JP2654383B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JP2654383B2 JP2654383B2 JP62168649A JP16864987A JP2654383B2 JP 2654383 B2 JP2654383 B2 JP 2654383B2 JP 62168649 A JP62168649 A JP 62168649A JP 16864987 A JP16864987 A JP 16864987A JP 2654383 B2 JP2654383 B2 JP 2654383B2
- Authority
- JP
- Japan
- Prior art keywords
- conductivity type
- region
- layer
- semiconductor layer
- type semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 title claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 23
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 16
- 229910052698 phosphorus Inorganic materials 0.000 claims description 16
- 239000011574 phosphorus Substances 0.000 claims description 16
- 238000002955 isolation Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims 2
- 239000010410 layer Substances 0.000 description 83
- 230000000694 effects Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本考案は、ロジック回路や小信号回路と共存する高耐
圧パワーICの製造方法に係り、特に高い分離耐圧と低オ
ン抵抗パワーMOSFETとを同一チップ上に集積化するのに
好適な半導体装置の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a high-withstand-voltage power IC coexisting with a logic circuit and a small signal circuit. The present invention relates to a method for manufacturing a semiconductor device suitable for being integrated on a chip.
従来、高耐圧パワーMOSFETとロジツク回路や小信号制
御回路とが共存した半導体装置については、エレクトロ
ニク デザイン 2月21日号1985年第191頁から第198頁
(Electronic Design February21,1985pp191−198)に
おいて報告されている。Conventionally, a semiconductor device in which a high voltage power MOSFET and a logic circuit or a small signal control circuit coexist is described in Electronic Design February 21, 1985, pp. 191 to 198 (Electronic Design February 21, 1985 pp. 191-198). It has been reported.
上記従来技術は、第2図のようにパワーMOSFETのドレ
イン端子Dを、p形エピタキシヤル層22を突き抜ける深
い高不純物濃度のn+形埋込み拡散層26により、n+基板21
から取り出している。この構造において、パワーMOSFET
24とBi−CMOS回路25とを分離するp形エピタキシヤル層
22およびp+形素子分離用拡散27で囲まれた島の耐圧は、
主にp形エピタキシヤル層22の厚さで制限されていた。
n+形埋込み拡散層26の深さよりは厚くできないからであ
る。そのため、実効的なp形エピタキシヤル層22の厚さ
を薄くしないように、Bi−CMOS回路部25には、従来の薄
いn+埋込み層を設けていなかつた。従つてnpnトランジ
スタの直列抵抗の増加やそれに伴う周波数特性の低下、
さらに、寄生pnpのhFEの増加やCMOS部ラツチアツプ耐量
の低下、等の問題があった。In the above prior art, as shown in FIG. 2, a drain terminal D of a power MOSFET is connected to an n + substrate 21 by a deep high impurity concentration n + type buried diffusion layer 26 penetrating through a p-type epitaxial layer 22.
Is taken from. In this structure, the power MOSFET
P-type epitaxial layer separating the 24 from the Bi-CMOS circuit 25
The withstand voltage of the island surrounded by 22 and the p + type element isolation diffusion 27 is
It was mainly limited by the thickness of the p-type epitaxial layer 22.
This is because it cannot be made thicker than the depth of the n + type buried diffusion layer 26. Therefore, so as not to reduce the effective thickness of the p-type epitaxial layer 22, the Bi-CMOS circuit portion 25, has failed has established a conventional thin n + buried layer. Therefore, the series resistance of the npn transistor increases, and the frequency characteristics decrease accordingly.
Furthermore, reduction in growth and CMOS portion Ratsuchiatsupu immunity of the parasitic pnp of h FE, there is a problem and the like.
本発明の目的は、高耐圧低オン抵抗パワーMOSFETとロ
ジツク回路や小信号部からなる制御回路部とを、各々最
適な構造条件で同一チツプ上に共存させることが可能な
半導体装置の製造方法を提供することにある。An object of the present invention is to provide a method of manufacturing a semiconductor device in which a high breakdown voltage low on-resistance power MOSFET and a control circuit section including a logic circuit and a small signal section can coexist on the same chip under optimum structural conditions. To provide.
上記目的は、表面に予めリン埋込み層を形成したアン
チモンドープのn+基板をエッチングにより凹部を形成
し、このn+基板上にp形エピタキシヤル層を実質的に平
坦になるように形成し、凹部以外のp形エピタキシヤル
層は、n+基板に拡散したリン埋込み層のわき上がりと、
p形エピタキシヤル層表面に形成したアンチモンドープ
のn+拡散層とが接続してn形化することにより、達成さ
れる。The object is to form a concave portion by etching an antimony-doped n + substrate on which a phosphorus buried layer has been formed in advance, and form a p-type epitaxial layer on this n + substrate so as to be substantially flat, The p-type epitaxial layer other than the concave portion is formed by the rise of the phosphorus buried layer diffused into the n + substrate,
This is achieved by connecting to the antimony-doped n + diffusion layer formed on the surface of the p-type epitaxial layer to make it n-type.
Bi−CMOS回路形成部のn+基板をエツチングして凹部を
設けることにより、深いn+形貫通拡散層を形成するため
の高温長時間拡散の拡散時間を増加することなく、厚い
p形エピタキシヤル層とn+貫通層を共存できる。By etching the n + substrate of the Bi-CMOS circuit forming portion to provide a concave portion, the thick p-type epitaxial layer can be formed without increasing the diffusion time of high-temperature long-time diffusion for forming a deep n + -type through diffusion layer. The layer and the n + penetrating layer can coexist.
厚いp形エピタキシヤル層を用いることができるの
で、Bi−CMOS回路部に従来のアンチモンドープのn+埋込
み層を形成でき、npnのコレクタ直列抵抗の低減、寄生p
npのhFEの低減等、素子特性を向上できる。Since a thick p-type epitaxial layer can be used, a conventional antimony-doped n + buried layer can be formed in the Bi-CMOS circuit, reducing the collector series resistance of npn and reducing parasitic p.
reduction of np of h FE, can improve element characteristics.
また、厚いp形エピタキシヤル層により、高い分離耐
圧が確保できる。Moreover, a high isolation breakdown voltage can be ensured by the thick p-type epitaxial layer.
さらに、n形エピタキシヤル層は、平坦なp形エピタ
キシヤル層上および、アンチモンドープのn+埋込層上に
成長すれば良いので、リン埋込みのわき上りによる厚さ
ばらつきやオートドーピングによる抵抗率ばらつきの影
響が小さく精度良く形成できる。Furthermore, since the n-type epitaxial layer may be grown on the flat p-type epitaxial layer and on the antimony-doped n + buried layer, the thickness variation due to the buried phosphorus and the resistivity due to the auto-doping. It can be formed with high accuracy with little influence of variation.
リン埋込み層は、n+基板全面に形成しても良いので、
リン埋込み層形成のためのホトマスクは不要とすること
ができ、コスト低減が図れる。Since the phosphorus buried layer may be formed on the entire surface of the n + substrate,
A photomask for forming the phosphorus buried layer can be omitted, and the cost can be reduced.
以下、本発明の一実施例を第1図,第3図により説明
する。An embodiment of the present invention will be described below with reference to FIGS.
ここでは、60Vクラスのnチヤネル縦型パワーMOSFET
とBi−CMOS回路とが共存するIC構造を例にとる。Here, 60V class n-channel vertical power MOSFET
An example is an IC structure in which a circuit and a Bi-CMOS circuit coexist.
60Vクラスのnチヤネル縦型パワーMOSFETを低オン抵
抗で使うためには、ゲート電圧を十分高く振り込む必要
があり、ゲート,ドライブ回路はドレイン電圧より10V
程高い電圧を扱う。従つて回路部には70Vの高耐圧素子
も形成しなければならず、結局60Vクラスのnチヤネル
縦型パワーMOSFETと共存する回路部は、少くとも70V以
上の分離耐圧が必要である。設計マージンを15%程度見
て、80Vの分離耐圧を目標とする。In order to use a 60V class n-channel vertical power MOSFET with low on-resistance, the gate voltage must be applied sufficiently high, and the gate and drive circuits must be 10V higher than the drain voltage
Handle moderately high voltages. Therefore, a high withstand voltage element of 70 V must also be formed in the circuit section. In the end, the circuit section coexisting with the n-channel vertical power MOSFET of the 60 V class needs to have a separation withstand voltage of at least 70 V or more. With a design margin of about 15%, we aim for a breakdown voltage of 80V.
第1図のパワーMOSFETのドレイン、即ち基板1に高電
圧が印加された場合、空乏層はパワーMOSFET部のn型エ
ピタキシヤル層4およびp形エピタキシヤル層3の中に
広がる。同様に回路部の高耐圧素子(図示されていない
が、例えばオフセツト構造のpチヤネル横型高耐圧MOS
やnチヤネル縦型高耐圧DMOSあるいは高耐圧ラテラルpn
pトランジスタ等)に高電圧が印加された場合も空乏層
はn形エピタキシヤル層4およびp形エピタキシヤル層
3の中に広がる。従つて、分離耐圧を確保するために
は、n+基板1から延びる空乏層と、n+埋込み層5から延
びる空乏層がパンチスルーしないだけの厚いp形エピタ
キシヤル層3が必要である。When a high voltage is applied to the drain of the power MOSFET of FIG. 1, that is, the substrate 1, the depletion layer spreads into the n-type epitaxial layer 4 and the p-type epitaxial layer 3 of the power MOSFET portion. Similarly, a high withstand voltage element (not shown, for example, a p-channel lateral high withstand voltage MOS having an offset structure)
Or n-channel vertical high voltage DMOS or high voltage lateral pn
Even when a high voltage is applied to the p-type transistor, the depletion layer spreads in the n-type epitaxial layer 4 and the p-type epitaxial layer 3. Therefore, in order to ensure the isolation breakdown voltage, a depletion layer extending from n + substrate 1 and a thick p-type epitaxial layer 3 that does not punch through the depletion layer extending from n + buried layer 5 are required.
分離耐圧80Vを考えると、p形エピタキシヤル層3の
抵抗率は少くとも2.5Ωcm以上の高い抵抗率を用いる。8
0V印加した場合のp形エピタキシヤル層3中に延びる空
乏層は、階段接合近似で約5μmである。n+埋込層5の
拡散深さを7μmとすると、n+基板1からのわき上りも
7μmとなるから、最低必要なp形エピタキシヤル層3
の厚さは24μm以上である。しかし、この厚さではp形
エピタキシヤル層3がほぼピンチオフした状態となるの
で、寄生サブpnpの動作等でp形エピタキシヤル層3中
に基板電流が流れた場合、電位降下が生じ、寄生npnや
サイリスタが動作し、破壊に致る恐れがある。従つて、
p形エピタキシヤル層3の厚さは十分マージンをとり、
40μm以上とする。Considering a separation withstand voltage of 80 V, the p-type epitaxial layer 3 has a high resistivity of at least 2.5 Ωcm. 8
The depletion layer extending into the p-type epitaxial layer 3 when 0 V is applied is about 5 μm in a step junction approximation. Assuming that the diffusion depth of n + buried layer 5 is 7 μm, the rise from n + substrate 1 is also 7 μm, so that the minimum required p-type epitaxial layer 3 is formed.
Is 24 μm or more. However, at this thickness, the p-type epitaxial layer 3 is almost in a pinch-off state. Therefore, when a substrate current flows through the p-type epitaxial layer 3 due to the operation of the parasitic sub-pnp or the like, a potential drop occurs, and the parasitic npn And the thyristor may operate, possibly leading to destruction. Therefore,
The thickness of the p-type epitaxial layer 3 has a sufficient margin,
40 μm or more.
以上第3図により、上記仕様の第1図の構造を実現す
るための製造方法の一例について説明する。With reference to FIG. 3, an example of a manufacturing method for realizing the structure of FIG. 1 having the above specifications will be described.
第3図(A)で0.02Ω・cm以下のアンチモンドープの
n形(100)シリコン基板1上に、マスクなしで全面
に、高濃度のリンデポあるいはリンイオン打込みを行な
いn形層51を形成する。In FIG. 3 (A), an n-type layer 51 is formed on the entire surface of the antimony-doped n-type (100) silicon substrate 1 having a resistivity of 0.02 Ω · cm or less by performing high concentration phosphorus deposition or phosphorus ion implantation without using a mask.
同図(B)で表面酸化後、通常のホトリソグラフイ技
術により、回路部となる部分の酸化膜2を除去して窓を
開ける。この時、ホトマスクのパターンは〈100〉方向
に平行な矩形パターンにする。After the surface is oxidized as shown in FIG. 3B, a window is opened by removing the oxide film 2 in a portion to be a circuit portion by ordinary photolithography technology. At this time, the pattern of the photomask is a rectangular pattern parallel to the <100> direction.
同図(c)で酸化膜2をエツチングマスクとして例え
ば70℃のKOH40wt%水溶液で30分程異方性エツチングを
行なうことにより、約20μm深さの凹部を形成する。In FIG. 2C, a recess having a depth of about 20 μm is formed by performing anisotropic etching for about 30 minutes using, for example, an aqueous solution of KOH of 40 wt% at 70 ° C. using the oxide film 2 as an etching mask.
第3図(D)は、酸化膜を除去した後に、p形エピタ
キシヤル層3を凹部の深さよりも厚く45μm程度成長さ
せた状態を示している。この状態から第3図(E)の表
面が平坦な構造を得るには、例えば、本願出願人によつ
て以前提案された「半導体装置の製造方法」(特公昭58
−43903号公報)を利用すれば良い。あるいは、研磨技
術を用いて平坦化を行なつても良い。その場合、第3図
(B)で説明した〈100〉方向に平行な矩形パターンに
する必要はない。FIG. 3D shows a state in which the p-type epitaxial layer 3 is grown to a thickness of about 45 μm thicker than the depth of the concave portion after removing the oxide film. In order to obtain a structure having a flat surface in FIG. 3 (E) from this state, for example, a “method of manufacturing a semiconductor device” previously proposed by the present applicant (Japanese Patent Publication No.
-43903). Alternatively, planarization may be performed using a polishing technique. In this case, it is not necessary to form a rectangular pattern parallel to the <100> direction described with reference to FIG.
第3図(E)でp形エピタキシヤル層3の厚さは、薄
い部分で約20μm、厚い部分で約40μmとなる。In FIG. 3 (E), the thickness of the p-type epitaxial layer 3 is about 20 μm in a thin part and about 40 μm in a thick part.
同図(F)でパワーMOS部および回路部にアンチモン
を酸化膜2をマスクにデポジツトする。In FIG. 1F, antimony is deposited on the power MOS portion and the circuit portion using the oxide film 2 as a mask.
同図(G)でn+埋込み層5の引き延ばし拡散を行な
う。1200℃15時間程度行なうと、アンチモンドープのn+
埋込み層5の拡散深さは7μm程度、リン埋込み層51の
わき上りは15μm程度となる。従つて、パワーMOS部はn
+埋込み層5とリン埋込み層51により、n+基板1と接続
される。In FIG. 3G, the n + buried layer 5 is extended and diffused. When performed at 1200 ° C for about 15 hours, antimony-doped n +
The diffusion depth of the buried layer 5 is about 7 μm, and the rise of the phosphorus buried layer 51 is about 15 μm. Therefore, the power MOS section is n
+ Buried layer 5 and phosphorus buried layer 51 are connected to n + substrate 1.
第3図(H)で、60VパワーMOSに必要なn形エピタキ
シヤル層4を0.9Ωcm,12μmの条件で成長させる。In FIG. 3H, an n-type epitaxial layer 4 required for a 60 V power MOS is grown under the conditions of 0.9 Ωcm and 12 μm.
同図(I)で、表面酸化後、ホトエツチにより酸化膜
2に窓を開け、p形分離拡散用に、ボロンをデポジツト
する。In FIG. 1I, after the surface is oxidized, a window is opened in the oxide film 2 by photoetching, and boron is deposited for p-type separation and diffusion.
同図(J)で、チヤネルストツパあるいはnpnのコレ
クタ直列抵抗低減用の深いn形拡散層53を形成する。こ
の時、p形分離拡散層6はp形エピタキシヤル層3に達
し、pn接合による島分離が完成する。In FIG. 10 (J), a channel stopper or a deep n-type diffusion layer 53 for reducing the collector series resistance of npn is formed. At this time, the p-type separation / diffusion layer 6 reaches the p-type epitaxial layer 3, and the island separation by the pn junction is completed.
同図(J)以降は、同図(K)のように、n+埋込み層
5とリン埋込み層51でn+基板1と接続されたn型エピタ
キシヤル層4中に単体と同じnチヤネル縦型パワーMOSF
ETを形成し、p形エピタキシヤル層3上の島分離された
n形エピタキシヤル層4中には、Bi−CMOS等を形成し、
パワーMOSFETをコントロールする回路を構成する。From the same figure (J) and thereafter, as shown in the same figure (K), the same n-channel vertical as that of the simple substance is provided in the n-type epitaxial layer 4 connected to the n + substrate 1 by the n + buried layer 5 and the phosphorus buried layer 51. Type power MOSF
An ET is formed, and a Bi-CMOS or the like is formed in the n-type epitaxial layer 4 separated from the island on the p-type epitaxial layer 3,
Constructs a circuit that controls the power MOSFET.
本実施例によれば、従来例の第2図では20μm程度が
限度であったp形エピタキシヤル層の厚さを、高温長時
間のn+貫通拡散層の拡散時間を増加することなく、40μ
m以上の厚いp形エピタキシヤル層をn+拡散層で貫通で
き、容易に高耐圧分離と、低オン抵抗パワーMOSFETとの
共存が同一チツプ上で実現できる効果がある。According to the present embodiment, the thickness of the p-type epitaxial layer, which was limited to about 20 μm in FIG. 2 of the conventional example, can be reduced by 40 μm without increasing the diffusion time of the n + penetrating diffusion layer for a long time at high temperature.
An n + diffusion layer can penetrate a p-type epitaxial layer having a thickness of m or more, which has the effect of easily realizing high withstand voltage isolation and coexistence with a low on-resistance power MOSFET on the same chip.
さらに、厚いp形エピタキシヤル層を用いることがで
きるので、回路部にも通常バイポーラICで用いられてい
るアンチモンドープのn+埋込み層を導入しても、十分な
分離耐圧を確保できる効果がある。Furthermore, since a thick p-type epitaxial layer can be used, even if an antimony-doped n + buried layer used in a normal bipolar IC is introduced into the circuit portion, there is an effect that a sufficient separation withstand voltage can be secured. .
また、回路部にn+埋込み層を導入できるので回路部の
素子特性を向上できる効果もある。Further, since the n + buried layer can be introduced into the circuit section, there is also an effect that the element characteristics of the circuit section can be improved.
本実施例によれば、リン埋込みはn+基板全面に形成す
るので、ホトマスクが不用であり低コスト化が図れる。According to this embodiment, since the phosphorus buried is formed on the entire surface of the n + substrate, a photomask is not required, and the cost can be reduced.
さらに、n形エピタキシヤル層は平坦なp形エピタキ
シヤル層およびアンチモンドープのn+埋込層上に形成す
るので、リン埋込みわき上りによる厚さばらつきや、オ
ートドーピングによる抵抗率ばらつきの影響が小さく、
精度良く形成できる。Furthermore, since the n-type epitaxial layer is formed on the flat p-type epitaxial layer and the antimony-doped n + buried layer, the influence of thickness variation due to phosphorus buried side up and resistivity variation due to autodoping are small. ,
It can be formed with high accuracy.
第4図は、本発明の他の実施例で、リン埋込みをn+基
板全面ではなく、ホトマスクを用いて、パワーMOS部に
入れた場合である。これによりリン埋込み層51の横方向
拡散をn+基板1に設けた凹部の外側にできるので、分離
拡散層6とパワーMOS部の分離に必要な横方向の距離
を、第1図に比べて小さくできる効果がある。FIG. 4 shows another embodiment of the present invention, in which phosphorus is buried in the power MOS portion using a photomask instead of the entire n + substrate. As a result, the lateral diffusion of the phosphorus buried layer 51 can be made outside the concave portion provided in the n + substrate 1, so that the lateral distance required for separating the isolation diffusion layer 6 and the power MOS portion is smaller than that in FIG. There is an effect that can be reduced.
本発明によれば、n+貫通拡散層形成のための高温拡散
時間を従来と同様の時間で、増加することなく2倍以上
の厚いp形エピタキシヤル層を貫通することができるの
で、低オン抵抗パワーMOSFETとBi−CMOS回路部との耐圧
を十分確保できる効果がある。According to the present invention, it is possible to penetrate the p-type epitaxial layer twice or more without increasing the high-temperature diffusion time for forming the n + penetrating diffusion layer in the same time as that of the conventional method, so This has the effect that the withstand voltage between the resistive power MOSFET and the Bi-CMOS circuit can be sufficiently ensured.
第1図は本発明の一実施例の半導体装置の断面図、第2
図は従来のBi−CMOS共存パワーMOSFETの断面図、第3図
(A)〜(K)は第1図の半導体装置の製造方法を示す
工程断面図、第4図は本発明の別の実施例の半導体装置
の断面図である。 1…n+形シリコン基板、2…酸化膜、3…p形エピタキ
シヤル層、4…n形エピタキシヤル層、5…n+埋込み
層、6…p形素子分離用拡散層、7…ポリシリコン・ゲ
ート電極、8,82…p形拡散層、9…n+形拡散層、10…第
一層Al電極、11…第二層Al電極、51…リン埋込み層、83
…p形ウエル、101…金属電極、201…層間絶縁膜。FIG. 1 is a sectional view of a semiconductor device according to one embodiment of the present invention, and FIG.
3A to 3K are cross-sectional views showing a method of manufacturing the semiconductor device shown in FIG. 1, and FIG. 4 is another embodiment of the present invention. It is sectional drawing of the semiconductor device of an example. DESCRIPTION OF SYMBOLS 1 ... n + type silicon substrate, 2 ... oxide film, 3 ... p-type epitaxy layer, 4 ... n-type epitaxy layer, 5 ... n + buried layer, 6 ... p-type element isolation diffusion layer, 7 ... polysilicon · Gate electrode, 8, 82: p-type diffusion layer, 9: n + type diffusion layer, 10: first layer Al electrode, 11: second layer Al electrode, 51: phosphorus buried layer, 83
... p-type well, 101 ... metal electrode, 201 ... interlayer insulating film.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 里中 孝一郎 群馬県高崎市西横手町111番地 株式会 社日立製作所高崎工場内 (72)発明者 幸田 豊正 群馬県高崎市西横手町111番地 株式会 社日立製作所高崎工場内 (56)参考文献 特開 昭61−285750(JP,A) ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Koichiro Satonaka 111 Nishiyokote-cho, Takasaki-shi, Gunma Co., Ltd. Inside the Takasaki Plant of Hitachi, Ltd. (56) References JP-A-61-285750 (JP, A)
Claims (3)
基板よりも高濃度の第1導電形の第1領域を形成する工
程と、 第1導電形半導体基板の主面に選択的に凹部を形成する
工程と、 凹部を有する第1導電形半導体基板の主面全面に凹部よ
りも厚い第2導電形半導体層を積層する工程と、 該第2導電形半導体層の表面を実質的に平坦にして前記
高濃度の第1領域上に薄い第2導電形半導体層と、前記
半導体基板の凹部上に厚い第2導電形半導体層とを形成
する工程と、 前記薄い第2導電形半導体層の表面部及び厚い第2導電
形半導体層の表面部に第1導電形の第2領域を選択的に
形成することにより、薄い第2導電形半導体層部分に形
成した第1領域と第2領域とが接続されてなる第1導電
形貫通拡散層を形成する工程と、 前記第2導電形半導体層の表面全面に第1導電形半導体
層を積層する工程と、 該第1導電形半導体層の表面より前記第2導電形半導体
層に達する素子分離のための第2導電形の第3領域を形
成する工程と、 該第3領域により素子分離された前記貫通拡散層上の第
1導電形半導体層部内に、前記半導体基板をドレインと
する縦型MOSトランジスタを形成する工程と、 前記第3領域により素子分離された他の第1導電形半導
体層部内に横型MOSトランジスタを形成する工程とを少
なくとも有することを特徴とする半導体装置の製造方
法。A step of forming a first region of a first conductivity type having a higher concentration than the semiconductor substrate on a main surface of the first conductivity type semiconductor substrate; Forming a recess in the semiconductor substrate; laminating a second conductivity type semiconductor layer thicker than the recess on the entire main surface of the first conductivity type semiconductor substrate having the recess; Forming a thin second conductivity type semiconductor layer on the high concentration first region and a thick second conductivity type semiconductor layer on the concave portion of the semiconductor substrate; By selectively forming the second region of the first conductivity type on the surface of the layer and the surface of the thick second conductivity type semiconductor layer, the first region and the second region formed on the thin second conductivity type semiconductor layer are formed. Forming a through-diffusion layer of the first conductivity type connected to the region; Laminating a first conductivity type semiconductor layer over the entire surface of the semiconductor layer; and a third region of a second conductivity type for element isolation from the surface of the first conductivity type semiconductor layer to the second conductivity type semiconductor layer. Forming a vertical MOS transistor having the semiconductor substrate as a drain in a first conductivity type semiconductor layer portion on the through diffusion layer which is element-isolated by the third region; Forming a lateral MOS transistor in another first conductivity type semiconductor layer portion separated by a region.
域を形成する不純物の熱拡散係数よりも小なる不純物を
用いて形成する特許請求の範囲第1項記載の半導体装置
の製造方法。2. The semiconductor device according to claim 1, wherein the second region of the first conductivity type is formed using an impurity having a smaller thermal diffusion coefficient than an impurity forming the first region. Production method.
を用い、前記第2領域は不純物にアンチモンを用いて形
成する特許請求の範囲第2項記載の半導体装置の製造方
法。3. The method according to claim 2, wherein the first region of the first conductivity type is formed using phosphorus as an impurity, and the second region is formed using antimony as an impurity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62168649A JP2654383B2 (en) | 1987-07-08 | 1987-07-08 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62168649A JP2654383B2 (en) | 1987-07-08 | 1987-07-08 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6413759A JPS6413759A (en) | 1989-01-18 |
JP2654383B2 true JP2654383B2 (en) | 1997-09-17 |
Family
ID=15871943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62168649A Expired - Fee Related JP2654383B2 (en) | 1987-07-08 | 1987-07-08 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2654383B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1594164B1 (en) | 2003-02-14 | 2012-05-09 | Hitachi, Ltd. | Integrated circuit for driving semiconductor device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0783113B2 (en) * | 1985-06-12 | 1995-09-06 | 日産自動車株式会社 | Semiconductor device |
-
1987
- 1987-07-08 JP JP62168649A patent/JP2654383B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6413759A (en) | 1989-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5065208A (en) | Integrated bipolar and CMOS transistor with titanium nitride interconnections | |
US5463238A (en) | CMOS structure with parasitic channel prevention | |
JPH0832040A (en) | Semiconductor device | |
JPH09115999A (en) | Semiconductor integrated circuit device | |
JP2515745B2 (en) | Method for manufacturing semiconductor device | |
JP2896141B2 (en) | High voltage semiconductor device | |
US5191401A (en) | MOS transistor with high breakdown voltage | |
KR910006672B1 (en) | Semiconductor integrated circuit device and its manufacturing method | |
US4893164A (en) | Complementary semiconductor device having high switching speed and latchup-free capability | |
JPH0618255B2 (en) | Semiconductor device | |
US4884116A (en) | Double diffused mosfet with potential biases | |
US5059547A (en) | Method of manufacturing double diffused mosfet with potential biases | |
JP2654383B2 (en) | Method for manufacturing semiconductor device | |
JPH05343686A (en) | Semiconductor device and manufacture thereof | |
JP2000068372A (en) | Semiconductor device and manufacture thereof | |
JP2000260786A (en) | Semiconductor device | |
JP3238228B2 (en) | Semiconductor device | |
JPH06151728A (en) | Semiconductor integrated circuit device | |
JP2518855B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2672184B2 (en) | Method for manufacturing semiconductor device | |
JP3225368B2 (en) | Semiconductor device | |
JPS606104B2 (en) | MIS semiconductor device | |
JPH07273340A (en) | Soi type transistor | |
JP2730450B2 (en) | Semiconductor device | |
JP2545987B2 (en) | High voltage MOS semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |