JPS6133261B2 - - Google Patents

Info

Publication number
JPS6133261B2
JPS6133261B2 JP53107137A JP10713778A JPS6133261B2 JP S6133261 B2 JPS6133261 B2 JP S6133261B2 JP 53107137 A JP53107137 A JP 53107137A JP 10713778 A JP10713778 A JP 10713778A JP S6133261 B2 JPS6133261 B2 JP S6133261B2
Authority
JP
Japan
Prior art keywords
region
transistor
collector
emitter
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53107137A
Other languages
Japanese (ja)
Other versions
JPS5534462A (en
Inventor
Tsutomu Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10713778A priority Critical patent/JPS5534462A/en
Publication of JPS5534462A publication Critical patent/JPS5534462A/en
Publication of JPS6133261B2 publication Critical patent/JPS6133261B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]
    • H01L27/0244I2L structures integrated in combination with analog structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、IIL(Integrated Injection Logic)
と従来のバイポーラトランジスタを同一のプロセ
スで一体化した半導体装置の改良に関し、IILの
一方のトランジスタ(縦方向トランジスタ)の電
流増幅率を上げるとともに、通常のバイポーラト
ランジスタの耐圧を向上させ、しかも異なる耐圧
のバイポーラトランジスタを得ることを目的とす
るものである。 IILはバイポーラLSIとして注目されており、
通常のバイポーラトランジスタと一体化されて用
いられることが多い。その際、デイジタル部は
IILでアナログ部は従来のバイポーラトランジス
タで構成される。そして一体化された構造は従来
の標準的なプロセスで第1図のようになる。 第1図では、1はnpnトランジスタのエミツ
タ、2はベース、3はコレクタであり、4はIIL
のpnpトランジスタのエミツタ(インジエク
タ)、5はpnpトランジスタのベース(縦方向ト
ランジスタであるnpnトランジスタのエミツ
タ)、6はpnpトランジスタのコレクタ(同上npn
トランジスタのベース)、7及び8は同上npnト
ランジスタのコレクタとなる。10はp形シリコ
ン基板、11は埋込層、12は分離拡散領域、1
3はコレクタコンタクトである。 IILと通常のバイポーラトランジスタを一体化
するときにまず問題となるのは、IILのnpnトラ
ンジスタの電流増幅率の小さいことである。これ
は、従来のバイポーラトランジスタを同一のプロ
セスで作るために、耐圧等が悪くならないように
構成される。そしてこのような構成はIILにとつ
て最適な構造となりえないことが多い。例えば、
IILのnpnトランジスタの電流増幅率を上げるた
めに、ベース幅を狭くしたり、ベースの不純物濃
度を下げる方法がとられている。 このような方法によつてIILのnpnトランジス
タの電流増幅率は向上するが、同時に従来のバイ
ポーラトランジスタの電流増幅率が大となり、こ
のためトランジスタのコレクタ・エミツタ間の耐
圧が下がり問題となる。そのため、エミツタ・コ
レクタ間の耐圧を劣化させないよう、ベース領域
を構成すると、IILの電流増幅率が下がることに
なり、動作上問題となる。 このように通常のバイポーラトランジスタの耐
圧と、IILの電流増幅率の向上は、一体化におい
て相矛盾する点であり、これを解決する構成が必
要となつている。 以上のような問題に鑑み本発明は高耐圧用バイ
ポーラトランジスタ、通常のグラフトベース型バ
イポーラトランジスタ、IIL素子を一体に集積化
するして際し、高耐圧用トランジスタの耐圧、通
常のグラフトベース型バイポーラトランジスタの
電流増幅率ならびにIIL素子の縦方向トランジス
タの電流増幅率をすべて満足することのできる集
積回路構造およびその製造方法を提供するもので
ある。すなわち本発明は、高耐圧トランジスタに
おいてはベース巾を大きくし、通常のグラフトベ
ース型バイポーラトランジスタでは活性ベース領
域部のみの拡散深さの不純物濃度を高くし、IIL
の縦方向トランジスタは活性ベース領域幅をせま
くしかつその不純物濃度を低くすることを特徴と
する。 以下、第2図A〜Eに示す実施例をもとに詳細
に説明する。 (A) p形シリコン単結晶基板21に、Asまたは
Sbを用いて選択的に高濃度のn形埋込層22
を形成した後、比抵抗0.5〜2Ωcmのn形単結
晶層23を成長させる。 (B) ボロン等の不純物を用いて、n形単結晶層2
3にp形の分離層24を、p形基板21に到達
するように形成しn形島領域23a,23b,
23cを形成する。次にn+埋込層22に到達
するように選択的に高濃度のn+層25を形成
する。このn+層25をコレクタウオール(n+
カラー)と以下称す。 (C) バイポーラトランジスタTr1,Tr2のベース
及びIILのpnpトランジスタのエミツタ及びコ
レクタを形成するために、高濃度のp+領域2
6,27,28(28a,28b)を同時に形
成する。p+領域26,27は、npnバイポーラ
トランジスタTr1,Tr2のベース、p+領域28
aはIILpnpトランジスタのエミツタ、p+領域
28bはコレクタとなる。 (D) 低濃度の浅いTr2,IILのトランジスタの活性
ベース領域を形成するために、ボロン等を用い
て低濃度p領域29,30を高濃度のp+領域
27,28より浅く形成する、第3図A,Bは
Tr1,Tr2のベースとエミツタ部分を示し、同
CはI2Lの縦npnトランジスタのベースとコレ
クタ部分を示す。 この時、高濃度のp+領域26でベースが形
成されている半導体装置をトランジスタTr1
し、高濃度のp+領域27とp領域29でベー
スが形成されている半導体装置をトランジスタ
Tr2とする。ここでp+領域27はトランジスタ
Tr1のグラフトベース領域で、p領域29は活
性ベース領域である。p領域30はIILの縦方
向のnpnトランジスタの活性ベース領域とな
る。次にバイポーラnpnトランジスタTr1,Tr2
のエミツタ31および32、IILnpnトランジ
スタのコレクタ33を同時に形成する。ここで
エミツタ32は、底面の周辺部が高濃度のp+
領域27に接するように、つまりp+領域27
にまたがる様に形成を行ない、IILのコレクタ
33は、底面の周辺部がp領域30に接しかつ
p+領域28にまたがらない様に形成する。こ
こで、エミツタ31,32、コレクタ33は不
純物としてn形のリン、砒素、アンチモン等を
用いることができるが、特にリンを用いると、
p領域30が押し出され、第3図Cに示すごと
く、押し出し効果により、IILコレク33の底
面の周辺部すなわち第3図Cのaの部分のベー
スの幅が狭くなり電流増幅率が向上する。これ
に対して通常のグラフトベースのバイポーラト
ランジスタTr2において、第3図Bのごとく、
エミツタ32はp+領域27にまたがる様形成
され底面の周辺部が高濃度でかつ深いp+層2
7に接しているので、周辺部でベース幅が狭く
ならない。それでトランジスタTr2のエミツタ
32とコレクタ23の耐圧をある程度保つこと
が出来る。またトランジスタTr1は第3図Aの
ごとくベース領域が高濃度の深いベース層26
で形成されているので、電流増幅率は小さく、
コレクタ23、エミツタ31間の耐圧を十分に
大きくとることが出来る。例えば高濃度のp+
領域26,27,28を50〜80Ω/□、拡散深
さ1.2〜1.5μm、p領域29,30を200Ω/
□、深さ0.8〜1.0μm、n+領域31,32,3
3を10〜15Ω/□、深さ0.8μmに形成した時、
耐圧と電流増幅率の関係は次表のごとくにな
る。
The present invention is based on IIL (Integrated Injection Logic)
Regarding the improvement of a semiconductor device that integrates a conventional bipolar transistor and a conventional bipolar transistor in the same process, the current amplification factor of one transistor (vertical transistor) of the IIL is increased, and the withstand voltage of a normal bipolar transistor is improved, and in addition, different withstand voltages are improved. The purpose of this is to obtain a bipolar transistor. IIL is attracting attention as a bipolar LSI,
It is often used integrated with a normal bipolar transistor. At that time, the digital section
In IIL, the analog section consists of conventional bipolar transistors. The integrated structure is then formed using a conventional standard process as shown in Figure 1. In Figure 1, 1 is the emitter of the npn transistor, 2 is the base, 3 is the collector, and 4 is the IIL
The emitter (injector) of the pnp transistor, 5 the base of the pnp transistor (the emitter of the npn transistor, which is a vertical transistor), and 6 the collector of the pnp transistor (the same npn
(base of the transistor), 7 and 8 become the collector of the same npn transistor. 10 is a p-type silicon substrate, 11 is a buried layer, 12 is an isolation diffusion region, 1
3 is a collector contact. The first problem when integrating an IIL with a normal bipolar transistor is that the current amplification factor of the IIL's npn transistor is small. This is because conventional bipolar transistors are manufactured using the same process, so the structure is such that breakdown voltage, etc., does not deteriorate. And such a configuration is often not an optimal structure for IIL. for example,
In order to increase the current amplification factor of IIL npn transistors, methods such as narrowing the base width and lowering the base impurity concentration are used. Although such a method improves the current amplification factor of the IIL npn transistor, at the same time the current amplification factor of the conventional bipolar transistor increases, which causes a problem in that the withstand voltage between the collector and emitter of the transistor decreases. Therefore, if the base region is configured so as not to degrade the withstand voltage between the emitter and collector, the current amplification factor of the IIL will decrease, which will pose a problem in operation. As described above, the breakdown voltage of a normal bipolar transistor and the improvement of the current amplification factor of an IIL are contradictory points in integration, and a configuration that solves this problem is needed. In view of the above-mentioned problems, the present invention provides a method for integrating high-voltage bipolar transistors, ordinary graft-based bipolar transistors, and IIL elements into a single unit. The present invention provides an integrated circuit structure and a method for manufacturing the same that can satisfy both the current amplification factor of a transistor and the current amplification factor of a vertical transistor of an IIL element. In other words, the present invention increases the base width in high-voltage transistors, increases the impurity concentration in the diffusion depth of only the active base region in ordinary graft-based bipolar transistors, and improves IIL.
The vertical transistor is characterized by a narrow active base region width and a low impurity concentration. Hereinafter, a detailed explanation will be given based on the embodiment shown in FIGS. 2A to 2E. (A) A p-type silicon single crystal substrate 21 is coated with As or
Selectively high concentration n-type buried layer 22 using Sb
After forming, an n-type single crystal layer 23 having a specific resistance of 0.5 to 2 Ωcm is grown. (B) N-type single crystal layer 2 using impurities such as boron
3, a p-type isolation layer 24 is formed so as to reach the p-type substrate 21, and n-type island regions 23a, 23b,
23c is formed. Next, a high concentration n + layer 25 is selectively formed so as to reach the n + buried layer 22 . This n + layer 25 is the collector all (n +
Color). (C) Highly doped p + region 2 to form the bases of bipolar transistors Tr 1 and Tr 2 and the emitter and collector of the pnp transistor of IIL.
6, 27, and 28 (28a, 28b) are formed simultaneously. The p + regions 26 and 27 are the bases of the npn bipolar transistors Tr 1 and Tr 2 , and the p + region 28
a becomes the emitter of the IILpnp transistor, and p + region 28b becomes the collector. (D) In order to form shallow active base regions of low concentration transistors Tr 2 and IIL, low concentration p regions 29 and 30 are formed using boron or the like to be shallower than high concentration p + regions 27 and 28; Figure 3 A and B are
The base and emitter portions of Tr 1 and Tr 2 are shown, and C represents the base and collector portion of the I 2 L vertical npn transistor. At this time, the semiconductor device whose base is formed by the highly doped p + region 26 is referred to as a transistor Tr 1 , and the semiconductor device whose base is formed by the highly doped p + region 27 and the p region 29 is a transistor.
Set as Tr 2 . Here, p + region 27 is a transistor
In the graft base region of Tr 1 , p region 29 is the active base region. P region 30 becomes the active base region of the vertical npn transistor of IIL. Next, bipolar npn transistors Tr 1 , Tr 2
The emitters 31 and 32 of the IILnpn transistor and the collector 33 of the IILnpn transistor are formed at the same time. Here, the emitter 32 has a high concentration of p + at the periphery of the bottom surface.
so that it touches region 27, that is, p + region 27
The collector 33 of the IIL is formed so that the peripheral part of the bottom surface is in contact with the p region 30 and
It is formed so as not to straddle the p + region 28. Here, the emitters 31, 32 and the collector 33 can use n-type phosphorus, arsenic, antimony, etc. as impurities, but especially when phosphorus is used,
The p-region 30 is pushed out, and as shown in FIG. 3C, due to the push-out effect, the width of the base at the periphery of the bottom surface of the IIL collector 33, that is, the portion a in FIG. 3C is narrowed, and the current amplification factor is improved. On the other hand, in the normal graft-based bipolar transistor Tr 2 , as shown in FIG. 3B,
The emitter 32 is formed so as to span the p + region 27, and the peripheral part of the bottom surface is a high concentration and deep p + layer 2.
7, so the base width does not become narrower at the periphery. Therefore, the withstand voltage of the emitter 32 and collector 23 of the transistor Tr 2 can be maintained to some extent. In addition, the transistor Tr 1 has a base region having a deep base layer 26 with a high concentration as shown in FIG. 3A.
Since the current amplification factor is small,
The withstand voltage between the collector 23 and the emitter 31 can be made sufficiently large. For example, high concentrations of p +
50 to 80 Ω/□ for regions 26, 27, and 28, diffusion depth 1.2 to 1.5 μm, and 200 Ω/ for p regions 29 and 30.
□, depth 0.8 to 1.0 μm, n + region 31, 32, 3
3 is formed at 10 to 15Ω/□ and 0.8μm in depth,
The relationship between breakdown voltage and current amplification factor is shown in the table below.

【表】 以上述べたように、高濃度のp+層とp層を
組合わせることにより、耐圧、電流増幅率の違
つた3種類のトランジスタを同時に形成するこ
とが出来る。また、n+層の不純物としてリン
を用いる効果が大きいが、他の不純物例えば砒
素、アンチモン等でも効果を上げることが出来
る。 その場合は、第3図C′に示すごとく押し出
し効果が少ないので、IILコレクタ周辺部でも
中央部とベース幅は同程度となる。 (E) 第2図のごとく、表面をSiO2等の絶縁物3
4で被覆して、コンタクト窓を開孔し、Al等
の金属を用いて配線形成を行なう。それぞれ3
5はトランジスタTr1のエミツタ、36は同ベ
ース、37は同コレクタとなり、38はトラン
ジスタTr2のエミツタ、39はトランジスタ
Tr2のベース、40は同コレクタとなり、41
はIIL縦方向npnトランジスタのコレクタ、4
2はIIL縦方向npnトランジスタのベース、4
3はIIL縦方向npnトランジスタのエミツタ、
44はIILのインジエクタとなる。 本発明による一体化構造は次に述べる効果を有
する。 IILのnpnトランジスタは、コレクタ底面の周
辺部に渡つて浅いp層に接しているので、エミツ
タとベースの注入効率が良くなり、電流増幅率を
上げることができる。特にコレクタにn形の不純
物としてリンを用いると、押し出し効果によりコ
レクタの周辺部のベース幅が狭くなり、注入効率
を上げることによつて、電流増幅率の上昇に大き
な効果がある。 一方通常のバイポーラトランジスタを特性の異
なる2種類構成することが出来る。この1つのト
ランジスタ(前述のTr1)はベース領域が高濃度
の深いP+層で形成されているので、ベース幅が
広くなり、電流増幅率を小さくすることが出来、
コレクタ、エミツタ間の耐圧の高いものが得られ
る。また他のトランジスタTr2はエミツタ底面の
周辺部が高濃度の深いP+層に接しているので、
この部分のベース幅は広くなり、注入効率が下が
る。特にエミツタ底面が高濃度のp+層に接する
面積を広くとる構造にすると、さらにエミツタと
ベースの注入効率を下げ、電流増幅率を下げるこ
とができる。つまりp+層とエミツタとの重なる
量を調節することによつて、トランジスタTr1
IILnpnトランジスタの中間の耐圧及び電流増幅
率をもつたデバイスを形成出来、これらの値を任
意に得ることができる。 以上述べたごとく、本発明によれば高濃度でか
つ深いp+層と低濃度で浅いp層の組合わせによ
り、3種類の特性の違つたトランジスタを形成す
ることが出来、かつ何らプロセスを増やすことな
く高耐圧でしかも特性の異なるバイポーラと高電
流増幅率のIILの縦方向トランジスタとを同時形
成可能となり、集積回路の設計に大きな効果を発
揮する。特に、IILを用いたデイジタル集積回路
と、通常のバイポーラトランジスタを用いたアナ
ログ集積回路の一体化に大きな効果をもたらす。
[Table] As described above, by combining a highly doped p + layer and a p layer, three types of transistors with different breakdown voltages and current amplification factors can be formed at the same time. Further, although phosphorus is highly effective as an impurity in the n + layer, other impurities such as arsenic, antimony, etc. can also be used to increase the effect. In that case, as shown in FIG. 3C', since the extrusion effect is small, the width of the base at the periphery of the IIL collector is approximately the same as that at the center. (E) As shown in Figure 2, the surface is coated with an insulator such as SiO 2 3
4, a contact window is opened, and wiring is formed using a metal such as Al. 3 each
5 is the emitter of transistor Tr 1 , 36 is the base, 37 is the collector, 38 is the emitter of transistor Tr 2 , and 39 is the transistor.
The base of Tr 2 , 40, is the same collector, and 41
is the collector of the IIL vertical npn transistor, 4
2 is the base of the IIL vertical npn transistor, 4
3 is the emitter of the IIL vertical npn transistor,
44 is an IIL injector. The integrated structure according to the present invention has the following effects. Since the IIL npn transistor is in contact with a shallow p-layer over the periphery of the bottom of the collector, the injection efficiency between the emitter and the base is improved and the current amplification factor can be increased. In particular, when phosphorus is used as an n-type impurity in the collector, the extrusion effect narrows the base width at the periphery of the collector, increasing the injection efficiency, which has a significant effect on increasing the current amplification factor. On the other hand, two types of ordinary bipolar transistors having different characteristics can be constructed. Since the base region of this one transistor (Tr 1 described above) is formed of a deep P + layer with high concentration, the base width is wide and the current amplification factor can be reduced.
