매그나칩 반도체 유한회사 Method of manufacturing diode using cmos process
US7381998B2 (en) 2003-09-29 2008-06-03 Sanyo Electric Co., Ltd. Semiconductor integrated circuit device
CN102623511A (en) * 2011-01-26 2012-08-01 上海华虹Nec电子有限公司 Power diode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POWER INTEGRATED CIRCUITS:PHYSICS,DESIGN,AND APPLICATIONS=1986 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019647A1 (en) * 1994-01-12 1995-07-20 Daewoo Corporation Diode and production method thereof
US5798560A (en) * 1995-10-31 1998-08-25 Sanyo Electric Co., Ltd. Semiconductor integrated circuit having a spark killer diode
US6590273B2 (en) 2000-12-25 2003-07-08 Sanyo Electric Co., Ltd. Semiconductor integrated circuit device and manufacturing method thereof
KR100800252B1 (en) * 2002-03-05 2008-02-01 매그나칩 반도체 유한회사 Method of manufacturing diode using cmos process
US7067899B2 (en) 2003-09-29 2006-06-27 Sanyo Electric Co., Ltd. Semiconductor integrated circuit device
CN1309080C (en) * 2003-09-29 2007-04-04 三洋电机株式会社 Semiconductor integrated circuit device
US7381998B2 (en) 2003-09-29 2008-06-03 Sanyo Electric Co., Ltd. Semiconductor integrated circuit device
US7741694B2 (en) 2003-09-29 2010-06-22 Sanyo Electric Co., Ltd. Semiconductor integrated circuit device
US6972476B2 (en) * 2003-11-12 2005-12-06 United Microelectronics Corp. Diode and diode string structure
CN102623511A (en) * 2011-01-26 2012-08-01 上海华虹Nec电子有限公司 Power diode

Similar Documents

Publication Publication Date Title
US5304821A (en) MOS-gate-turnoff thyristor
KR100683100B1 (en) Semiconductor integrated circuit device and method for manufacturing the same
US4228448A (en) Bipolar integrated semiconductor structure including I2 L and linear type devices and fabrication methods therefor
KR100208632B1 (en) Semiconductor integrated circuit and method of fabricating it
JPH0347593B2 (en)
JP2635044B2 (en) Semiconductor device
JPH07326773A (en) Diode and its preparation
JPH07297373A (en) Integrated driver circuit device for inductive load element
US4288807A (en) Darlington circuit having an improved diode drain
JPH06104459A (en) Semiconductor device
JPH06232151A (en) Semiconductor device
US4987469A (en) Lateral high-voltage transistor suitable for use in emitter followers
JPH0637262A (en) Semiconductor device
JPS62177968A (en) Gate turn-off thyristor
JP3128958B2 (en) Semiconductor integrated circuit
JPH0629374A (en) Semiconductor integrated circuit device
KR0145119B1 (en) Darlington connected semiconductor device and manufacturing method thereof
JP2665820B2 (en) Lateral transistor
JPH0474478A (en) Diode
KR0145118B1 (en) Darlington connected semiconductor device and manufacturing method thereof
JPS6022504B2 (en) Manufacturing method of semiconductor device
JP2845469B2 (en) Semiconductor device
JPS61208260A (en) Semiconductor device
JPH02220445A (en) Semiconductor device
JPS6132823B2 (en)