JPS6238852B2 - - Google Patents

Info

Publication number
JPS6238852B2
JPS6238852B2 JP52120937A JP12093777A JPS6238852B2 JP S6238852 B2 JPS6238852 B2 JP S6238852B2 JP 52120937 A JP52120937 A JP 52120937A JP 12093777 A JP12093777 A JP 12093777A JP S6238852 B2 JPS6238852 B2 JP S6238852B2
Authority
JP
Japan
Prior art keywords
film
mask
photoresist
processing
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52120937A
Other languages
Japanese (ja)
Other versions
JPS5454577A (en
Inventor
Yoshiaki Kamigaki
Nobuo Hasegawa
Kyoo Ito
Yoshifumi Kawamoto
Tetsukazu Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12093777A priority Critical patent/JPS5454577A/en
Publication of JPS5454577A publication Critical patent/JPS5454577A/en
Publication of JPS6238852B2 publication Critical patent/JPS6238852B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 (1) 発明の利用分野 本発明は、フオトレジストによる材料加工法に
関し、とくに自己整合的な加工法を提供し、微細
加工の点で有効な加工法に関するものである。
[Detailed Description of the Invention] (1) Field of Application of the Invention The present invention relates to a material processing method using photoresist, and particularly to a processing method that provides a self-aligning processing method and is effective in terms of microfabrication. .

(2) 従来技術 従来、写真蝕刻法により被加工材料を2回以上
加工する際、フオトマスクを2種類以上準備しな
くてはならなかつた。そのため、1回目の加工と
2回目の加工との間には、マスク合わせ余裕が必
要となり、その分加工精度の劣下を考慮しておく
必要があつた。また、サイド・エツチング法など
も用いられてはいたが、加工寸法の面で、いま一
歩満足できるものではなかつた。
(2) Prior Art Conventionally, when processing a workpiece material more than once by photolithography, it was necessary to prepare two or more types of photomasks. Therefore, a margin for mask alignment is required between the first processing and the second processing, and it is necessary to take into account the deterioration in processing accuracy. Also, although side etching methods have been used, they have not been completely satisfactory in terms of processing dimensions.

(3) 発明の目的 したがつて本発明は、写真蝕刻法により被加工
材料を加工する際、自戸整合的な方法をとり、し
かも加工性の面で、その制御性さらに加工形状の
十分に満足のできるフオトレジスト加工法を提供
するものである。
(3) Purpose of the invention Therefore, the present invention uses a self-consistent method when processing a workpiece material by photolithography, and also improves controllability and sufficient processing shape in terms of processability. The present invention provides a satisfactory photoresist processing method.

(4) 発明の総括説明 一種類のフオトマスクを用い、フオトレジスト
膜下に第2の加工マスク材を形成し、パターニン
グされたフオトレジスト膜をマスクにして第2の
加工マスク材を所望の寸法だけオーバ・エツチン
グした後、オーバ・エツチング部でひさし状にな
つたフオトレジスト膜を熱的に軟化させ、オー
バ・エツチング部でフオトレジスト膜と被加工材
料とを密着させ、フオトレジスト膜をマスクにし
て被加工材料を加工し、その後、フオトレジスト
膜を除去し、所定の加工工程を経た後、オーバ・
エツチングによりパターニングされている第2の
加工マスク材料をマスクにして被加工材料を加工
する。
(4) General description of the invention A second processing mask material is formed under a photoresist film using one type of photomask, and the second processing mask material is formed to a desired size using the patterned photoresist film as a mask. After over-etching, the photoresist film that has formed a canopy in the over-etched area is thermally softened, and the photoresist film and the workpiece are brought into close contact with each other in the over-etched area, using the photoresist film as a mask. After processing the material to be processed, removing the photoresist film and going through the prescribed processing steps,
The material to be processed is processed using the second processing mask material that has been patterned by etching as a mask.

とくに本発明の要点は、ひさし状になつたフオ
トレジスト膜を軟化させ、被加工材料に密着さ
せ、自己整合的に、被加工材料を少なくとも2回
以上加工するところにある。
In particular, the gist of the present invention is to soften the eaves-shaped photoresist film, bring it into close contact with the material to be processed, and process the material to be processed at least twice in a self-aligning manner.

(5) 実施例 以下、本発明を実施例を参照して詳細に説明す
る。なお、以下の説明は本発明のフオトレジスト
法を半導体装置の製造方法に適用しておこなう
が、本発明の精神を逸脱することなく種々の変形
が有り得ることに注意されねばならない。
(5) Examples Hereinafter, the present invention will be explained in detail with reference to examples. In the following explanation, the photoresist method of the present invention will be applied to a method of manufacturing a semiconductor device, but it must be noted that various modifications may be made without departing from the spirit of the present invention.

2つの実施例について、説明する。 Two examples will be described.

第1図におけるa乃至eは本発明の第1の実施
例を示し、オフセツト・ゲートのnチヤンネル
MOSトランジスタの製造工程に本発明を適用し
た例である。
A to e in FIG. 1 indicate a first embodiment of the present invention, in which n-channels of offset gates are shown.
This is an example in which the present invention is applied to a manufacturing process of a MOS transistor.

aはp型100面で、基板比抵抗が10Ωcmのシリ
コン基板1上に、1000℃,60分のドライ熱酸化に
よつて厚さ50nmのシリコン酸化膜2を形成し、
その上にCVD法によつて厚さ350nmの多結晶シ
リコン3を堆積し、リンの不純物ドーブをした後
に、厚さ100nmの薄い熱酸化膜4を750℃,60分
のウエツト熱酸化によつて形成し、その上にゲー
ト電極を形成するため、5μmの幅のフオトレジ
スト膜5を形成したところまでを示す。なおフオ
トレジスト材はAzoplate Shiplay社のAz1350Jを
用いた。処理条件はこのフオトレジストの標準の
条件に従つた。
A is a p-type 100 plane, and a silicon oxide film 2 with a thickness of 50 nm is formed on a silicon substrate 1 with a substrate resistivity of 10 Ωcm by dry thermal oxidation at 1000° C. for 60 minutes.
Polycrystalline silicon 3 with a thickness of 350 nm is deposited thereon by the CVD method, and after doping with phosphorus impurity, a thin thermal oxide film 4 with a thickness of 100 nm is deposited by wet thermal oxidation at 750°C for 60 minutes. The photoresist film 5 having a width of 5 μm is shown in order to form a gate electrode thereon. The photoresist material used was Az1350J manufactured by Azoplate Shiplay. Processing conditions followed standard conditions for this photoresist.

bは、その後、フオトレジスト膜5をマスクと
して、熱酸化膜4を、6対1の弗化アンモニウ
ム/弗化水素酸エツチ液中で、10分間エツチング
したところまでを示す。このとき、エツチ液の熱
酸化膜のエツチング速度は、液温20℃のとき、
100nm/分であり、熱酸化膜4は、フオトレジス
ト膜端から1μmのサイド・エツチングが進んで
いる。熱酸化膜4のエツチングの際、エツチ液の
液温を十分に設定値20℃に保つように管理すれ
ば、サイド・エツチングの寸法バラツキならびに
形状バラツキは十分に小さくおさえることができ
た。
Part b shows that the thermal oxide film 4 was then etched for 10 minutes in a 6:1 ammonium fluoride/hydrofluoric acid etchant using the photoresist film 5 as a mask. At this time, the etching rate of the thermal oxide film of the etchant is as follows:
The etching rate is 100 nm/min, and side etching of the thermal oxide film 4 is progressing by 1 μm from the edge of the photoresist film. When etching the thermal oxide film 4, if the temperature of the etchant was sufficiently maintained at the set value of 20°C, the dimensional and shape variations in side etching could be kept sufficiently small.

cは、その後、140℃,10分のベーキングをお
こない、フオトレジスト膜5を軟化させ、熱酸化
膜4のサイド・エツチングによつてできたフオト
レジスト膜5と多結晶シリコン3の間隙をなくす
るよう、フオトレジスト膜5を多結晶シリコン3
上に落下させたところまでを示す。
After that, baking is performed at 140°C for 10 minutes to soften the photoresist film 5 and eliminate the gap between the photoresist film 5 and the polycrystalline silicon 3 created by side etching of the thermal oxide film 4. In this way, the photoresist film 5 is replaced with polycrystalline silicon 3.
It shows the point where it is dropped.

dは、その後、フオトレジスト膜5をマスクに
して、多結晶シリコン3をプラズマ・エツチング
によつて加工し、フオトレジスト膜5を除去した
後、高濃度拡散層領域6−1および6−2を、打
込みエネルギ150keV、打込み量6×1015cm-2のヒ
素打込みによつて形成したところまでを示す。
d, the polycrystalline silicon 3 is then processed by plasma etching using the photoresist film 5 as a mask, and after removing the photoresist film 5, the high concentration diffusion layer regions 6-1 and 6-2 are etched. , the part formed by arsenic implantation with an implantation energy of 150 keV and an implantation amount of 6×10 15 cm -2 is shown.

eは、その後、熱酸化膜4をマスクにして、多
結晶シリコン3をプラズマ・エツチングによつて
再度加工した後、低濃度拡散領域7−1および7
−2を、打込みエネルギ100keV、打込み量2×
1012cm-2のヒ素打込みによつて形成したところま
でを示す。
After that, the polycrystalline silicon 3 is processed again by plasma etching using the thermal oxide film 4 as a mask, and then the low concentration diffusion regions 7-1 and 7 are etched.
-2, implant energy 100keV, implant amount 2×
The part formed by arsenic implantation of 10 12 cm -2 is shown.

その後は、通常の半導体プロセスにしたがつて
オフセツト・ゲームのnチヤンネルMOSトラン
ジスタが作製される。本実施例は、本発明のフオ
トレジスト法をオフセツト・ゲート部の寸法を自
己整合的に決めるために用いたもので、第2の加
工マスク材料としては、多結晶シリコン3を熱酸
化することにより形成されるSiO2膜4を利用
し、被加工材料は、多結晶シリコン3である。こ
の結果、オフセツト・ゲートのnチヤンネル
MOSトランジスタとしては、オフセツト長の寸
法バラツキならびに形状バラツキが非常に小さ
く、高耐圧化されたMOSトランジスタが実現で
き、しかも微細加工にも適し、高集積化可能なオ
フセツト・ゲートMOSトランジスタが実現でき
た。
Thereafter, an offset game n-channel MOS transistor is manufactured according to a normal semiconductor process. In this example, the photoresist method of the present invention was used to determine the dimensions of the offset gate portion in a self-aligned manner, and as the second processing mask material, polycrystalline silicon 3 was thermally oxidized. Using the formed SiO 2 film 4, the material to be processed is polycrystalline silicon 3. As a result, the n-channel of the offset gate
As a MOS transistor, we were able to realize a MOS transistor with very small dimensional variations in offset length and shape variation, and a high breakdown voltage.In addition, we were able to realize an offset gate MOS transistor that is suitable for microfabrication and can be highly integrated. .

第2図におけるa乃至eは、本発明の第2の実
施例を示し、半導体メモリのメモリ・セルの製造
工程に本発明を適用した例である。
A to e in FIG. 2 show a second embodiment of the present invention, which is an example in which the present invention is applied to a manufacturing process of a memory cell of a semiconductor memory.

aは、p型100面で、基板比抵抗が10Ω・cmの
シリコン基板11上に、アイソレーシヨン用選択
酸化膜12−1および12−2を形成した後、厚
さ50nmのシリコン酸化膜13を形成し、その上
にCVD法によつて厚さ350nmの多結晶シリコン
14を堆積し、高濃度にリンの不純物ドープをお
こなつた後、厚さ100nmの熱酸化膜15を850
℃,30分のウエツト熱酸化によつて形成し、その
上に多結晶シリコン14を加工するため、フオト
レジスト膜16を塗布し、パターニングしたとこ
ろまでを示す。
After forming selective oxide films 12-1 and 12-2 for isolation on a p-type 100-plane silicon substrate 11 with a substrate resistivity of 10 Ω·cm, a silicon oxide film 13 with a thickness of 50 nm is formed. A polycrystalline silicon 14 with a thickness of 350 nm is deposited thereon by the CVD method, and after doping with a high concentration of phosphorus, a thermal oxide film 15 with a thickness of 100 nm is deposited on the polycrystalline silicon 14 with a thickness of 850 nm.
The photoresist film 16 is formed by wet thermal oxidation for 30 minutes at 30°C, and the photoresist film 16 is applied and patterned in order to process the polycrystalline silicon 14 thereon.

bは、その後、フオトレジスト膜16をマスク
として、熱酸化膜15を、6/1の弗化アンモニウ
ム/弗酸エツチ液中で、20分間エツチングしたと
ころまでを示す。このとき、熱酸化膜15は、フ
オトレジスト膜下まで2μmのサイドエツチング
が進んでいる。このサイド・エツチング幅が、メ
モリ・セルの転送トランジスタのチヤネル長に相
当する。
Part b shows that the thermal oxide film 15 was then etched for 20 minutes in a 6/1 ammonium fluoride/hydrofluoric acid etchant using the photoresist film 16 as a mask. At this time, side etching of the thermal oxide film 15 by 2 μm has progressed to below the photoresist film. This side etching width corresponds to the channel length of the transfer transistor of the memory cell.

cは、その後、140℃,10分のベーキングをお
こない、フオトレジスト膜16を軟化させ、熱酸
化膜15のサイド・エツチングによつてできたフ
オトレジスト膜16と熱酸化膜15の間隙をなく
するよう、フオトレジスト膜16を多結晶シリコ
ン14上に落下させ密着させたところまでを示
す。
c is then baked at 140° C. for 10 minutes to soften the photoresist film 16 and eliminate the gap between the photoresist film 16 and the thermal oxide film 15 created by side etching of the thermal oxide film 15. The photoresist film 16 is shown dropped onto the polycrystalline silicon 14 and brought into close contact with the polycrystalline silicon 14.

dは、その後、フオトレジスト膜16をマスク
にして、多結晶シリコン14をプラズマ・エツチ
ングによつて加工し、フオトレジスト膜16を除
去した後、メモリ・セルのデータ線を形成するた
め高濃度拡散層領域17を、打込みエネルギ
150keV、打込み量1×1016cm-2のヒ素打込みによ
つて形成したところまでを示す。
Then, using the photoresist film 16 as a mask, the polycrystalline silicon 14 is processed by plasma etching, and after removing the photoresist film 16, high concentration diffusion is performed to form the data line of the memory cell. The layer region 17 is exposed to the implant energy.
The area formed by arsenic implantation at 150 keV and an implantation amount of 1×10 16 cm −2 is shown.

eは、その後、熱酸化膜15をマスクにして多
結晶シリコン14をプラズマ・エツチングによつ
て再度加工した後、熱酸化膜15と基板表面上の
50nmの酸化膜13を除去した後、750℃,90分の
ウエツト酸化と、ひき続いて1000℃,45分のドラ
イ酸化とをおこない、転送トランジスタ部に厚さ
50nmの熱酸化膜18と、多結晶シリコン14の
周囲と拡散層領域17の上に、それぞれ厚さ
250nmの熱酸化膜20と19を形成する。さらに
転送トランジスタの電極と半導体メモリのワード
線とを兼ねる電極配線21を形成したところまで
を示す。
After that, the polycrystalline silicon 14 is processed again by plasma etching using the thermal oxide film 15 as a mask, and then the thermal oxide film 15 and the substrate surface are etched.
After removing the 50nm oxide film 13, wet oxidation at 750°C for 90 minutes, followed by dry oxidation at 1000°C for 45 minutes, was performed to reduce the thickness of the transfer transistor area.
A thermal oxide film 18 with a thickness of 50 nm, a thickness around the polycrystalline silicon 14 and on the diffusion layer region 17, respectively
250 nm thermal oxide films 20 and 19 are formed. Furthermore, the state where an electrode wiring 21 serving both as an electrode of a transfer transistor and a word line of a semiconductor memory is formed is shown.

その後は、通常の半導体プロセスにしたがつて
半導体メモリが作製される。本実施例は、本発明
のフオトレジスト法をメモリ・セルの転送トラン
ジスタのチヤンネル長を自己整合的に決めるため
に用いたものである。第2の加工マスク材料とし
ては多結晶シリコン14を熱酸化することにより
形成されるSiO2膜15を利用し、被加工材料は
多結晶シリコン14である。この結果、転送トラ
ンジスタのチヤンネル長バラツキが小さくなつた
他に、不純物濃度依存性を利用した選択酸化技術
とを組み合わせることにより、メモリ・セル・ア
レー内には、転送電極とワード線配線とのコンタ
クトを必要とない、高集積半導体メモリの実現が
可能となつた。
After that, a semiconductor memory is manufactured according to a normal semiconductor process. In this embodiment, the photoresist method of the present invention is used to determine the channel length of a transfer transistor of a memory cell in a self-aligned manner. As the second processing mask material, an SiO 2 film 15 formed by thermally oxidizing polycrystalline silicon 14 is used, and the material to be processed is polycrystalline silicon 14. As a result, in addition to reducing channel length variations in transfer transistors, by combining selective oxidation technology that utilizes impurity concentration dependence, contacts between transfer electrodes and word line interconnects are formed in memory cell arrays. It has become possible to realize highly integrated semiconductor memory that does not require

(6) まとめ 以上説明してきた本発明のフオトレジスト加工
法によれば、一種類のマスクを用いて、自己整合
的に少なくとも2回以上の加工が可能となり、し
かも加工の制御性、さらに加工形状が十分に満足
でき、微細加工法に新しい技術を提供したと云え
る。本発明の要点は、フオトレジスト膜を軟化さ
せることにより、落下さらに密着させるところに
集約し、その方法の応用として高性能な自己整合
オフセツト・ゲートMOSトランジスタの実現、
半導体メモリの高集積化の実現等を可能にした。
しかしながら、本発明の精神によれば、落下、密
着し得る材料であれば、その物質はフオトレジス
ト材料に限ることなく適用でき、また実施例とし
て半導体装置を上げてきたが、必ずしも半導体装
置だけに限定されるものでもなく広く応用が可能
である。なお、以上において、フオトレジストと
してAZ1350Jを用いて説明したが、ここでフオト
レジストというのは、単に光硬化性樹脂をさすだ
けでなく、電子線硬化性樹脂なども含み、放射線
硬化性樹脂を広くさすものとして用いている。要
するに、加熱によりある程度の軟化性が生じ、自
重により変形可能で、さらに加工材料とある程度
密着すればよい。
(6) Summary According to the photoresist processing method of the present invention as explained above, it is possible to perform processing at least twice or more in a self-aligned manner using one type of mask, and it is possible to improve processing controllability and processing shape. was fully satisfied, and it can be said that we have provided a new technology for microfabrication. The main point of the present invention is to soften the photoresist film so that it falls further into contact with the photoresist film, and as an application of this method, realizes a high-performance self-aligned offset gate MOS transistor.
This made it possible to achieve higher integration levels in semiconductor memory.
However, according to the spirit of the present invention, the material is not limited to the photoresist material, as long as it is a material that can be dropped and adhered, and although a semiconductor device has been cited as an example, it is not necessarily applicable only to a semiconductor device. It is not limited and can be widely applied. Although the above explanation uses AZ1350J as a photoresist, photoresist here refers not only to photocurable resins, but also includes electron beam curable resins, and broadly refers to radiation curable resins. It is used as something to be admired. In short, it is sufficient that the material has a certain degree of softening property due to heating, can be deformed by its own weight, and has a certain degree of close contact with the processing material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図のa乃至e、第2図のa乃至eは、本発
明のフオトレジスト法を、それぞれオフセツト・
ゲートMOSトランジスタ、半導体メモリに適用
したときの、その製造工程を示した断面図。
Figures a to e in Figure 1 and a to e in Figure 2 illustrate the photoresist method of the present invention, respectively, with offset
A cross-sectional view showing the manufacturing process when applied to a gate MOS transistor and a semiconductor memory.

Claims (1)

【特許請求の範囲】[Claims] 1 基体上に被加工材料膜、該被加工材料膜とは
エツチング液に対する耐性の異なる材料からなる
マスク材料膜および所望の形状ち有するレジスト
膜を順次積層して形成する工程と、上記レジスト
膜をマスクにして上記マスク材料膜の露出部分を
エツチして除きさらにサイドエツチする工程と、
上記被加工材料膜のうち、上記レジスト膜の下に
ある部分を残し、上記レジスト膜の外側にある部
分を除去して、上記レジスト膜の外側の部分の上
記基体の表面を露出する工程と、上記レジスト膜
を除去する工程と、上記マスク材料膜をマスクに
用いて上記被加工材料膜の露出された部分を除去
し、上記基体の表面を露出する工程を少なくとも
含む材料加工法。
1. A step of sequentially laminating and forming on a substrate a material film to be processed, a mask material film made of a material having different resistance to an etching solution from the material film to be processed, and a resist film having a desired shape; Etching and removing the exposed portion of the mask material film using a mask, and further etching the side;
leaving a portion of the material film to be processed under the resist film and removing a portion outside the resist film to expose the surface of the substrate outside the resist film; A material processing method including at least the steps of removing the resist film, and using the mask material film as a mask to remove the exposed portion of the material film to be processed to expose the surface of the base.
JP12093777A 1977-10-11 1977-10-11 Material working method with photo resist Granted JPS5454577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12093777A JPS5454577A (en) 1977-10-11 1977-10-11 Material working method with photo resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12093777A JPS5454577A (en) 1977-10-11 1977-10-11 Material working method with photo resist

Publications (2)

Publication Number Publication Date
JPS5454577A JPS5454577A (en) 1979-04-28
JPS6238852B2 true JPS6238852B2 (en) 1987-08-20

Family

ID=14798649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12093777A Granted JPS5454577A (en) 1977-10-11 1977-10-11 Material working method with photo resist

Country Status (1)

Country Link
JP (1) JPS5454577A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818715A (en) * 1987-07-09 1989-04-04 Industrial Technology Research Institute Method of fabricating a LDDFET with self-aligned silicide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50134579A (en) * 1974-04-13 1975-10-24
JPS5235980A (en) * 1975-09-16 1977-03-18 Hitachi Ltd Manufacturing method of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50134579A (en) * 1974-04-13 1975-10-24
JPS5235980A (en) * 1975-09-16 1977-03-18 Hitachi Ltd Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPS5454577A (en) 1979-04-28

Similar Documents

Publication Publication Date Title
JP2953897B2 (en) Method for manufacturing semiconductor device
JPS63219152A (en) Manufacture of mos integrated circuit
JPS60194570A (en) Manufacture of semiconductor device
JP3746907B2 (en) Manufacturing method of semiconductor device
JPH11191597A (en) Semiconductor device
JPS6238852B2 (en)
JPH11297853A (en) Manufacturing triple wells of semiconductor memory
JPH03163833A (en) Semiconductor device and manufacture thereof
JPH0147016B2 (en)
JPS6046804B2 (en) Manufacturing method of semiconductor device
JPH08181223A (en) Manufacture of semiconductor device
JPH06132299A (en) Insulating gate-type transistor and manufacture thereof
JP3536469B2 (en) Method for manufacturing semiconductor device
JP3248305B2 (en) Method for manufacturing BiCMOS semiconductor device
JPH03274733A (en) Manufacture of ic taken in low implantation drain fet
JP2513312B2 (en) Method for manufacturing MOS transistor
JPH0481327B2 (en)
JPH09199717A (en) Manufacture of semiconductor device
JP3259439B2 (en) Method for manufacturing semiconductor device
JPH05343419A (en) Semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH0621094A (en) Manufacture of semiconductor device
JPH0113230B2 (en)
KR920000634B1 (en) Manufacturing method of mosfet
JPH0290628A (en) Manufacture of semiconductor device