A product with high withstand voltage between the collector and emitter can be obtained. In addition, the other transistor Tr 2 has the peripheral part of the bottom of the emitter in contact with a deep, highly doped P + layer, so
The base width of this portion becomes wider and the injection efficiency decreases. In particular, by creating a structure in which the bottom surface of the emitter has a large area in contact with the highly concentrated p + layer, it is possible to further reduce the injection efficiency between the emitter and the base, thereby lowering the current amplification factor. In other words, by adjusting the amount of overlap between the p + layer and the emitter, the transistor Tr 1 and
It is possible to form a device with a breakdown voltage and current amplification factor intermediate to those of IILnpn transistors, and these values can be obtained arbitrarily. As described above, according to the present invention, three types of transistors with different characteristics can be formed by combining a highly doped and deep p + layer and a lightly doped and shallow p layer, and there is no need to increase any process. This makes it possible to simultaneously form bipolar transistors with high breakdown voltage and different characteristics, and IIL vertical transistors with high current amplification factors, without any problems, which has a great effect on the design of integrated circuits. In particular, it has a great effect on the integration of digital integrated circuits using IIL and analog integrated circuits using ordinary bipolar transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバイポーラトランジスタとIIL
の一体化構造の断面図、第2図A〜Eは本発明の
一実施例にかかる半導体集積回路の製造工程断面
図、第3図A,B,C,C′はそれぞれ第2図D
の工程におおける半導体集積回路の部分断面図で
ある。 21……p形シリコン単結晶基板、23a,2
3b,23c……n形島領域、26,27,28
b……p+型高濃度ベース領域、29,36……
p型低濃度ベース領域、31,32……n型エミ
ツタ領域、33……n型コレクタ領域。
Figure 1 shows a conventional bipolar transistor and IIL
FIGS. 2A to 2E are cross-sectional views of the manufacturing process of a semiconductor integrated circuit according to an embodiment of the present invention, and FIGS.
FIG. 3 is a partial cross-sectional view of the semiconductor integrated circuit in the step of FIG. 21...p-type silicon single crystal substrate, 23a, 2
3b, 23c...n-shaped island region, 26, 27, 28
b...p + type high concentration base region, 29, 36...
p-type low concentration base region, 31, 32... n-type emitter region, 33... n-type collector region.

Claims (1)

【特許請求の範囲】 1 すくなくともIIL素子と第1、及び第2のバ
イポーラトランジスタを含む半導体集積回路にお
いて、前記第2のバイポーラトランジスタのエミ
ツタ底面の周辺部が、前記IIL素子の縦方向トラ
ンジスタのコレクタ底面の周辺部に比べて高濃度
でかつ深いベース領域に接していて、前記第1の
バイポーラトランジスタのエミツタ底面が、前記
IIL素子の縦方向トランジスタのコレクタ底面に
接するベース領域の濃度に比べ高濃度でかつ深い
ベース領域に接していることを特徴とする半導体
装置。 2 一方の導電型の第1、第2、第3の島領域内
に、他方の導電型の不純物を選択的に導入し、前
記第1の島領域内に第1の高濃度ベース領域を、
前記第2、第3の島領域内にそれぞれ前記第2、
第3の島領域一部を囲む第2、第3の高濃度ベー
ス領域を同時に形成する工程と、前記第2、第3
の高濃度ベース領域に囲まれた前記第2、第3の
島領域内に前記第2、第3の高濃度ベース領域よ
りも低濃度で浅い第1、第2の低濃度ベース領域
を同時に形成する工程と、前記第1の島領域内の
第1の高濃度ベース領域内に一方の導電型の第1
のエミツタ領域を、前記第1の低濃度ベース領域
から第2の高濃度ベース領域にまたがつて第2の
エミツタ領域を、前記第2の低濃度ベース領域内
にコレクタ領域を同時に形成する工程とを備えた
ことを特徴とする半導体装置の製造方法。 3 第1、第2のエミツタ領域ならびにコレクタ
領域の形成に際し、不純物としてリンを用いるこ
とを特徴とする特許請求の範囲第2項に記載の半
導体装置の製造方法。
[Scope of Claims] 1. In a semiconductor integrated circuit including at least an IIL element and first and second bipolar transistors, a peripheral part of the bottom surface of the emitter of the second bipolar transistor is connected to a collector of a vertical transistor of the IIL element. The bottom surface of the emitter of the first bipolar transistor is in contact with the base region, which has a higher concentration and is deeper than the peripheral part of the bottom surface.
A semiconductor device characterized in that the semiconductor device is in contact with a base region having a higher concentration and deeper than the concentration of the base region in contact with the bottom surface of the collector of a vertical transistor of an IIL element. 2. selectively introducing impurities of the other conductivity type into the first, second, and third island regions of one conductivity type, and forming a first high concentration base region within the first island region;
Within the second and third island regions, the second
simultaneously forming second and third high concentration base regions surrounding a part of the third island region;
First and second low concentration base regions having a lower concentration and shallower depth than the second and third high concentration base regions are simultaneously formed in the second and third island regions surrounded by the high concentration base regions of a first high concentration base region of one conductivity type in the first high concentration base region in the first island region;
simultaneously forming a second emitter region spanning from the first low concentration base region to a second high concentration base region, and a collector region within the second low concentration base region; A method for manufacturing a semiconductor device, comprising: 3. The method of manufacturing a semiconductor device according to claim 2, wherein phosphorus is used as an impurity when forming the first and second emitter regions and the collector region.
JP10713778A 1978-08-31 1978-08-31 Method and apparatus for semiconductor Granted JPS5534462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10713778A JPS5534462A (en) 1978-08-31 1978-08-31 Method and apparatus for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10713778A JPS5534462A (en) 1978-08-31 1978-08-31 Method and apparatus for semiconductor

Publications (2)

Publication Number Publication Date
JPS5534462A JPS5534462A (en) 1980-03-11
JPS6133261B2 true JPS6133261B2 (en) 1986-08-01

Family

ID=14451438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10713778A Granted JPS5534462A (en) 1978-08-31 1978-08-31 Method and apparatus for semiconductor

Country Status (1)

Country Link
JP (1) JPS5534462A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015787A (en) * 1983-07-07 1985-01-26 日本信号株式会社 Method of managing use of commutation ticket
JPS61207067A (en) * 1985-03-12 1986-09-13 Sanyo Electric Co Ltd Manufacture of semiconductor integrated circuit device
JPS61207066A (en) * 1985-03-12 1986-09-13 Sanyo Electric Co Ltd Bi-polar transistor
JPS61208262A (en) * 1985-03-13 1986-09-16 Sanyo Electric Co Ltd Transistor
JPS61208263A (en) * 1985-03-13 1986-09-16 Sanyo Electric Co Ltd Manufacture of transistor
JPS62295458A (en) * 1986-05-19 1987-12-22 Sanyo Electric Co Ltd Switch circuit

Also Published As

Publication number Publication date
JPS5534462A (en) 1980-03-11

Similar Documents

Publication Publication Date Title
US4038680A (en) Semiconductor integrated circuit device
US4484388A (en) Method for manufacturing semiconductor Bi-CMOS device
US4047217A (en) High-gain, high-voltage transistor for linear integrated circuits
US4323913A (en) Integrated semiconductor circuit arrangement
JPS6322070B2 (en)
JP2700180B2 (en) pnp vertical isolated collector transistor
US4005453A (en) Semiconductor device with isolated circuit elements and method of making
JPS6133261B2 (en)
US4197147A (en) Method of manufacturing an integrated circuit including an analog circuit and an I2 L circuit utilizing staged diffusion techniques
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
US4144106A (en) Manufacture of an I2 device utilizing staged selective diffusion thru a polycrystalline mask
JPS6151429B2 (en)
JPS6155775B2 (en)
JPH0436578B2 (en)
JPS6140140B2 (en)
JPH05864B2 (en)
JP2932076B2 (en) Method for manufacturing semiconductor device
JP2558472B2 (en) Semiconductor integrated circuit
JPH0425711B2 (en)
JPS6156624B2 (en)
JPS6225264B2 (en)
JPS59134B2 (en) Semiconductor integrated circuit device
JPS6031105B2 (en) semiconductor equipment
JPS634715B2 (en)
JPH02276271A (en) Bipolar cmos semiconductor device and manufacture thereof