JPS62294153A - Separator material for fuel cell - Google Patents

Separator material for fuel cell

Info

Publication number
JPS62294153A
JPS62294153A JP61135923A JP13592386A JPS62294153A JP S62294153 A JPS62294153 A JP S62294153A JP 61135923 A JP61135923 A JP 61135923A JP 13592386 A JP13592386 A JP 13592386A JP S62294153 A JPS62294153 A JP S62294153A
Authority
JP
Japan
Prior art keywords
separator material
fuel cell
iron
aluminum
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61135923A
Other languages
Japanese (ja)
Other versions
JPH0437154B2 (en
Inventor
Kiyoshi Hiyama
清志 桧山
Hiroshi Fukui
寛 福井
Takatoshi Yoshioka
吉岡 孝利
Takehiko Yoshida
武彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61135923A priority Critical patent/JPS62294153A/en
Publication of JPS62294153A publication Critical patent/JPS62294153A/en
Publication of JPH0437154B2 publication Critical patent/JPH0437154B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a separator material for fuel cell having superior corrosion resistance to fused carbonate, by constituting the material by the use of an Fe-base alloy containing specific compositional amounts of C, Si, Mn, Ni, Cr, and Al. CONSTITUTION:The separator material for fuel cell is composed of an Fe-base alloy containing, by weight, <=0.15% C,<=1% Si, <=2% Mn, 15-35% Ni, 15-35% Cr, and 1-2% Al and has superior corrosion resistance to fused carbonate. Further, the above-Fe-base alloy may contain minimum amounts of inevitable impurities. The above separator material is particularly suitable for separator for fused carbonate fuel cell. Moreover, when used for current collector, etc., the above Fe-base alloy can prolong the service life of a plant.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は燃料電池用セパレータ材、特に溶融炭酸塩型燃
料電池用セパレータ材に係り、溶;11炭酸塩に対し良
好な画・1食性を有するセパレータ材に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a separator material for fuel cells, particularly a separator material for molten carbonate fuel cells. The present invention relates to a separator material having good imageability and monolithic properties.

〔従来の技術〕[Conventional technology]

最近、燃料電池はエネルギー効率が良好である為に注目
され、中でも高温燃料電池は触媒作用の小さい電極を使
用でき、しかも不純な水素、−酸化炭素、メタン若しく
はプロパン等の當温では燃料とし得ないものを燃料とし
得るので、盛に研究されている。中でも溶融炭酸塩型燃
料電池は有望視さi、盛に開発されている。これには電
解質として溶融炭酸塩が使用され、例えばN a 2 
COn +K z COs、又は工、j、zcoδ等を
混合した混合炭酸塩が用いられ、これを多孔性セラミッ
ク板に含浸、又は炭酸塩とマグネシアまたはアルミナと
をa1合したペースト状として使用される。しかし、溶
融炭酸塩は高温で電解質として使用され、腐食性が非常
に強いのでセパレータ材は耐食性の大きいものでなけれ
ばならない。
Recently, fuel cells have attracted attention due to their good energy efficiency. In particular, high-temperature fuel cells can use electrodes with low catalytic activity, and they can also use impure hydrogen, carbon oxide, methane, or propane as fuel at a certain temperature. It is being actively researched because it can be used as fuel from things that are not present. Among these, molten carbonate fuel cells are seen as promising and are being actively developed. This uses molten carbonate as electrolyte, e.g. Na 2
COn + K z COs, or a mixed carbonate of coco, j, zcoδ, etc. is used, and this is used as a paste by impregnating a porous ceramic plate or by combining the carbonate with magnesia or alumina. However, since molten carbonate is used as an electrolyte at high temperatures and is highly corrosive, the separator material must be highly corrosion resistant.

従来、セパレータ材としてステンレス鋼、例えばS t
J S 316 T、や5US31O8等が使用されて
いるが、耐食性は満足されていない、また、特開昭59
−229468号公報に耐食性合金が開示され、これは
鉄−クロム−ニッケル基台基にアルミニウムを添加した
もので、耐硫化性を改善することが記載されている。し
かし、溶越炭酸塩に対する腐食については何ら言及され
ていない、また、この合金は鉄−クロム−ニッケル基に
対してアルミニウムを1.0%以下添加したもので、後
述する第1図に見られる如く溶融炭酸塩に対して耐食性
は低い、上述の如〈従来は溶融炭酸塩に対する耐食性に
ついて配慮されておらず、高耐食性のセパレータ材が要
望されている。
Conventionally, stainless steel, such as S t
JS 316 T, 5US31O8, etc. are used, but the corrosion resistance is not satisfied, and JP-A-59
A corrosion-resistant alloy is disclosed in Japanese Patent No. 229468, which is an iron-chromium-nickel base with aluminum added thereto, and it is described that the sulfidation resistance is improved. However, there is no mention of corrosion against molten carbonates, and this alloy is an iron-chromium-nickel base alloy with less than 1.0% aluminum added, as shown in Figure 1 below. As mentioned above, corrosion resistance to molten carbonates has not been considered in the past, and there is a demand for separator materials with high corrosion resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上に述べた公知技術においては、溶融炭酸塩型燃料電池
に満足に使用されるセパレータ材が無く、この欠点を解
決すべく鉄−クロム−ニッケル基合金にアルミニウムを
添加量を変えて多年研究したところ、アルミニウムを添
加量1%以上添加すれば溶融炭酸塩に対する耐食性が改
善されることを見つけ出し、燃料電池用セパレータ材を
提供せんとするものである。
In the known technology mentioned above, there is no separator material that can be satisfactorily used in molten carbonate fuel cells, and in order to solve this drawback, many years of research have been carried out by changing the amount of aluminum added to the iron-chromium-nickel base alloy. However, the present inventors have discovered that the corrosion resistance against molten carbonate can be improved by adding aluminum in an amount of 1% or more, and they aim to provide a separator material for fuel cells.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の燃料電池用セパレータ材は、炭素二0.15%
以下、けい素:1%以下、マンガン12%以下、ニッケ
ル:15〜35%、クロム:15〜35%、アルミニウ
ム:1〜2%を含有する鉄基合金からなるものである。
The fuel cell separator material of the present invention has a carbon dioxide content of 0.15%.
Hereinafter, it is made of an iron-based alloy containing 1% or less of silicon, 12% or less of manganese, 15-35% of nickel, 15-35% of chromium, and 1-2% of aluminum.

また、この鉄基合金には極少の不可避不純物が含有され
ていてもよい、また、本発明のセパレータ材は特に溶融
炭酸塩型燃料電池用セパレータに好しいものである。
Further, this iron-based alloy may contain very small amounts of unavoidable impurities, and the separator material of the present invention is particularly suitable for separators for molten carbonate fuel cells.

以下1本発明の鉄基合金、即ち鋼の構成成分を上記のよ
うに限定した理由について説明する。炭素はオーステナ
イト形成元素であるが、0.15%を超えて含有すると
熱間加工性及び耐酸化性を低下させるので、0.15%
以下が適する。、(尚、%は重量%を示し、他も同様で
ある。)。また。
The reason why the constituent components of the iron-based alloy, ie, steel, of the present invention are limited as described above will be explained below. Carbon is an austenite-forming element, but if it is contained in an amount exceeding 0.15%, hot workability and oxidation resistance will be reduced, so 0.15%
The following are suitable. (Note that % indicates weight %, and the same applies to the others.) Also.

けい素は高温強度及び耐酸化性を改善する効果を有する
が、過度に存在すると溶接性及び加工性を阻害するので
1%以下が適する。また、マンガンはオーステナイト形
成元素であるが、耐酸化性をやや悪くするので少い方が
好ましく、通常のステンレス鋼に含有されている程度で
よく、2%以下が適する。また、ニッケルはオーステナ
イト系ステンレス鋼の基本的元素の一つであり、オース
テナイト組織を維持するには下限は15%がよい。
Silicon has the effect of improving high-temperature strength and oxidation resistance, but its presence in excess impedes weldability and workability, so it is preferably 1% or less. Further, although manganese is an austenite-forming element, it slightly deteriorates oxidation resistance, so it is preferable to have less manganese.The content of manganese may be as low as that in ordinary stainless steel, and 2% or less is suitable. Further, nickel is one of the basic elements of austenitic stainless steel, and the lower limit is preferably 15% in order to maintain the austenitic structure.

一方、上限として35%を超えて含有すると耐硫化性を
劣化させるので好ましくなく、従って15〜35%が適
する。また、クロムは溶融塩に対する耐食性の基本成分
であり、最少15%の含有を必要とし、しかし35%を
超えて添加しても効果が飽和するので、従って15〜3
5%が適する。
On the other hand, if the content exceeds 35% as the upper limit, it is not preferable because it deteriorates sulfidation resistance, and therefore 15 to 35% is suitable. In addition, chromium is a basic component for corrosion resistance against molten salts, and requires a minimum content of 15%, but the effect is saturated even if it is added in excess of 35%.
5% is suitable.

また、アルミニウムは、その添加量を特定範囲に限定す
るところに本発明の特色があり、1%より少ないと後述
の第1図に示すように溶融炭酸塩に対する耐食性が低下
するので下限は1%がよく、一方多量を添加するとオー
ステナイト組織を不安定にするので上限は2%迄とし、
従って添加量1〜2%が適する。
Furthermore, the present invention is characterized by limiting the amount of aluminum added to a specific range; if it is less than 1%, the corrosion resistance against molten carbonate decreases as shown in Figure 1 below, so the lower limit is 1%. On the other hand, adding a large amount will destabilize the austenite structure, so the upper limit is 2%.
Therefore, an addition amount of 1 to 2% is suitable.

また、これにの元素の他に鉄に含まれる不可避不純物1
例えば燐、バナジウム等の極少量が含有されていてもよ
い。
In addition to these elements, there are also unavoidable impurities contained in iron.
For example, a very small amount of phosphorus, vanadium, etc. may be contained.

上述の如く本発明の鉄基合金は、アルミニウムを1〜2
%添加することにより溶融炭酸塩に対する耐食性が非常
に向上することを全く新規に見出したもので、良好なセ
パレータ材になし得る。
As mentioned above, the iron-based alloy of the present invention contains 1 to 2 aluminum
This is a completely new discovery that the corrosion resistance against molten carbonate is greatly improved by adding % of molten carbonate, and it can be made into a good separator material.

以下、実施例について説明する。Examples will be described below.

〔実施例〕〔Example〕

本発明のセパレータ材の試料として鉄基合金を次の様に
して造った。鉄に対して炭素、けい素。
An iron-based alloy was made as a sample of the separator material of the present invention in the following manner. Carbon and silicon as opposed to iron.

マンガン、ニッケル、クロム、及びアルミニウムを添加
し、第1表に示すように各元素の組成%にした。また比
較のためにアルミニウムを全く添加しない5US3LO
3,及びこれにアルミニウムを1.0%以下添加した鉄
基合金を試料として試験した。腐食試験は、炭酸塩とし
てLizC○8:に2CO3=62 : 38 (モル
比)を使用し、温厚750℃で上記炭酸塩を溶融し、試
料合金に塗布し、雰囲気ガスとしてガス組成C○2:空
気=30ニア0のガスを流速250cc/耐nで流し、
480時間にわたって腐食試験した6 第  1  表 (組成%) その試験結果を第1図に示し、横軸のアルミニウム添加
組成と縦軸の腐食による減肉厚さをとの関係を示す1本
発明の試験Nn3. Nα4の如くアルミニウムを1.
0%以上添加すると減肉厚さは約14μm以下に減少し
、特に試験Nα4のアルミニウムを1.56%添加した
場合は減肉厚さの減少が著しく、耐食性が大幅に向上す
ることを示している。また、試験Nnlのアルミニウム
を添加しない合金、及び試験NG2のアルミニウムを1
.0%以下した合金の場合は、減肉厚さはほぼ20〜3
0μmの範囲になり、大きい、これより鉄基合金にアル
ミニウムを1%以上添加した合金は溶融炭酸塩に対し優
れた耐食性を有することが明らかである。従って本発明
の鉄基合金は溶融炭酸塩型燃料電池用セパレータとして
現在使用されている5US310Sや5US316Lよ
りも耐食性が大きいことが明らかである。
Manganese, nickel, chromium, and aluminum were added to give the composition percentages of each element as shown in Table 1. Also, for comparison, 5US3LO which does not add any aluminum
No. 3, and an iron-based alloy to which 1.0% or less of aluminum was added were tested as samples. In the corrosion test, LizC○8: to 2CO3 = 62:38 (mole ratio) was used as the carbonate, the carbonate was melted at a temperature of 750°C and applied to the sample alloy, and the gas composition C○2 was used as the atmospheric gas. : Air = 30 near 0 gas is flowed at a flow rate of 250cc/N resistance,
A corrosion test was conducted for 480 hours.Table 1 (Composition %) The test results are shown in FIG. Test Nn3. Aluminum like Nα4 1.
When 0% or more of aluminum is added, the thinning thickness decreases to about 14 μm or less, and especially when 1.56% of aluminum with test Nα4 is added, the thinning thickness decreases significantly, indicating that corrosion resistance is greatly improved. There is. In addition, alloys with no aluminum added in test Nnl and aluminum in test NG2
.. In the case of alloys with less than 0% thickness, the thickness reduction is approximately 20~3
It is clear that alloys in which 1% or more of aluminum is added to iron-based alloys have excellent corrosion resistance against molten carbonate. Therefore, it is clear that the iron-based alloy of the present invention has greater corrosion resistance than 5US310S and 5US316L currently used as separators for molten carbonate fuel cells.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、鉄に炭素、けい素、マンガン。 According to the invention, carbon, silicon, and manganese are added to iron.

ニッケル、クロムの所定量と特にアルミニウム1〜2%
添加した鉄基合金は溶融炭酸塩に対して耐食性の良好な
材料になり、燃料電池、特溶融炭酸塩型燃料電池用セパ
レータとして有効であり、またカレントコレクタ等にも
使用でき、これらのプラントに用いられた場合にはプラ
ントの長寿命化が計られる。
Certain amounts of nickel, chromium and especially 1-2% aluminum
The added iron-based alloy becomes a material with good corrosion resistance against molten carbonate, and is effective as a separator for fuel cells and special molten carbonate fuel cells. It can also be used for current collectors, etc., making it suitable for these plants. If used, the life of the plant will be extended.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1、重量で、炭素:0.15%以下、けい素:1%以下
、マンガン:2%以下、ニッケル:15〜35%、クロ
ム:15〜35%、アルミニウム:1〜2%を含有する
鉄基合金からなることを特徴とする燃料電池用セパレー
タ材。 2、前記鉄基合金が極少の不可避不純物を含むことを特
徴とする特許請求の範囲第1項に記載の燃料電池用セパ
レータ材。 3、前記鉄基合金からなるセパレータ材が溶融炭酸塩型
燃料電池用であることを特徴とする特許請求の範囲第1
項又は第2項に記載の燃料電池用セパレータ材。
[Claims] 1. By weight, carbon: 0.15% or less, silicon: 1% or less, manganese: 2% or less, nickel: 15-35%, chromium: 15-35%, aluminum: 1- A fuel cell separator material comprising an iron-based alloy containing 2%. 2. The separator material for fuel cells according to claim 1, wherein the iron-based alloy contains a very small amount of unavoidable impurities. 3. Claim 1, wherein the separator material made of the iron-based alloy is used for a molten carbonate fuel cell.
The fuel cell separator material according to item 1 or 2.
JP61135923A 1986-06-13 1986-06-13 Separator material for fuel cell Granted JPS62294153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61135923A JPS62294153A (en) 1986-06-13 1986-06-13 Separator material for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135923A JPS62294153A (en) 1986-06-13 1986-06-13 Separator material for fuel cell

Publications (2)

Publication Number Publication Date
JPS62294153A true JPS62294153A (en) 1987-12-21
JPH0437154B2 JPH0437154B2 (en) 1992-06-18

Family

ID=15163008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135923A Granted JPS62294153A (en) 1986-06-13 1986-06-13 Separator material for fuel cell

Country Status (1)

Country Link
JP (1) JPS62294153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565167A (en) * 1993-11-09 1996-10-15 Nisshin Steel Co., Ltd. Stainless steel excellent in fused-salt corrosion resistance and method of producing the same
EP1249050A1 (en) * 1999-11-30 2002-10-16 Fuelcell Energy, Inc. Bipolar separator plate with improved wet seals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216256A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Metal material for separator of fused carbonate type fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216256A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Metal material for separator of fused carbonate type fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565167A (en) * 1993-11-09 1996-10-15 Nisshin Steel Co., Ltd. Stainless steel excellent in fused-salt corrosion resistance and method of producing the same
DE4498699B4 (en) * 1993-11-09 2005-04-07 Nisshin Steel Co., Ltd. Use of a stainless steel with excellent corrosion resistance to molten salts
EP1249050A1 (en) * 1999-11-30 2002-10-16 Fuelcell Energy, Inc. Bipolar separator plate with improved wet seals
EP1249050A4 (en) * 1999-11-30 2003-04-09 Fuelcell Energy Inc Bipolar separator plate with improved wet seals

Also Published As

Publication number Publication date
JPH0437154B2 (en) 1992-06-18

Similar Documents

Publication Publication Date Title
JP5419465B2 (en) Creep-resistant ferritic steel
JP2004520479A (en) High temperature material
JP5660331B2 (en) Solid oxide fuel cell steel with excellent oxidation resistance
JP3534285B2 (en) Solid electrolyte fuel cell separator steel
ES2374821T3 (en) STEEL RESISTANT TO HEAT.
JP4737600B2 (en) Steel for solid oxide fuel cell separator
JP3321888B2 (en) Metal materials for solid oxide fuel cells
JP2010236012A (en) High temperature conductive member
JP3704655B2 (en) Steel for solid oxide fuel cell separator
JPS62294153A (en) Separator material for fuel cell
JP2007016297A (en) Steel for solid-oxide fuel cell separator
JPH04358044A (en) High corrosion resistant steel sheet for molten carbonate type fuel cell separator
JPH06293941A (en) Metallic material for solid electrolyte type fuel cell
CN101522932B (en) Ferritic chromium steel
JP4385328B2 (en) Steel for solid oxide fuel cell separator
JPS63190143A (en) Ferrous alloy for fused carbonate fuel cell
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
JP2932211B2 (en) Corrosion resistant stainless steel for molten carbonate fuel cells
JPS61216256A (en) Metal material for separator of fused carbonate type fuel cell
JP3161269B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
JPS62234868A (en) Electrode material of high corrosion resistance for fused-carbonate type fuel cell
RU2280926C2 (en) High-temperature solid-electrolyte fuel cell
JPH08165546A (en) Stainless steel excellent in fused carbonate corrosion resistance
JPS63238236A (en) Ni-type component material for fused carbonate fuel cell excellent in corrosion resistance
JPH01115066A (en) Molten carbonate fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees