JPH02152240A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02152240A
JPH02152240A JP30639188A JP30639188A JPH02152240A JP H02152240 A JPH02152240 A JP H02152240A JP 30639188 A JP30639188 A JP 30639188A JP 30639188 A JP30639188 A JP 30639188A JP H02152240 A JPH02152240 A JP H02152240A
Authority
JP
Japan
Prior art keywords
type
oxide film
emitter
region
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30639188A
Other languages
Japanese (ja)
Other versions
JP2715494B2 (en
Inventor
Seiichi Takahashi
誠一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30639188A priority Critical patent/JP2715494B2/en
Publication of JPH02152240A publication Critical patent/JPH02152240A/en
Application granted granted Critical
Publication of JP2715494B2 publication Critical patent/JP2715494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To eliminate a need to estimate various margins such as an overlap of a polycrystalline silicon layer with an oxide film and the like and to make an element fine by a method wherein the oxide film is formed between emitter and graft base and an emitter polycrystalline silicon layer is grown selectively. CONSTITUTION:A P<-> type silicon substrate 101 is prepared; an N<+> type buried layer 102, an N<-> type epitaxial layer 103, an oxide film 104 for insulating and isolation use, an oxide film 105 and an N-type collector region 106 are formed one after another. A P-type base region 108 and a P<+> type graft base region 109 are formed continuously by making use of a photoresist 107 as a mask by an ion implantation method. Then, a nitride film 110 is grown at about 1,000Angstrom ; a recessed part 112 used to form an emitter is formed by making use of a photoresist 111 as a mask by an anisotropic etching operation. The photoresist is stripped off; after that, an oxidation operation is excited; an oxide film 113 is formed at about 1,000Angstrom on side faces of the recessed part; in addition, the oxide film at the bottom of the recessed part is removed by executing the anisotropic etching operation. Lastly, a polycrystalline silicon layer 114 is grown selectively so as to fill the recessed part; N-type impurities are introduced; a heat treatment is executed; an N<+> type emitter region 115 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバイポーラトランジスタの製造方法に関し、特
にベース高濃度領域形成のフォトリングラフィ工程を省
略したバイポーラトランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a bipolar transistor, and more particularly to a method for manufacturing a bipolar transistor in which a photolithography step for forming a heavily doped base region is omitted.

〔従来の技術〕[Conventional technology]

従来、バイポーラトランジスタはその高速性、線形酸が
良いことから各種の論理IC,’)ニアICに使用され
ている。
Conventionally, bipolar transistors have been used in various logic ICs and near ICs because of their high speed and good linearity.

第3図に従来のNPN型バイポーラトランジスタの構造
断面図を示す。以下製造工程を追って説明する。まず、
P−型シリコン基板301にN+型埋込層302を形成
し、さらにN−型エピタキシャル層303を形成する。
FIG. 3 shows a cross-sectional view of the structure of a conventional NPN type bipolar transistor. The manufacturing process will be explained below. first,
An N+ type buried layer 302 is formed on a P- type silicon substrate 301, and an N- type epitaxial layer 303 is further formed.

次に所定の形状をした窒化膜を形成してこれを耐酸化用
マスクとして絶縁分離用酸化膜304を形成する。酸化
膜305を形成した後、コレクタ部にN型不純物を拡散
してN型コレクタ領域306を形成する。次にP型ベー
ス領域307をイオン注入法などを用いて形成し、さら
にベース・コンタクト抵抗を低減するためP+型高濃度
ベース領域(以下グラフトベースと称す)308を形成
する。エミッタ拡散を行うための拡散窓を開口した上で
多結晶シリコン309を成長し、ドライエツチング等に
より、所定の形状にする。さらにN型不純物を多結晶シ
リコン層に導入し、熱処理を加えて、エミッタ領域31
0を形成する。以下、層間絶縁膜311を形成し、アル
ミニウム配線312を施して素子を完成する。
Next, a nitride film having a predetermined shape is formed, and this is used as an oxidation-resistant mask to form an oxide film 304 for insulation isolation. After forming the oxide film 305, N-type impurities are diffused into the collector portion to form an N-type collector region 306. Next, a P type base region 307 is formed using an ion implantation method or the like, and a P + type heavily doped base region (hereinafter referred to as a graft base) 308 is further formed in order to reduce the base contact resistance. After opening a diffusion window for emitter diffusion, polycrystalline silicon 309 is grown and formed into a predetermined shape by dry etching or the like. Furthermore, N-type impurities are introduced into the polycrystalline silicon layer, heat treatment is added, and the emitter region 31
form 0. Thereafter, an interlayer insulating film 311 is formed and aluminum wiring 312 is provided to complete the device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のバイポーラトランジスタの製造方法では
、ベース領域からアルミ配線によって端子を引き出す際
にベース領域の抵抗を小さくし、トランジスタの特性を
良くするための高濃度領域(グラフト・ベース)をイオ
ン注入法などによって形成しなげればならない。このた
め、グラフト・ベース形成のためのフォトリングラフィ
工程を行わなければならず、エミッターベース間の耐圧
を考慮した場合、エミッタ不純物、グラフト・ベース不
純物の拡散横広がり、エミッタおよびグラフト・ベース
形成のフォトリソグラフィ工程での目ズレ、多結晶シリ
コンと酸化膜のオーバーラツプ空乏層の伸びなど各種マ
ージンを見積らねばならず、素子面責が大きくなり、微
細化が図れないという欠点がある。
In the conventional manufacturing method of bipolar transistors described above, a high concentration region (graft base) is formed by ion implantation to reduce the resistance of the base region and improve the characteristics of the transistor when drawing out the terminal from the base region using aluminum wiring. It must be formed by For this reason, a photolithography process must be performed to form the graft base, and when considering the breakdown voltage between the emitter and base, the lateral spread of emitter impurities and graft base impurities, and the formation of emitter and graft base. Various margins must be estimated, such as misregistration in the photolithography process, overlapping depletion layer growth between polycrystalline silicon and oxide film, etc., which increases device surface area and prevents miniaturization.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、第1導電型の半導体
基板に第2導電型の埋込層およびエピタキシャル層を形
成する工程と、絶縁分離用酸化膜およびコレクタ拡散領
域を形成する工程と、表面近傍が高濃度でベース−コレ
クタ接合近傍で低濃度となる2段階の不純物濃度プロフ
ァイルをもつ第1導電型のベース層を形成する工程と、
前記ベース層の低濃度領域に達する凹部を形成する工程
と、前記凹部側面を酸化し、さらに凹部底面の酸化膜を
異方性エツチングにより除去する工程と、前記凹部を埋
めるように多結晶半導体層を選択成長する工程と、前記
多結晶半導体層に不純物を導入し、熱処理を加えてエミ
ッタ領域を形成する工程とを有している。
The method for manufacturing a semiconductor device of the present invention includes the steps of: forming a buried layer and an epitaxial layer of a second conductivity type on a semiconductor substrate of a first conductivity type; forming an oxide film for insulation isolation and a collector diffusion region; forming a base layer of a first conductivity type having a two-stage impurity concentration profile with a high concentration near the surface and a low concentration near the base-collector junction;
A step of forming a recess reaching the low concentration region of the base layer, a step of oxidizing the side surfaces of the recess, and further removing an oxide film on the bottom of the recess by anisotropic etching, and forming a polycrystalline semiconductor layer to fill the recess. and a step of introducing impurities into the polycrystalline semiconductor layer and applying heat treatment to form an emitter region.

すなわち、上述した従来のバイポーラトランジスタの製
造方法が、ベース領域を低抵抗化するためのグラフトベ
ースを形成するのにフォトリソグラフィ工程を用いてお
り、またエミッタ多結晶半導体層を酸化膜にオーバーラ
ツプして形成しているのに対し、本発明は、エミッター
グラフトベース間に酸化膜を形成することによりグラフ
トベース形成のフォトリソグラブイ工程を省略しており
、また、エミッタ多結晶シリコン層を選択成長すること
により酸化膜とのオーバーラツプをなくしている。
That is, the conventional method for manufacturing bipolar transistors described above uses a photolithography process to form a graft base to lower the resistance of the base region, and also overlaps the emitter polycrystalline semiconductor layer with an oxide film. In contrast, the present invention omits the photolithographic process for forming the graft base by forming an oxide film between the emitter graft bases, and also selectively grows the emitter polycrystalline silicon layer. This eliminates overlap with the oxide film.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(e)は本発明の一実施例の縦断面図で
ある。
FIGS. 1(a) to 1(e) are longitudinal sectional views of an embodiment of the present invention.

まず、第1図(a)に示すように、P−型シリコン基板
101を用意し、従来のバイポーラトランジスタと同様
にN+型埋込層102.N−型エピタキシャル層103
.絶縁分離用酸化膜104.酸化膜105.N型コレク
タ領域106を順次形成してゆく。次に第1図(b)に
示すように、フォトレジスト107をマスクとして、イ
オン注入法によりP型ベース領域108.P+型グラフ
ト・ベース領域109を連続して形成する。P型ベース
領域はボロンをドーパントする場合、加速エネルギー約
50keV、  ドーズ量2〜5 X 1013cm−
2でイオン注入を行い、P“型グラフトベース領域は同
じくポロンをドーパントとする場合、加速エネルギー約
30keV、 ドーズ量4〜6 X 10 ”cm−”
でイオン注入を行うのが適当と思われる。次に第1図(
c)に示すように窒化膜110を約1000人成長し、
フォトレジスト111をマスクとして異方性エツチング
により、エミッタを形成する凹部112を設ける。フォ
トレジスト剥離後、第1図(d)に示すように酸化を行
って前記凹部側面に酸化膜113を1000人程度形成
し、さらに異方性エツチングを行って凹部底面の酸化膜
を除去する。最後に、前記凹部を埋めるように多結晶シ
リコン層114の選択成長を行い、N型不純物を導入し
た上で熱処理を行い、N+型工゛ミッタ領域115を形
成する。以下、従来の方法を用いて層間絶縁膜および金
属配線層を形成して素子を完成する。
First, as shown in FIG. 1(a), a P- type silicon substrate 101 is prepared, and an N+ type buried layer 102. N-type epitaxial layer 103
.. Insulating isolation oxide film 104. Oxide film 105. The N-type collector region 106 is sequentially formed. Next, as shown in FIG. 1(b), using the photoresist 107 as a mask, ion implantation is performed to form the P-type base region 108. A P+ type graft base region 109 is formed continuously. When the P-type base region is doped with boron, the acceleration energy is approximately 50 keV and the dose is 2 to 5 x 1013 cm.
When ion implantation is performed in step 2, and poron is used as the dopant in the P" type graft base region, the acceleration energy is about 30 keV and the dose is 4 to 6 x 10 "cm-".
It seems appropriate to perform ion implantation in Next, Figure 1 (
As shown in c), about 1000 nitride films 110 are grown,
A recess 112 for forming an emitter is provided by anisotropic etching using the photoresist 111 as a mask. After removing the photoresist, oxidation is performed to form about 1000 oxide films 113 on the side surfaces of the recess as shown in FIG. 1(d), and anisotropic etching is further performed to remove the oxide film on the bottom of the recess. Finally, a polycrystalline silicon layer 114 is selectively grown to fill the recess, and an N+ type emitter region 115 is formed by introducing N type impurities and performing heat treatment. Thereafter, an interlayer insulating film and a metal wiring layer are formed using conventional methods to complete the device.

第2図は本発明の他の実施例の縦断面図である。FIG. 2 is a longitudinal sectional view of another embodiment of the invention.

第2図(a)に示すようにP−型シリコン基板201を
用意し、実施例1と同様にN+型埋込層202゜N−型
エピタキシャル層203.絶縁分離用酸化膜204.酸
化膜205.N型コレクタ領域206を形成する。次に
フォトレジスト207をマスクにして、異方性エツチン
グを用いてベース形成領域に凹部208を設ける。第2
図(b)に示すようにレジスト剥離後、上記凹部に選択
エピタキシャル層を成長する。このとき、成長途中でド
ーパント濃度を変化し、P型ベース領域209およびP
+型グラフトベース領域210を形成する。さらに選択
エピタキシャル層表面を酸化し、酸化膜211を形成す
る。以下は実施例1と同様にエミッタ部を形成して素子
を完成する。この実施例ではベース幅Wは W= (ベース−コレクタ接合深さ) −(ベース−エミッタ接合深さ) −(エミッタ拡散深さ) であり、ベース−コレクタ接合の深さ、およびベース−
エミッタ接合の深さはベース凹部、およびエミッタ凹部
の異方性エツチングの深さで決定されるので、ごく薄い
ベース幅のバイポーラトランジスタを精度よく製造する
ことができるという利点がある。
As shown in FIG. 2(a), a P- type silicon substrate 201 is prepared, and as in the first embodiment, an N+ type buried layer 202, an N- type epitaxial layer 203. Insulating isolation oxide film 204. Oxide film 205. An N-type collector region 206 is formed. Next, using the photoresist 207 as a mask, a recess 208 is formed in the base formation region using anisotropic etching. Second
After removing the resist, a selective epitaxial layer is grown in the recessed portions as shown in FIG. 3(b). At this time, the dopant concentration is changed during the growth, and the P type base region 209 and P
A +-type graft base region 210 is formed. Furthermore, the surface of the selective epitaxial layer is oxidized to form an oxide film 211. Thereafter, in the same manner as in Example 1, an emitter portion is formed to complete the device. In this example, the base width W is W = (Base-Collector Junction Depth) - (Base-Emitter Junction Depth) - (Emitter Diffusion Depth) where the Base-Collector Junction Depth and Base-
Since the depth of the emitter junction is determined by the depth of the anisotropic etching of the base recess and the emitter recess, there is an advantage that a bipolar transistor with a very thin base width can be manufactured with high precision.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、グラフトベースを形成す
るためのフォトリングラフィ工程がなく、エミッター高
濃度ベース領域間は酸化膜によって絶縁されているため
、エミッタおよびグラフトベース不純物の横広がり、フ
ォトリングラフィ工程による目ズレ、多結晶シリコン層
と酸化膜のオーバーラツプなどの各種のマージンを見積
る必要がなく素子の微細化が図られる。また空乏層が横
方向へ伸びてリーチスルーを起こビ耐圧が低下するとい
うこともなく、耐圧はエミッタとP型ベースの濃度によ
ってのみ決定されるという効果がある。さらに実施例2
に示すようにベース領域を選択エピタキシャル層を用い
て形成すれば、ベース幅は異方性エツチングの精度によ
って決まり、コく薄いベース幅を持ったバイポーラトラ
ンジスタの形成も可能になる。
As explained above, the present invention does not require a photolithography process to form a graft base, and the emitter and high concentration base regions are insulated by an oxide film. There is no need to estimate various margins such as misalignment due to the graphic process and overlap between the polycrystalline silicon layer and the oxide film, and the device can be miniaturized. In addition, the depletion layer does not extend laterally, causing reach-through and reducing the breakdown voltage, and the breakdown voltage is determined only by the concentrations of the emitter and the P-type base. Furthermore, Example 2
If the base region is formed using a selective epitaxial layer as shown in FIG. 1, the base width is determined by the precision of anisotropic etching, and it becomes possible to form a bipolar transistor with a thin base width.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明のバイポーラトランジス
タの製造方法の実施例1の縦断面図、第2図(a)、 
(b)は本発明の他の実施例の縦断面図、第3図は従来
のバイポーラトランジスタの構造断面図である。 101.201,301・・・・・・P−型半導体基板
、102.202,302・・・・・・N+型エピタキ
シャル層、103,203,303・・・・・・N−型
エピタキシャル層、104,204,304・・・・・
・絶縁分離用酸化膜、105,205,211,305
・旧・・酸化膜、106,206,306・・川・N型
コレクタ領域、107,207,111・・・・・・フ
ォトレジスト、108,307・・・・・・P型ベース
領域、109゜308・・・・・・P+グラフトベース
領域、2o8・・・・・・ベース凹部、209・・・・
・・p型−<−スエピタキシャル層、210・・・・・
・P+型グラフトベースエピタキシャル11.110・
・・・・・窒化膜、112・・川・エミッタ凹部、11
3・・・・・6・側面酸化膜、114,309・・川・
エミッタ多結晶半導体装置、115,310・・団・N
+型エミッタ領域、311・・・・・・層間絶縁膜、3
12・・・・・・配線金属層。 代理人 弁理士  内 原   晋 cry) (C) Cρ() 、′y7If5f図 藁7図
1(a) to 1(e) are longitudinal sectional views of Example 1 of the method for manufacturing a bipolar transistor of the present invention, FIG. 2(a),
(b) is a longitudinal cross-sectional view of another embodiment of the present invention, and FIG. 3 is a structural cross-sectional view of a conventional bipolar transistor. 101.201,301...P- type semiconductor substrate, 102.202,302...N+ type epitaxial layer, 103,203,303...N- type epitaxial layer, 104, 204, 304...
・Oxide film for insulation isolation, 105, 205, 211, 305
・Old... Oxide film, 106, 206, 306... River N-type collector region, 107, 207, 111... Photoresist, 108, 307... P-type base region, 109゜308...P+graft base region, 2o8...Base recess, 209...
・・P-type-<-s epitaxial layer, 210...
・P+ type graft base epitaxial 11.110・
...Nitride film, 112...River/emitter recess, 11
3...6.Side oxide film, 114,309...River...
Emitter polycrystalline semiconductor device, 115, 310... Group N
+ type emitter region, 311... interlayer insulating film, 3
12... Wiring metal layer. Agent Patent Attorney Susumu Uchihara Cry) (C) Cρ() ,'y7If5fFigure 7

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板に第2導電型の埋込層およびエ
ピタキシャル層を形成する工程と、絶縁分離用酸化膜お
よびコレクタ拡散領域を形成する工程と、表面近傍が高
濃度でベース−コレクタ接合近傍で低濃度となる2段階
の不純物濃度プロファイルをもつ第1導電型のベース層
を形成する工程と、前記ベース層の低濃度領域に達する
凹部を形成する工程と、前記凹部側面を酸化し、さらに
凹部底面の酸化膜を異方性エッチングにより除去する工
程と、前記凹部を埋めるように多結晶半導体層を選択成
長する工程と、前記多結晶半導体層に不純物を導入し、
熱処理を加えてエミッタ領域を形成する工程とを有する
半導体装置の製造方法。
A step of forming a buried layer and an epitaxial layer of a second conductivity type on a semiconductor substrate of a first conductivity type, a step of forming an oxide film for insulation isolation and a collector diffusion region, and a step of forming a base-collector junction with a high concentration near the surface. a step of forming a base layer of a first conductivity type having a two-stage impurity concentration profile with a low concentration in the vicinity, a step of forming a recess that reaches a low concentration region of the base layer, and oxidizing the side surface of the recess, Further, a step of removing the oxide film on the bottom surface of the recess by anisotropic etching, a step of selectively growing a polycrystalline semiconductor layer so as to fill the recess, and introducing an impurity into the polycrystalline semiconductor layer,
A method for manufacturing a semiconductor device, comprising the step of applying heat treatment to form an emitter region.
JP30639188A 1988-12-02 1988-12-02 Method for manufacturing semiconductor device Expired - Lifetime JP2715494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30639188A JP2715494B2 (en) 1988-12-02 1988-12-02 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30639188A JP2715494B2 (en) 1988-12-02 1988-12-02 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02152240A true JPH02152240A (en) 1990-06-12
JP2715494B2 JP2715494B2 (en) 1998-02-18

Family

ID=17956452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30639188A Expired - Lifetime JP2715494B2 (en) 1988-12-02 1988-12-02 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2715494B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758120A (en) * 1993-08-11 1995-03-03 Nec Corp Semiconductor device and its manufacture
US5659193A (en) * 1993-12-10 1997-08-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758120A (en) * 1993-08-11 1995-03-03 Nec Corp Semiconductor device and its manufacture
US5659193A (en) * 1993-12-10 1997-08-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2715494B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JP2728671B2 (en) Manufacturing method of bipolar transistor
KR0139805B1 (en) Method of making single polysilicon self-aligned transistor
KR940702647A (en) Complementary Bipolar Transistors HAVING HIGH EARLY VOLTAGE, HIGH FREZUENCY PERFORMANCE AND HIGH BREAKDOWN VOLTAGE CHARACTERISTICS AND METHOD OF MAKING SAME
JPH038343A (en) Bipolar transistor and manufacture thereof
US6699741B1 (en) Single poly bipolar transistor and method that uses a selectively epitaxially grown highly-boron-doped silicon layer as a diffusion source for an extrinsic base region
JPH0241170B2 (en)
JPH0786296A (en) Manufacture of high-speed bipolar transistor
JPH02152240A (en) Manufacture of semiconductor device
JP2652995B2 (en) Semiconductor device and manufacturing method thereof
JP2697631B2 (en) Method for manufacturing semiconductor device
JP2890509B2 (en) Method for manufacturing semiconductor device
JPS5984469A (en) Manufacture of semiconductor device
JPS61218169A (en) Semiconductor device and manufacture thereof
JP3707978B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH0629304A (en) Semiconductor device and manufacture thereof
JPS641933B2 (en)
JPH02304931A (en) Semiconductor device and manufacture thereof
JPH04287329A (en) Lateral bipolar transistor and its manufacture
JPH06188259A (en) Manufacture of semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor
JPH0722433A (en) Semiconductor device and its manufacture
JPH02148848A (en) Manufacture of semiconductor device
JPS59207660A (en) Manufacture of semiconductor device
JP2000150913A (en) Semiconductor device
JPH05102171A (en) Semiconductor device and its manufacture