JPS62234868A - Electrode material of high corrosion resistance for fused-carbonate type fuel cell - Google Patents

Electrode material of high corrosion resistance for fused-carbonate type fuel cell

Info

Publication number
JPS62234868A
JPS62234868A JP61078677A JP7867786A JPS62234868A JP S62234868 A JPS62234868 A JP S62234868A JP 61078677 A JP61078677 A JP 61078677A JP 7867786 A JP7867786 A JP 7867786A JP S62234868 A JPS62234868 A JP S62234868A
Authority
JP
Japan
Prior art keywords
corrosion resistance
electrode
electrode material
molten carbonate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61078677A
Other languages
Japanese (ja)
Other versions
JPH0413825B2 (en
Inventor
Hiroo Kodama
児玉 皓雄
Masahiro Yanagida
昌宏 柳田
Yoshinori Miyazaki
義憲 宮崎
Akira Takamura
高村 昭
Kazuo Fujiwara
藤原 和雄
Yasushi Torii
康司 鳥井
Takenori Nakayama
武典 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kobe Steel Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP61078677A priority Critical patent/JPS62234868A/en
Publication of JPS62234868A publication Critical patent/JPS62234868A/en
Publication of JPH0413825B2 publication Critical patent/JPH0413825B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of an electrode so as to enable a longer service life of a cell by using an electrode material which includes Cr and Al in specified proportions. CONSTITUTION:A material which includes Cr in 2-18%(weight per cent hereafter), Al in 1-10% and Fe and inevitable impurities for the rest is used for electrodes. 2-20% of Si and/or 7-20% of Ni may be added together or individually. By using such a material, an electrode of high performance good corrosion resistance which increases the service life of a cell can be manufactured with a low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電極性能および耐食性に優れた溶融炭酸塩型燃
料電池用電極材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode material for molten carbonate fuel cells that has excellent electrode performance and corrosion resistance.

[従来の技術] 第2世代の燃料電池である溶融炭酸塩型燃料電池は、エ
ネルギー変換効率が高く、公害発生がなく、且つ高価な
触媒を必要としないという利点がある。その為次世代の
集中型電源または分散型電源として有望視され、現在1
kw規模の電池スタツクの開発を行っている。その中で
とくに積層技術の開発、大型化のための検討および電極
を含む電池構成材料の開発が進められている。これらの
技術は相互に関連し、ひとつの問題点が解決されると、
次の問題点がクローズアップされてくるといった関係に
あるが、現状での1つの大きな問題は、溶融炭酸塩型燃
料電池の電極材料とくにカソード材料の開発にある。
[Prior Art] Molten carbonate fuel cells, which are second-generation fuel cells, have the advantages of high energy conversion efficiency, no pollution, and no need for expensive catalysts. Therefore, it is seen as a promising next-generation centralized power source or distributed power source, and currently 1
We are developing a kW scale battery stack. Among these efforts, progress is being made in particular in the development of stacking technology, studies on increasing the size of batteries, and development of battery constituent materials including electrodes. These technologies are interrelated, and once one problem is solved,
The following problems are coming into focus, but one major problem at present is the development of electrode materials, particularly cathode materials, for molten carbonate fuel cells.

[発明が解決しようとする問題点] 現在、カソード材料としては、耐食性および電極性能に
優れているというところからNLOが用いられている。
[Problems to be Solved by the Invention] Currently, NLO is used as a cathode material because of its excellent corrosion resistance and electrode performance.

ところがこのNLOカソードは電池使用中溶解し電解買
中にNiとして析出し、それが成長して電極間を短絡し
、電池寿命を短くするという問題がある。しかもNiは
高価なため前記電池寿命の問題と相俟って発電コストア
ップの原因となっている。
However, this NLO cathode has the problem that it dissolves during use of the battery and precipitates as Ni during electrolysis, which grows and short-circuits between the electrodes, shortening the life of the battery. Moreover, Ni is expensive, which, together with the problem of battery life mentioned above, causes an increase in power generation costs.

またNiO以外の各種酸化物をカソード材料として用い
る研究も盛んであり、ペロブスカイトなどの複合酸化物
が有望との報告もある。しかしこのような酸化物電極は
強度的に不十分さが残る為、スケールアップに耐え得る
か否かという問題がある。
There is also active research into using various oxides other than NiO as cathode materials, and there are reports that composite oxides such as perovskite are promising. However, since such oxide electrodes still have insufficient strength, there is a problem as to whether they can withstand scale-up.

本発明は、上記したこれらの諸問題に鑑み更に広範囲に
亘る種々の材料を検討した結果なされたものであり、電
極性能および耐食性に優れた溶融炭酸塩型燃料電池用電
極材料の提供を目的とするものである。
The present invention was developed as a result of further studies on a wide variety of materials in view of the above-mentioned problems, and its purpose is to provide an electrode material for molten carbonate fuel cells that has excellent electrode performance and corrosion resistance. It is something to do.

〔問題点を解決する為の手段〕[Means for solving problems]

上記問題点を解決することのできた本発明の電極材料と
はCr:2〜18%(重量%の意味、以下同じ)、Al
:1〜10%、残部、Feおよび不可避の不純物からな
ることを基本的要旨とし、さらに所望に応じSi、Ni
、StとNLを夫々付加したものである。
The electrode material of the present invention that can solve the above problems is Cr: 2 to 18% (meaning by weight %, the same applies hereinafter), Al
: 1 to 10%, the balance consists of Fe and unavoidable impurities, and further contains Si, Ni as desired.
, St and NL are added, respectively.

[作用] 電極材料として必要特性を列挙すると、(1)耐食性に
優れていること(カソードからの溶解が少ないこと、溶
解成分の析出が少ないこと)、(2)電極の電気伝導性
の良いこと、(3)機械的強度が高いこと、(4)成形
性の良いこと等が挙げられる。
[Function] The characteristics required for electrode materials are (1) excellent corrosion resistance (less dissolution from the cathode, less precipitation of dissolved components), (2) good electrical conductivity of the electrode. , (3) high mechanical strength, and (4) good moldability.

これらの特性全般を溝足し、特に(1) 、 (2)の
特性を満足することを最重点として各種材料を検討した
結果、後述する化学成分で構成される鉄基合金を見出し
たのであり、これらを電極材料として使用すると電極性
能および耐食性に優れた電極材料となることを知見し本
発明を完成したのである。
As a result of examining various materials with a focus on satisfying the characteristics (1) and (2) in general, we discovered an iron-based alloy composed of the chemical components described below. The present invention was completed based on the finding that when these materials are used as electrode materials, the electrode materials have excellent electrode performance and corrosion resistance.

次に溶融炭酸塩環境中での鉄基合金の耐食性改善におよ
ぼす各成分の添加効果(後記第1〜4表)を参照しつつ
本発明に係る鉄基合金の合金組成限定理由について述べ
る。
Next, the reasons for limiting the alloy composition of the iron-based alloy according to the present invention will be described with reference to the effects of addition of each component on improving the corrosion resistance of the iron-based alloy in a molten carbonate environment (Tables 1 to 4 below).

Cr:2〜18% Fe−Cr系合金の耐食性はCr含有量が増加するほど
向上する(第1表参照)。特開昭58−155862に
もフェロクロム<cr含有i。
Cr: 2-18% The corrosion resistance of Fe-Cr alloys improves as the Cr content increases (see Table 1). JP-A-58-155862 also describes ferrochrome <cr containing i.

55〜70%)が電極として優れていることが、開示さ
れている。しかし当該公報中のCr量は非常に多いとい
う問題があり、木発明者等は、これに適量のAlを添加
すれば、18%以下さらには10%以下のCr添加によ
っても十分な耐食性が得られることを見出したのである
(第4表参照)。Cr含有量が18%を超えると溶融炭
酸塩浴中での耐食性がやや劣化する傾向が認められたた
め18%以下とした。また、Cr単独添加では5%でも
耐食性は不十分であるが、AI、Stの共存によってわ
ずかなCr量でも耐食性が発揮されるので、下限は2%
とした(第4表参照)。
It is disclosed that 55-70%) is excellent as an electrode. However, there is a problem in that the amount of Cr in the publication is extremely large, and the inventors of the Wooden Society believe that if an appropriate amount of Al is added to this, sufficient corrosion resistance can be obtained by adding 18% or less of Cr, or even 10% or less of Cr. (See Table 4). If the Cr content exceeds 18%, corrosion resistance in a molten carbonate bath tends to deteriorate slightly, so it is set to 18% or less. In addition, when adding Cr alone, corrosion resistance is insufficient even at 5%, but corrosion resistance is exhibited even with a small amount of Cr due to the coexistence of AI and St, so the lower limit is 2%.
(See Table 4).

Al:1〜10% Alはアルミナ皮膜生成のための主要元素であるが、比
較的少量添加のほうが耐食性が良い。
Al: 1-10% Al is a main element for forming an alumina film, but corrosion resistance is better when added in a relatively small amount.

14%になると溶融塩浴界面部での耐食性が劣化するた
め上限を10%とした(第2表参照)。ただし、単独添
加だけでは界面部の耐食性が十分改善できたとは言えな
いのでCrとの複合添加を基本とした。また、1%未溝
の添加では、効果があきらかでないため下限を1%とし
た。
At 14%, the corrosion resistance at the molten salt bath interface deteriorates, so the upper limit was set at 10% (see Table 2). However, since it cannot be said that the corrosion resistance of the interface was sufficiently improved by adding Cr alone, the basic method was to add it in combination with Cr. Furthermore, since the effect of adding 1% of ungrooved material is not clear, the lower limit was set to 1%.

Si:2〜20% Siは溶融炭酸塩環境の気相部での耐食性を改善する効
果がある(第3表参照)。しかし、20%を超えるとそ
の効果もなくなるので20%以下とした。ただし、これ
もAIと同様に単独添加では溶融炭酸塩浴中および界面
部の耐食性が十分でないためCr、AIとの複合添加と
した。また2%未満の添加では、効果があきらかでない
ため下限を2%とした。
Si: 2-20% Si has the effect of improving corrosion resistance in the gas phase of a molten carbonate environment (see Table 3). However, if it exceeds 20%, the effect disappears, so it was set at 20% or less. However, like AI, adding it alone does not provide sufficient corrosion resistance in the molten carbonate bath and at the interface, so it was added in combination with Cr and AI. Furthermore, since the effect is not obvious when less than 2% is added, the lower limit was set at 2%.

Ni:7〜20 Niは腐食の進行によってアノード近辺で析出し、電池
寿命を短くするため基本的には好ましくない元素である
が、材料の機械的性買改善効果が大きく、且つカソード
反応活性を向上させるため、Cr、AIとの複合あるい
はCr、AI。
Ni: 7-20 Ni is basically an undesirable element because it precipitates near the anode as corrosion progresses and shortens battery life, but it has a large effect on improving the mechanical properties of the material and also reduces cathode reaction activity. For improvement, combination with Cr and AI or Cr and AI.

SLとの複合の下で7〜20%添加することとした(第
4表参照)、7%未満の添加では機械的性質の改善がで
きず、また機械的性質の改善に対する寄与効果は20%
で飽和するのでよ限を20%とした。
It was decided to add 7 to 20% in combination with SL (see Table 4); addition of less than 7% would not improve mechanical properties, and the contribution effect to improvement of mechanical properties would be 20%.
The limit was set at 20% since the saturation occurred at

第1表 溶融炭酸塩環境中での鉄基合金の耐食性改善に
およぼすCrの添加効果 (62mo196Li2C03+38mo1%1KzC
O3,650℃、CO2:02−2:l。
Table 1 Effect of Cr addition on improving corrosion resistance of iron-based alloys in molten carbonate environment (62mo196Li2C03+38mo1%1KzC
O3, 650°C, CO2:02-2:l.

1力月試験) 備考)×:10mIIl/年以上の腐食率ムコ1〜10
1111フ年 Δ:0.1〜I l1ts/年 0 : 0.(11〜Q、I Il■/年◎: 0.0
1++m/年以下 第2表 溶融炭酸塩環境中での鉄基合金の耐食性改善に
およぼすAIの添加効果 (62mo1!kLi、co、+38a+ol*に2C
o、 、650℃、CO2:02−2:l+1力月試験
) 備考)x:10mm/年以上の腐食率 ム:1〜10++++a/年 Δ: 0.1〜1 mm7年 0 : 0.01〜0.1 am/年 G : 0.01ma+/年以下 第3表 溶融炭酸塩環境中での鉄基合金の耐食性改善に
およぼすStの添加効果 (6211101零Li2C01+3811101零に
2COs 、[i50℃、COx:0x−2:L。
1 Rikitsu test) Notes) ×: Corrosion rate of 10 mIIl/year or more Muko 1 to 10
1111 Δ: 0.1 to Il1ts/year 0: 0. (11~Q, I Il■/year◎: 0.0
Table 2 Effect of addition of AI on improving corrosion resistance of iron-based alloys in molten carbonate environment (62 mo1!kLi, co, +38a+ol* with 2C
o, , 650℃, CO2:02-2:l+1 power test) Note) x: Corrosion rate of 10 mm/year or more Mu: 1 to 10++++ a/year Δ: 0.1 to 1 mm 7 years 0: 0.01 to 0.1 am/year G: 0.01ma+/year or less Table 3 Effect of addition of St on improving corrosion resistance of iron-based alloys in molten carbonate environment (6211101 zero Li2C01 + 3811101 zero 2COs, [i50℃, COx: 0x-2:L.

1力月試験) 備考)x:10a+m/年以上の腐食率ム:1〜10m
m+/年 Δ: 0.1〜1 mm7年 ○: 0.01〜0.1 mu/年 ◎: 0.01mm/年以下 第4表 溶融炭酸塩環境中での鉄基合金の耐食性改善に
およぼすCr%Al、Si%Niの複合添加効果 (62mo1kLi、CO3+38mol!kK、(:
0..650℃、CO2:02−2:l。
Note) Corrosion rate over x: 10a+m/year: 1-10m
m+/year Δ: 0.1 to 1 mm 7 years ○: 0.01 to 0.1 mu/year ◎: 0.01 mm/year or less Table 4 Effects on improving the corrosion resistance of iron-based alloys in a molten carbonate environment Combined addition effect of Cr%Al, Si%Ni (62mol1kLi, CO3+38mol!kK, (:
0. .. 650°C, CO2:02-2:l.

1力月試験) 備考)X:101@ffl/年以上の腐食率ム:1〜1
0111117年 △:0.1〜1 mta/年 0 : 0.01〜0.1 mm/年 ◎ 0.01mm/年以下 [実施例] 第5表に示す合金組成の電極材料から電極を作製し、こ
れを使用して溶融炭酸塩型燃料電池を作製し、その電極
性能を試験した。尚電極自体は、電極材料(鉄系合金)
を50μm以下の粉末とし、水素ガス雰囲気中1100
℃で焼結したところ、嵩密度3.5 g/cm’の多孔
買体が形成され、この多孔買体を骨格としてその表面に
酸化物皮膜を形成させることによって作製した。酸化皮
膜は耐食性に優れたアルミナを主成分としており、LL
、Kをドーピングしたもので電気伝導性の良いものであ
る。結果を第5表に示す、尚従来のNiOを使用したも
のを比較例として併記する。
Note) Corrosion rate over 101@ffl/year: 1 to 1
0111117 △: 0.1 to 1 mta/year 0: 0.01 to 0.1 mm/year ◎ 0.01 mm/year or less [Example] An electrode was produced from an electrode material having an alloy composition shown in Table 5. This was used to fabricate a molten carbonate fuel cell and its electrode performance was tested. The electrode itself is made of electrode material (iron alloy).
powder with a diameter of 50 μm or less, and 1100 μm in a hydrogen gas atmosphere.
When sintered at a temperature of 0.degree. C., a porous body having a bulk density of 3.5 g/cm' was formed, and this porous body was used as a skeleton to form an oxide film on its surface. The main component of the oxide film is alumina, which has excellent corrosion resistance.
, K doped, and has good electrical conductivity. The results are shown in Table 5, and those using conventional NiO are also listed as comparative examples.

第5表より明らかなように本発明に係る電極材料を使用
したものは比較例のNiOを使用したものに比較しても
電極性能[OCV”l (V)]はほとんど劣フておら
ないことが分かる。また耐食性(第4表参照)や成形性
もよく、成形後の機械的強度も高く、材料コストも低い
ものであった。
As is clear from Table 5, the electrode performance [OCV''l (V)] of the electrode using the electrode material of the present invention is not inferior to that of the comparative example using NiO. In addition, the corrosion resistance (see Table 4) and moldability were good, the mechanical strength after molding was high, and the material cost was low.

[発明の効果] 以上のように本発明によれば、電極性能および耐食性に
優れ、しかも低コストの炭酸塩型燃料電池用電極材料が
得られる。
[Effects of the Invention] As described above, according to the present invention, an electrode material for a carbonate fuel cell that has excellent electrode performance and corrosion resistance and is low in cost can be obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)Cr:2〜18%(重量%の意味、以下同じ) Al:1〜10% 残部、Feおよび不可避の不純物からなる ことを特徴とする耐食性に優れた溶融炭酸塩型燃料電池
用電極材料。
(1) Cr: 2 to 18% (meaning of weight %, the same applies hereinafter) Al: 1 to 10%, the balance consisting of Fe and inevitable impurities, an electrode for molten carbonate fuel cells with excellent corrosion resistance material.
(2)Cr:2〜18% Al:1〜10% Si:2〜20% 残部、Feおよび不可避の不純物からなる ことを特徴とする耐食性に優れた溶融炭酸塩型燃料電池
用電極材料。
(2) An electrode material for a molten carbonate fuel cell having excellent corrosion resistance, characterized by comprising: Cr: 2-18%, Al: 1-10%, Si: 2-20%, the balance being Fe and unavoidable impurities.
(3)Cr:2〜18% Al:1〜10% Ni:7〜20% 残部、Feおよび不可避の不純物からなる ことを特徴とする耐食性に優れた溶融炭酸塩型燃料電池
用電極材料。
(3) An electrode material for a molten carbonate fuel cell having excellent corrosion resistance, characterized by comprising Cr: 2 to 18%, Al: 1 to 10%, Ni: 7 to 20%, and the balance being Fe and unavoidable impurities.
(4)Cr:2〜18% Al:1〜10% Si:2〜20% Ni:7〜20% 残部、Feおよび不可避の不純物からなる ことを特徴とする耐食性に優れた溶融炭酸塩型燃料電池
用電極材料。
(4) Molten carbonate fuel with excellent corrosion resistance characterized by consisting of Cr: 2-18% Al: 1-10% Si: 2-20% Ni: 7-20%, the balance being Fe and inevitable impurities Electrode materials for batteries.
JP61078677A 1986-04-04 1986-04-04 Electrode material of high corrosion resistance for fused-carbonate type fuel cell Granted JPS62234868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61078677A JPS62234868A (en) 1986-04-04 1986-04-04 Electrode material of high corrosion resistance for fused-carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61078677A JPS62234868A (en) 1986-04-04 1986-04-04 Electrode material of high corrosion resistance for fused-carbonate type fuel cell

Publications (2)

Publication Number Publication Date
JPS62234868A true JPS62234868A (en) 1987-10-15
JPH0413825B2 JPH0413825B2 (en) 1992-03-10

Family

ID=13668502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61078677A Granted JPS62234868A (en) 1986-04-04 1986-04-04 Electrode material of high corrosion resistance for fused-carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPS62234868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501553A (en) * 1999-06-04 2003-01-14 セラミック・フューエル・セルズ・リミテッド Air side member for solid oxide fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501553A (en) * 1999-06-04 2003-01-14 セラミック・フューエル・セルズ・リミテッド Air side member for solid oxide fuel cell

Also Published As

Publication number Publication date
JPH0413825B2 (en) 1992-03-10

Similar Documents

Publication Publication Date Title
US7981561B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US7842434B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
Ruggeri et al. Properties of mechanically alloyed Mg–Ni–Ti ternary hydrogen storage alloys for Ni-MH batteries
US6737186B2 (en) Current collector for SOFC fuel cells
JP2004520479A (en) High temperature material
KR101289912B1 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US8158057B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
ES2374821T3 (en) STEEL RESISTANT TO HEAT.
JP2005317546A (en) Membrane-electrode assembly for fuel cell and fuel cell system including the same
Frangini Corrosion of metallic stack components in molten carbonates: critical issues and recent findings
JPH10280103A (en) Steel for solid electrolytic type fuel battery separator
JP2955491B2 (en) Method for producing anode for molten carbonate fuel cell
JP2999918B2 (en) Method for producing positive electrode for molten carbonate fuel cell
KR20080109148A (en) Stainless steel having excellent corrosion resistance and electric conductivity and bipolar plate made of the same
JPS62234868A (en) Electrode material of high corrosion resistance for fused-carbonate type fuel cell
CN115548364A (en) Corrosion-resistant conductive metal bipolar plate and preparation method thereof
JP3238812B2 (en) Metal materials for solid oxide fuel cells
JP2005166563A (en) Fuel electrode for sofc into which active fine particles are added, and its fabricating method
JPH01204365A (en) Anode of molten carbonate fuel cell
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
JPS63236267A (en) Constituent material of fused carbonate type fuel cell
JPS63238236A (en) Ni-type component material for fused carbonate fuel cell excellent in corrosion resistance
JP2932211B2 (en) Corrosion resistant stainless steel for molten carbonate fuel cells
JPS6056375A (en) Molten-carbonate-type fuel cell
JPH0437154B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees