JPH0437154B2 - - Google Patents

Info

Publication number
JPH0437154B2
JPH0437154B2 JP61135923A JP13592386A JPH0437154B2 JP H0437154 B2 JPH0437154 B2 JP H0437154B2 JP 61135923 A JP61135923 A JP 61135923A JP 13592386 A JP13592386 A JP 13592386A JP H0437154 B2 JPH0437154 B2 JP H0437154B2
Authority
JP
Japan
Prior art keywords
aluminum
molten carbonate
iron
corrosion resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61135923A
Other languages
Japanese (ja)
Other versions
JPS62294153A (en
Inventor
Kyoshi Hyama
Hiroshi Fukui
Takatoshi Yoshioka
Takehiko Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61135923A priority Critical patent/JPS62294153A/en
Publication of JPS62294153A publication Critical patent/JPS62294153A/en
Publication of JPH0437154B2 publication Critical patent/JPH0437154B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は溶融炭酸塩に対し良好な耐食性をを有
する溶融炭酸塩型燃料電池用セパレータ材に関す
る。 [従来の技術] 最近、燃料電池はエネルギー効率が良好である
為に注目され、中でも高温燃料電池は触媒作用の
小さい電極を使用でき、しかも不純な水素、一酸
化炭素、メタン若しくはプロパン等の常温では燃
料とし得ないものを燃料とし得るので、盛に研究
されている。中でも溶融炭酸塩型燃料電池は有望
視され、盛に開発されている。これには電解質と
して溶融炭酸塩が使用され、例えばNa2CO3、K2
CO3、又はLi2CO3等を混合した混合炭酸塩が用
いられ、これを多孔性セラミツク板に含浸、又は
炭酸塩とマグネシアまたはアルミナとを混合した
ペースト状として使用される。しかし、溶融炭酸
塩は高温で電解質として使用され、腐食性が非常
に強いのでセパレータ材は耐食性の大きいもので
なければならない。 従来、セパレータ材としてステンレス鋼、例え
ばSUS316LやSUS310S等が使用されているが、
耐食性は満足されていない。また、特開昭59−
229468号公報には耐食性合金が開示されている
が、これは鉄−クロム−ニツケル基合金にアルミ
ニウムを添加したもので、耐硫化性を改善するこ
とが記載されているのであつて、溶融炭酸塩に対
する腐食については何ら言及されていない。ま
た、この合金は鉄−クロム−ニツケル基に対して
アルミニウムを1.0%以下添加したもので、後述
する第1図に見られる如く溶融炭酸塩に対して耐
食性は低い。上述の如く従来は溶融炭酸塩に対す
る耐食性について配慮されておらず、溶融炭酸塩
に対して高耐食性のセパレータ材が要望されてい
る。 [発明が解決しようとする問題点] 上に述べた公知技術においては、溶融炭酸塩型
燃料電池に満足に使用されるセパレータ材が無
く、本発明者らは、この欠点を解決すべく鉄−ク
ロム−ニツケル基合金にアルミニウムを添加量を
変えて多年研究したところ、アルミニウムを1.05
〜2%添加すれば溶融炭酸塩に対する耐食性が改
善されることを見つけ出し、溶融炭酸塩型燃料電
池用セパレータ材を提供せんとするものである。 [問題点を解決するための手段] 本発明の溶融炭酸塩型燃料電池用セパレータ材
は、重量で、炭素:0.15%以下、けい素:1%以
下、マンガン:2%以下、ニツケル:15〜35%、
クロム:15〜35%、アルミニウム:1.05〜2%を
含有し、残部が鉄および不可避的不純物からなる
ものである。 以下、本発明の溶融炭酸塩型燃料電池用セパレ
ータ材の構成成分を上記のように限定した理由に
ついて説明する。炭素はオーステナイト形成元素
であるが、0.15%を超えて含有すると熱間加工性
及び耐酸化性を低下させるので、0.15%以下とす
る。(尚、%は重量%を示し、他も同様である。)。
また、けい素は高温強度及び耐酸化性を改善する
効果を有するが、過度に存在すると溶接性及び加
工性を阻害するので1%以下とする。また、マン
ガンはオーステナイト形成元素であるが、耐酸化
性をやや悪くするので少い方が好ましく、通常の
ステンレス鋼に含有されている程度でよく、2%
以下とする。また、ニツケルはオーステナイト系
ステンレス鋼の基本的元素の一つであり、オース
テナイト組織を維持するには下限は15%とする。
一方、上限として35%を超えてニツケルを含有す
ると耐硫化性を劣化させるので好ましくなく、従
つて15〜35%をニツケルの含有量とする。また、
クロムは溶融炭酸塩に対する耐食性の基本成分で
あり、最少15%の含有を必要とし、しかし35%を
超えて添加しても効果が飽和するので、従つて15
〜35%とする。また、アルミニウムは、その添加
量を特定範囲に限定するところに本発明の特色が
あり、1%以下だと後述の第1図に示すように溶
融炭酸塩に対する耐食性が低下するので下限は
1.05%とし、一方、多量に添加するとオーステナ
イト組織を不安定にするので上限は2%迄とし、
従つてアルミニウムの添加量は1.05〜2%とす
る。 また、これらの元素の他に鉄に含まれる不可避
的不純物、例えば燐、バナジウム等の極少量が含
有されていてもよい。 上述の如く本発明の溶融炭酸塩型燃料電池用セ
パレータ材は、アルミニウムをFe−Cr−Ni基合
金に1.05〜2%添加することにより溶融炭酸塩に
対する耐食性が非常に向上することを全く新規に
見出したことに基づくものである。 以下、実施例について説明する。 [実施例] 本発明の溶融炭酸塩型燃料電池用セパレータ材
の試料として鉄基合金を次の様にして造つた。鉄
に対して炭素、けい素、マンガン、ニツケル、ク
ロム、及びアルミニウムを添加し、第1表に示す
ように各元素の組成%(重量%)にした。また比
較のためにアルミニウムを全く添加しない
SUS310S(第1表中の試料No.1)、及びこれにア
ルミニウムを0.53%添加した鉄基合金(第1表中
の試料No.2)も試料として試験した。腐食試験
は、炭酸塩としてLi2CO3:K2CO3=62:38(モル
比)を使用し、温度750℃で上記炭酸塩を溶融し、
試料合金に塗布し、雰囲気ガスとしてガス組成
CO2:空気=30:70のガスを流速250c.c./minで
流し、100時間にわたつて腐食試験した。
[Industrial Field of Application] The present invention relates to a separator material for molten carbonate fuel cells that has good corrosion resistance against molten carbonate. [Prior Art] Recently, fuel cells have attracted attention because of their good energy efficiency. In particular, high-temperature fuel cells can use electrodes with low catalytic activity, and they can also be used to store impure hydrogen, carbon monoxide, methane, propane, etc. at room temperature. It is being actively researched because it can be used as fuel for things that cannot be used as fuel. Among these, molten carbonate fuel cells are seen as promising and are being actively developed. This uses molten carbonates as electrolytes, e.g. Na 2 CO 3 , K 2
A mixed carbonate containing CO 3 or Li 2 CO 3 or the like is used, and this is used as a paste by impregnating a porous ceramic plate or by mixing the carbonate with magnesia or alumina. However, since molten carbonate is used as an electrolyte at high temperatures and is highly corrosive, the separator material must be highly corrosion resistant. Conventionally, stainless steel, such as SUS316L and SUS310S, has been used as a separator material.
Corrosion resistance is not satisfied. Also, JP-A-59-
Publication No. 229468 discloses a corrosion-resistant alloy, which is made by adding aluminum to an iron-chromium-nickel-based alloy, and is said to improve sulfidation resistance. There is no mention of corrosion. Furthermore, this alloy has aluminum added in an amount of 1.0% or less based on the iron-chromium-nickel base, and has low corrosion resistance against molten carbonate, as seen in FIG. 1, which will be described later. As mentioned above, conventionally no consideration has been given to corrosion resistance against molten carbonates, and there is a demand for separator materials that have high corrosion resistance against molten carbonates. [Problems to be Solved by the Invention] In the above-mentioned known technology, there is no separator material that can be used satisfactorily in molten carbonate fuel cells, and the present inventors have developed an iron-based material to solve this drawback. After many years of research with varying amounts of aluminum added to chromium-nickel-based alloys, we found that the amount of aluminum added was 1.05
It has been discovered that the corrosion resistance against molten carbonate can be improved by adding ~2%, and the aim is to provide a separator material for a molten carbonate fuel cell. [Means for Solving the Problems] The separator material for a molten carbonate fuel cell of the present invention contains, by weight, carbon: 0.15% or less, silicon: 1% or less, manganese: 2% or less, and nickel: 15-15%. 35%,
It contains chromium: 15-35%, aluminum: 1.05-2%, and the remainder consists of iron and inevitable impurities. Hereinafter, the reason why the constituent components of the separator material for a molten carbonate fuel cell of the present invention are limited as described above will be explained. Carbon is an austenite-forming element, but if it is contained in an amount exceeding 0.15%, hot workability and oxidation resistance will be reduced, so the carbon content should be 0.15% or less. (Incidentally, % indicates weight %, and the same applies to others.)
Further, silicon has the effect of improving high temperature strength and oxidation resistance, but if present in excess, it impairs weldability and workability, so it is limited to 1% or less. In addition, manganese is an austenite-forming element, but since it slightly deteriorates oxidation resistance, it is preferable to have a small amount.The content of manganese in ordinary stainless steel may be as low as 2%.
The following shall apply. Furthermore, nickel is one of the basic elements of austenitic stainless steel, and the lower limit is 15% to maintain the austenitic structure.
On the other hand, if the nickel content exceeds the upper limit of 35%, it is not preferable because it deteriorates the sulfidation resistance, and therefore the nickel content is set at 15 to 35%. Also,
Chromium is a basic component for corrosion resistance against molten carbonates, and requires a minimum content of 15%, but the effect will be saturated even if it is added in excess of 35%.
~35%. Furthermore, the present invention is characterized by limiting the amount of aluminum added within a specific range; if it is less than 1%, the corrosion resistance against molten carbonate will decrease as shown in Figure 1 below, so the lower limit is
The upper limit is set at 1.05%, but the upper limit is set at 2% because adding too much will destabilize the austenite structure.
Therefore, the amount of aluminum added should be 1.05 to 2%. Further, in addition to these elements, a very small amount of inevitable impurities contained in iron, such as phosphorus and vanadium, may be contained. As mentioned above, the separator material for molten carbonate fuel cells of the present invention has a completely new feature that the corrosion resistance against molten carbonate is greatly improved by adding 1.05 to 2% aluminum to the Fe-Cr-Ni base alloy. It is based on what we found. Examples will be described below. [Example] As a sample of the separator material for a molten carbonate fuel cell of the present invention, an iron-based alloy was produced in the following manner. Carbon, silicon, manganese, nickel, chromium, and aluminum were added to iron, and the composition of each element was determined as shown in Table 1 (% by weight). Also, for comparison, no aluminum is added at all.
SUS310S (Sample No. 1 in Table 1) and an iron-based alloy to which 0.53% aluminum was added (Sample No. 2 in Table 1) were also tested as samples. In the corrosion test, Li 2 CO 3 :K 2 CO 3 = 62:38 (molar ratio) was used as the carbonate, and the carbonate was melted at a temperature of 750°C.
Apply it to the sample alloy and check the gas composition as an atmospheric gas.
A corrosion test was conducted for 100 hours by flowing a CO 2 :air ratio of 30:70 gas at a flow rate of 250 c.c./min.

【表】 その試験結果を第1図に示し、横軸のアルミニ
ウム添加組成と縦軸の腐食による減肉厚さとの関
係を示す。本発明の試料No.3,No.4の如くアルミ
ニウムを1.05〜2%添加すると減肉厚さは約
14μm以下に減少し、特にアルミニウムを1.56%
添加した試料No.4場合は減肉厚さの減少が著し
く、耐食性が大幅に向上することを示している。
また、試料No.1のアルミニウムを添加しない合
金、及び試料No.2のアルミニウムを1.0%以下添
加した合金の場合は、減肉厚さは、ほぼ20〜
30μmの範囲になり、大きい。これより、鉄基合
金にアルミニウムを1.05%〜2%添加した合金は
溶融炭酸塩に対し優れた耐食性を有することが明
らかである。従つて本発明の鉄基合金は溶融炭酸
塩型燃料電池用セパレータ材として現在使用され
ているSUS310SやSUS316Lよりも耐食性が大き
いことが明らかである。 [発明の効果] 本発明の特許請求の範囲に記載した鉄に炭素、
けい素、マンガン、ニツケル、クロムの所定量と
特にアルミニウム1.05〜2%添加し、残部が鉄お
よび不可避的不純物よりなる溶融炭酸塩型燃料電
池用セパレータ材は、溶融炭酸塩に対して耐食性
の良好な材料になり、溶融炭酸塩型燃料電池用セ
パレータとして有効である。
[Table] The test results are shown in Figure 1, which shows the relationship between the aluminum addition composition on the horizontal axis and the thickness of thinning due to corrosion on the vertical axis. When aluminum is added in an amount of 1.05 to 2%, as in samples No. 3 and No. 4 of the present invention, the thickness decreases to approximately
Reduced to below 14μm, especially aluminum by 1.56%
In the case of sample No. 4 in which the addition was made, the decrease in thickness was remarkable, indicating that the corrosion resistance was significantly improved.
In addition, in the case of sample No. 1, an alloy with no added aluminum, and sample No. 2, an alloy with 1.0% or less of aluminum added, the thickness reduction is approximately 20 to 20%.
It is in the 30μm range and is large. From this, it is clear that an alloy in which 1.05% to 2% aluminum is added to an iron-based alloy has excellent corrosion resistance against molten carbonate. Therefore, it is clear that the iron-based alloy of the present invention has greater corrosion resistance than SUS310S and SUS316L currently used as separator materials for molten carbonate fuel cells. [Effect of the invention] The iron described in the claims of the present invention has carbon,
The separator material for molten carbonate fuel cells, which is made by adding predetermined amounts of silicon, manganese, nickel, and chromium and especially 1.05 to 2% aluminum, with the balance being iron and unavoidable impurities, has good corrosion resistance against molten carbonate. This material is effective as a separator for molten carbonate fuel cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明及び比較例の試料についての対
溶融炭酸塩耐食試験の結果を示す。
FIG. 1 shows the results of a molten carbonate corrosion resistance test for samples of the present invention and comparative examples.

Claims (1)

【特許請求の範囲】[Claims] 1 重量で、炭素:0.15%以下、けい素:1%以
下、マンガン:2%以下、ニツケル:15〜35%、
クロム:15〜35%、アルミニウム:1.05〜2%を
含有し、残部が鉄および不可避的不純物からなる
ことを特徴とする溶融炭酸塩型燃料電池用セパレ
ータ材。
1 By weight, carbon: 0.15% or less, silicon: 1% or less, manganese: 2% or less, nickel: 15-35%,
A separator material for a molten carbonate fuel cell, characterized in that it contains chromium: 15-35%, aluminum: 1.05-2%, and the remainder consists of iron and inevitable impurities.
JP61135923A 1986-06-13 1986-06-13 Separator material for fuel cell Granted JPS62294153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61135923A JPS62294153A (en) 1986-06-13 1986-06-13 Separator material for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135923A JPS62294153A (en) 1986-06-13 1986-06-13 Separator material for fuel cell

Publications (2)

Publication Number Publication Date
JPS62294153A JPS62294153A (en) 1987-12-21
JPH0437154B2 true JPH0437154B2 (en) 1992-06-18

Family

ID=15163008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135923A Granted JPS62294153A (en) 1986-06-13 1986-06-13 Separator material for fuel cell

Country Status (1)

Country Link
JP (1) JPS62294153A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013404A1 (en) * 1993-11-09 1995-05-18 Nisshin Steel Co., Ltd. Stainless steel excellent in resistance to corrosion caused by molten salt and process for producing the steel
US6372374B1 (en) * 1999-11-30 2002-04-16 Fuelcell Energy, Inc. Bipolar separator plate with improved wet seals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216256A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Metal material for separator of fused carbonate type fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216256A (en) * 1985-03-22 1986-09-25 Hitachi Ltd Metal material for separator of fused carbonate type fuel cell

Also Published As

Publication number Publication date
JPS62294153A (en) 1987-12-21

Similar Documents

Publication Publication Date Title
Batfalsky et al. Chemical interaction between glass–ceramic sealants and interconnect steels in SOFC stacks
JP2004520479A (en) High temperature material
US6114058A (en) Iron aluminide alloy container for solid oxide fuel cells
JP2010236012A (en) High temperature conductive member
JP3321888B2 (en) Metal materials for solid oxide fuel cells
JPH09157801A (en) Steel for separator of solid electrolytic fuel cell
Zhu et al. Comparison of electrochemical and surface characterisation methods for investigation of corrosion of bipolar plate materials in molten carbonate fuel cell: Part I. Electrochemical study
JP3704655B2 (en) Steel for solid oxide fuel cell separator
JPH0437154B2 (en)
JP2007016297A (en) Steel for solid-oxide fuel cell separator
KR20080109148A (en) Stainless steel having excellent corrosion resistance and electric conductivity and bipolar plate made of the same
JPH04358044A (en) High corrosion resistant steel sheet for molten carbonate type fuel cell separator
JPS5919984B2 (en) Corrosion-resistant material for molten sodium polysulfide
JP3238812B2 (en) Metal materials for solid oxide fuel cells
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
CN101522932B (en) Ferritic chromium steel
JP2932211B2 (en) Corrosion resistant stainless steel for molten carbonate fuel cells
JPH0453942B2 (en)
JPS62234868A (en) Electrode material of high corrosion resistance for fused-carbonate type fuel cell
JPH0544780B2 (en)
JPS61216256A (en) Metal material for separator of fused carbonate type fuel cell
JP3161269B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
JPH02103867A (en) Fuel reforming catalyst of fuel cell
JPH08165546A (en) Stainless steel excellent in fused carbonate corrosion resistance
JP3126925B2 (en) Metallic materials for molten carbonate fuel cells

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees