JP3704655B2 - Steel for solid oxide fuel cell separator - Google Patents

Steel for solid oxide fuel cell separator Download PDF

Info

Publication number
JP3704655B2
JP3704655B2 JP08900997A JP8900997A JP3704655B2 JP 3704655 B2 JP3704655 B2 JP 3704655B2 JP 08900997 A JP08900997 A JP 08900997A JP 8900997 A JP8900997 A JP 8900997A JP 3704655 B2 JP3704655 B2 JP 3704655B2
Authority
JP
Japan
Prior art keywords
less
steel
fuel cell
oxidation resistance
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08900997A
Other languages
Japanese (ja)
Other versions
JPH10280103A (en
Inventor
丈博 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP08900997A priority Critical patent/JP3704655B2/en
Publication of JPH10280103A publication Critical patent/JPH10280103A/en
Application granted granted Critical
Publication of JP3704655B2 publication Critical patent/JP3704655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体電解質型燃料電池のセパレータに用いられる鋼に関する。
【0002】
【従来の技術】
燃料電池は、その発電効率が高いこと、SOx、NOx、CO2の発生量が少ないこと、負荷の変動に対する応答性が良いこと、コンパクトであること等の優れた特徴を有するため、火力発電の代替としての大規模集中型、都市近郊分散配置型、および自家発電用等の巾広い発電システムへの適用が期待されている。
【0003】
燃料電池の種類には用いる電解質により、りん酸型、溶融炭酸塩型、固体電解質型、高分子固体電解質型に分類されるが、なかでも固体電解質型燃料電池は電解質として安定化ジルコニア等のセラミックスを用いて1000℃付近で運転されるもので、電極反応に触媒を用いる必要がないこと、高温による化石燃料の内部改質が可能で石炭ガス等の多様な燃料を用いることができること、高温排熱を利用しガスタービンあるいは蒸気タービン等と組み合わせ、いわゆるコンバインドサイクル発電とすることにより高効率の発電が可能となること、構成物が全て固体であるためコンパクトであること等の優れた特徴を有し、次世代の電力供給源として非常に有望視されている。
【0004】
しかしながら固体電解質型燃料電池の実用化のためには多くの検討課題が残されている。特に高出力密度が可能な平板型燃料電池の場合、重要な構成要素としてセパレータが挙げられる。セパレータは電解質、燃料極、空気極の3層を支持し、ガス流路を形成するとともに電流を流す役目を有する。従ってセパレータには、高温での電気伝導性、耐酸化性、さらに電解質との熱膨張差が小さいこと等の特性が要求される。
【0005】
このような要求特性を鑑み、従来は導電性セラミックスが多く用いられてきた。しかしながらセラミックスは加工性が悪くまた高価であることから、燃料電池の大型化、実用化の面から問題を残している。そのため安価で信頼性のある金属材料によるセパレータの開発が要求されている。また通常の金属材料を1000℃付近で使用すると表面が酸化され酸化被膜を生じる。したがって、セパレータ材として用いるためにはこの酸化被膜が安定で酸化が進行しないことが必要であり、さらにこの酸化被膜が電気伝導性を有することが必要である。
【0006】
特開平6−264193号には固体電解質型燃料電池用金属材料として、C0.1%以下、Si0.5〜3.0%、Mn3.0%以下、Cr15〜30%、Ni20〜60%、Al2.5〜5.5%、残部実質的にFeからなるオーステナイト系ステンレス鋼が開示されている。
特開平7−166301号には固体電解質燃料電池のセパレータとして、Fe60〜82%およびCr18〜40%に前記単電池の空気極との間の接触抵抗を低減する添加元素(La、Y、CeまたはAl)からなる材料を使用することが開示されている。
さらに特開平7−145454には、固体電解質型燃料電池用金属材料としてCr5〜30%、Co3〜45%、La1%以下、残部実質的にFeからなる材料が開示されている。
【0007】
【発明が解決しようとする課題】
上述した特開平6−264193号に開示された材料はAlとCrを相当量含むために表面酸化被膜はAl系酸化物を主体とし、これにCr系酸化物を含有したものである。しかしながら後述するようにAl系酸化物は電気伝導率が低いために固体電解質セパレータ用としては十分ではない。さらにオーステナイト系ステンレス鋼は電解質の安定化ジルコニアに比較して熱膨張係数が大きいため長時間使用における安定性に問題がある。また高価なNiを多く含むために価格的にも高く、燃料電池の実用化のためには不十分と考えられる。
【0008】
上述した特開平7−166301号あるいは特開平7−145454号に開示された材料は、オーステナイト系ステンレス鋼に比較して熱膨張係数が低く、電解質の安定化ジルコニアの熱膨張係数に近いため長時間使用における安定性に有利であり、また電気伝導率も良好である。しかし、本発明者の検討によれば、長時間使用後の耐酸化性が十分ではなかった。
本発明の目的は、1000℃付近において良好な電気伝導性を有する酸化被膜を形成するとともに良好な耐酸化性を有し、かつ電解質との熱膨張差が小さくさらに安価な金属製セパレータ材を提供することである。
【0009】
【課題を解決するための手段】
本発明者は種々検討の結果、まず対象とする金属材料をフェライト系とした。この理由の第1は、電解質である安定化ジルコニアの常温から1000℃までの熱膨張係数が11〜12×10マイナス6乗/℃に対し、通常のオーステナイト系の金属材料では16×10マイナス6乗/℃以上であり、両者の熱膨張差が大きいため長時間使用中の安定性に問題があるためである。第2の理由は一般にオーステナイト系は高価なNiを含むため高価であるが、フェライト系はFeをベースとしNiを含まないかまたは含んでも少量であるため安価であるためである。
【0010】
次に本発明者は形成される酸化被膜の電気伝導度について種々検討した。保護性を有する酸化被膜の代表としてはAlの酸化物とCrの酸化物を検討した。1000℃付近の高温になると一般にはAl23の方が保護作用が大きく有利であるが、Al23被膜形成材の電気抵抗を測定してみると100mΩ・cm2を越えるものであり、セパレータとしては使用できないことがわかった。一方Cr23被膜形成材の電気抵抗は100mΩ・cm2以下であり、セパレータに使用可能であることがわかった。そこで本発明においては表面にCr系酸化物を主体とする酸化被膜を形成するフェライト系金属材料、すなわちFe−Cr系を基本とした。
【0011】
次に、長時間使用する場合に問題となる耐酸化性であるが、前述のように1000℃付近においては通常Cr系酸化被膜の耐酸化性はAl系酸化被膜より劣る。またCr系酸化物を主体とする場合でもNiベースの合金(例えばJIS NCF600に代表されるNi−Cr合金)よりもFeベースの合金(例えばSUS430のようなFe−Cr合金)の方が耐酸化性は劣っている。
従って単純にFe−Cr系とするだけでは、耐酸化性を満足させることは困難である。
【0012】
本発明者は上述した問題点を解決するために種々検討した結果、Fe−Cr系にHfを添加することにより、Cr系酸化被膜を主体としながら良好な耐酸化性が得られ長時間加熱後も皮膜の剥離が見られないことを見出した。またHfに加えさらにY、希土類元素、Zrの1種または2種以上を加えるとさらに耐酸化性が向上することも見出した。なおこれらの添加を行っても形成される酸化皮膜は、Cr系酸化被膜が主体なので電気抵抗もさほど大きくなることはないことを見出した。
【0013】
すなわち本発明は、重量%にてC0.2%以下、Si3.0%以下、Mn1.0%以下、Cr15〜30%、Hf0.5%以下を含み、および選択元素としてNi2%以下、Al1%以下、Ti1%以下、MoとWの1種または2種をMo+1/2Wで5%以下、Nb2%以下の元素から選ばれる1種または2種以上を含有し、残部Fe及び不可避的不純物からなる固体電解質型燃料電池セパレータ用鋼である
【0014】
また、本発明は、重量%にてC0.2%以下、Si3.0%以下、Mn1.0%以下、Cr15〜30%、Hf0.5%以下を含み、および選択元素としてNi2%以下、Al1%以下、Ti1%以下、MoとWの1種または2種をMo+1/2Wで5%以下、Nb2%以下の元素から選ばれる1種または2種以上を含み、さらにY0.5%以下、希土類元素0.2%以下、Zr1%以下の元素から選ばれる1種または2種以上を含み、残部Fe及び不可避的不純物からなる固体電解質型燃料電池セパレータ用鋼である。
【0015】
【発明の実施の形態】
以下に本発明における成分限定理由について述べる。
Cは、炭化物を形成して高温強度を増大させる作用を有するが、一方加工性を劣化させまたCrと結び付くことにより耐酸化性に有効なCr量を減少させる。従って0.2%以下に限定する。望ましくは0.08%以下である。
Siは本発明の場合、Cr23系酸化皮膜と母材の界面付近に薄いSiO2系皮膜を形成して耐酸化性を向上させる作用を有する。しかし過度の添加は加工性、靭性の低下を招くとともにSiO2系皮膜が厚くなりすぎて皮膜の電気伝導度が低下する問題が生じるので3%以下とする。望ましくは0.2〜2.0%である。
【0016】
MnはCr23系被膜の密着性を向上させるのに必要である。しかし、過度に添加するとMn含有のスピネル型酸化物の耐酸化性不足のため耐酸化性が悪くなる。従ってMnは1%以下に限定する。望ましくは0.2〜1.0%である。
Crは本発明においてCr23系被膜の生成により、耐酸化性および電気伝導性を維持するために重要な元素である。そのため最低限15%を必要とする。しかしながら過度の添加は耐酸化性向上にさほど効果がないばかりか加工性の劣化を招くので15〜30%に限定する。望ましくは18〜25%である。
Hfは本発明における重要な元素である。前述のようにCr系酸化被膜のみで良好な耐酸化性を持たせることは難しいが、少量のHf添加により耐酸化性が大きく向上することが見出された。これは主に酸化被膜の密着性を改善する効果によると考えられる。しかし過度の添加は熱間加工性を劣化させるので0.5%以下に限定する。望ましくは0.01〜0.3%である。
【0017】
選択元素として1種または2種以上を添加するY、希土類元素、Zrは、Hfと組み合わせて少量添加することにより耐酸化性をさらに改善する効果を有する。しかしながら過度の添加は熱間加工性を劣化させるので、Yは0.5%以下、希土類元素は0.2%以下、Zrは1%以下に限定する。望ましくはYは0.01〜0.3%、希土類元素は0.01〜0.12%、Zrは0.05〜0.8%である。
またHfと、Y、希土類元素、Zrの1種または2種以上に適量のSi、Mn添加を組み合わせると一層耐酸化性が向上する。これはこれらの元素の複合作用により主に酸化被膜の密着性が改善されることによると考えられる。またZrは後述のTi、Nbと同様、Cと結びついて炭化物を形成し、C固定により加工性を向上させまた強度向上にも寄与する。
【0018】
Ni,Al,Ti,Nb,Mo,Wの各元素は本発明鋼には必ずしも添加する必要はないが、以下に示す効果を有するため必要に応じて単独または複合で添加することができる。
Niは本発明鋼に少量添加することにより靭性の向上に効果が有る。しかしNiはオーステナイト生成元素であり、過度の添加はフェライト−オーステナイトの2相組織となり、熱膨張係数の増加およびコストアップを招く。さらに過度のNiの添加は耐酸化性を悪くする。従ってNiは2%以下に限定する。望ましくは0.9%以下である。
【0019】
Alは脱酸剤として添加される。Alを多く添加するとAl23被膜が形成されるが、前述のようにAl23被膜は耐酸化性に対しては有効であるが、酸化被膜の電気抵抗を増大させる。従って、本発明の場合Al23被膜の形成を避けるためにAlは1%以下に限定する。望ましくは0.5%以下である。
TiはCと結び付いて炭化物を形成し、C固定により加工性を向上させる。しかしながら1000℃付近においてはあまり保護性のないTiOまたはTiO2を形成し耐酸化性を劣化させる。従ってTiは1%以下に限定する。
NbもTiと同様Cと結び付いて炭化物を形成し、C固定により加工性を向上させるとともに高温強度も増大させる。しかしながら過度の添加は耐酸化性を劣化させるので2%以下に限定する。
【0020】
MoおよびWは、特に高温強度を増加させる作用を有するので、高温強度を重視する場合には添加してもよい。しかしながら過度に添加すると耐酸化性、加工性を劣化させるのでMo+1/2Wで5%以下に限定する。
上述した合金組成により、好ましくは1000℃で100Hr加熱した後の1000℃における酸化皮膜の電気抵抗が50mΩ・cm2以下であり、さらに1100℃で100Hr加熱後に表面酸化スケールの剥離が実質的に起こらない固体電解質燃料電池セパレータ用鋼を得ることができる。
【0021】
なお、以下の元素は、1000℃で100Hr加熱した後の1000℃における酸化皮膜の電気抵抗率が80mΩ・cm2以下、1100℃、100Hr加熱後のスケール剥離が0.5mg/cm2以下を満たす範囲内で添加元素を含むことができる。たとえば、以下の範囲の添加元素を含むことができる。
P≦0.04% S≦0.03% Cu≦0.30%
V≦0.5% Ta≦0.5% Mg≦0.02%
Ca≦0.02% Co≦2%
【0022】
【実施例】
(実施例1)
表1に示す組成の鋼を真空誘導炉にて溶製し10kgのインゴットを作製後、1100℃に加熱して30mm角の棒材に鍛伸した。なお表1において、比較鋼No.41はNCF600として知られているオーステナイト系合金である。また比較鋼No.44は特開平6−264193号に記載のものである。これらの試料の製造工程において、本発明鋼中で比較的Cr量が高いNo.9合金は鍛造中に若干疵が発生し、やや加工性が悪い傾向を示した。これらの素材から試験片を切り出し各種試験を行った。
【0023】
【表1】

Figure 0003704655
【0024】
まず、直径10mm,長さ20mmの円柱状試験片を用いて、大気中1000℃で100Hrの加熱処理を行った後、表面に生成される酸化物の種類をX線回折により調べた。さらに表面酸化スケールの剥離量を測定した。また10mm×10mm×3mmの板状試料を用いて、大気中1000℃で100Hr加熱を行って表面に酸化被膜を形成させた後、1000℃における電気抵抗を測定した。なお電気抵抗は面積抵抗(mΩ・cm2)で表した。またほとんどの試料においては1000℃で100Hr加熱後に酸化スケールの剥離が見られなかったので、さらに加速試験として1100℃で100Hr、ならびに1000℃で1000Hr加熱を行った後の酸化スケールの剥離量を調べた。さらにいくつかの試料については30℃から1000℃までの熱膨張係数を測定した。これらの試験結果をまとめて表2に示す。
【0025】
【表2】
Figure 0003704655
【0026】
表2より本発明鋼は大気中1000℃×100Hrの加熱により主にCr23被膜を形成しており、電気抵抗の値は十分小さい。一方、比較鋼No.42、43、44はAlを2%以上含むためAl23被膜を形成し、電気抵抗の値は本発明鋼の値よりはるかに大きい。また比較鋼No.48はSiが高いために表面からのX線回折では確認できなかったがおそらくSiO2系皮膜が形成されていると思われ、電気抵抗の値が高い。
大気中1000℃×100Hrの加熱後の表面スケール剥離量を比較すると、本発明鋼はスケールの剥離は全く観察されなかったが、比較鋼No.45はCr量が少ないため剥離量が多く、長時間使用に耐えないことがわかる。また比較鋼No.50もスケールの剥離が観察されたがこれはHfを含まないことに加え、Mnが高くMn2FeO4の量が多くなったためと思われる。
【0027】
さらに加速試験として行った大気中1100℃×100Hrの加熱後の表面スケール剥離量を比較すると、本発明鋼はNo.16,17、18を除き1100℃という高温での加熱でもスケールの剥離が観察されない。No.16,17,18はごく少量のスケールの剥離が観察されるがこれはSi、Mn量が低めであったためと思われる。一方、比較鋼No.41(NCF600)、45、46,47、49、50では剥離が発生した。No.46はHf,Y,希土類元素またはZrが無添加であること、No.47はHfを含まずSi量が低いこと、No.49はHfを含まずMn量が低いことによりスケールの密着性が不足したためと思われる。No.50は前述のようにHfを含まずMnが高すぎたためと思われる。
【0028】
もう一つの加速試験条件である大気中1000℃×1000Hrの加熱後の表面スケール剥離量を本発明鋼中で比較すると、C高め(No.7)、Cr低め(No.8)、Nb,Ti高め(No.10)、Si低め(No.16)、Mn低め(No.17)、Si,Mn低め(No.18)でスケール剥離量がやや多くなっていることがわかる。
次に常温から1000℃までの熱膨張係数の値は本発明鋼No.1〜5が約13×10マイナス6乗/℃であり、ジルコニアの値に近い。一方比較鋼No.41、No.44はオーステナイト系であるために熱膨張係数の値が大きい。
【0029】
【発明の効果】
以上述べたように本発明鋼を固体電解質型燃料電池のセパレータに用いることにより、燃料電池の低コスト化を図ることができ、燃料電池の実用化、大型化に大きく寄与できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to steel used for a separator of a solid oxide fuel cell.
[0002]
[Prior art]
Fuel cells, that the power generation efficiency is high, SOx, NOx, and the generation amount of CO 2 is small, it is a good response to load variations, since it has excellent features such that it is compact, the thermal power It is expected to be applied to wide-scale power generation systems such as large-scale centralized alternatives, distributed suburban areas, and private power generation.
[0003]
Fuel cells are classified into phosphoric acid type, molten carbonate type, solid electrolyte type, and polymer solid electrolyte type depending on the electrolyte used. Among them, solid electrolyte type fuel cells are ceramics such as stabilized zirconia as an electrolyte. It is not necessary to use a catalyst for the electrode reaction, internal reforming of fossil fuel can be performed at high temperature, and various fuels such as coal gas can be used. Combined with a gas turbine or steam turbine using heat, so-called combined cycle power generation enables high-efficiency power generation, and all the components are solid so that they are compact. However, it is very promising as a next-generation power supply source.
[0004]
However, many problems remain to be solved for practical application of solid oxide fuel cells. In particular, in the case of a flat plate fuel cell capable of high power density, an important component is a separator. The separator supports three layers of an electrolyte, a fuel electrode, and an air electrode, and has a function of forming a gas flow path and flowing current. Therefore, the separator is required to have characteristics such as electrical conductivity at high temperature, oxidation resistance, and a small difference in thermal expansion from the electrolyte.
[0005]
In view of such required characteristics, conductive ceramics have been used in the past. However, since ceramics have poor processability and are expensive, there remains a problem in terms of the enlargement and practical use of fuel cells. Therefore, development of a separator made of an inexpensive and reliable metal material is required. When a normal metal material is used at around 1000 ° C., the surface is oxidized and an oxide film is formed. Therefore, in order to use as a separator material, it is necessary that this oxide film is stable and oxidation does not proceed, and further, this oxide film needs to have electrical conductivity.
[0006]
In JP-A-6-264193, as a metal material for a solid oxide fuel cell, C 0.1% or less, Si 0.5 to 3.0%, Mn 3.0% or less, Cr 15 to 30%, Ni 20 to 60%, Al 2 An austenitic stainless steel made of 0.5 to 5.5% and the balance being substantially Fe is disclosed.
In JP-A-7-166301, as a separator for a solid electrolyte fuel cell, Fe 60 to 82% and Cr 18 to 40% are added elements (La, Y, Ce or lower) that reduce the contact resistance between the air electrode of the unit cell. The use of materials consisting of Al) is disclosed.
Further, Japanese Patent Laid-Open No. 7-145454 discloses a material composed of Cr 5-30%, Co 3-45%, La 1% or less, and the balance substantially Fe as a solid oxide fuel cell metal material.
[0007]
[Problems to be solved by the invention]
Since the material disclosed in Japanese Patent Laid-Open No. 6-264193 described above contains a considerable amount of Al and Cr, the surface oxide film is mainly composed of an Al-based oxide and contains a Cr-based oxide. However, as will be described later, Al-based oxides are not sufficient for solid electrolyte separators because of their low electrical conductivity. Furthermore, since austenitic stainless steel has a larger coefficient of thermal expansion than zirconia, which is a stabilized electrolyte, there is a problem in stability during long-term use. In addition, since it contains a lot of expensive Ni, it is expensive and is considered insufficient for the practical use of fuel cells.
[0008]
The materials disclosed in the above-mentioned JP-A-7-166301 or JP-A-7-145454 have a low coefficient of thermal expansion compared to austenitic stainless steel, and are close to the coefficient of thermal expansion of stabilized zirconia in the electrolyte. It is advantageous for stability in use and has good electrical conductivity. However, according to the study of the present inventors, the oxidation resistance after long-term use was not sufficient.
An object of the present invention is to provide a metal separator material that forms an oxide film having good electrical conductivity near 1000 ° C., has good oxidation resistance, has a small difference in thermal expansion from an electrolyte, and is inexpensive. It is to be.
[0009]
[Means for Solving the Problems]
As a result of various studies, the present inventor first made the metal material of interest ferrite. The first reason for this is that the thermal expansion coefficient from ambient temperature to 1000 ° C. of stabilized zirconia, which is an electrolyte, is 11 to 12 × 10 minus 6 power / ° C., whereas that of a normal austenitic metal material is 16 × 10 minus 6 This is because there is a problem in stability during use for a long time because the difference in thermal expansion between them is large. The second reason is that the austenite type is generally expensive because it contains expensive Ni, but the ferrite type is based on Fe and does not contain Ni or even if it contains a small amount, it is inexpensive.
[0010]
Next, the inventor conducted various studies on the electric conductivity of the oxide film to be formed. Al oxide and Cr oxide were examined as representative oxide films having protective properties. In general, Al 2 O 3 is more advantageous at a high temperature around 1000 ° C., but the protective effect of Al 2 O 3 film forming material is over 100 mΩ · cm 2 . It was found that it cannot be used as a separator. On the other hand, the electric resistance of the Cr 2 O 3 film-forming material is 100 mΩ · cm 2 or less, which indicates that it can be used for a separator. Therefore, in the present invention, a ferritic metal material that forms an oxide film mainly composed of a Cr-based oxide on the surface, that is, an Fe—Cr-based material is used as a basis.
[0011]
Next, the oxidation resistance becomes a problem when used for a long time. As described above, the oxidation resistance of the Cr-based oxide film is usually inferior to that of the Al-based oxide film at around 1000 ° C. Further, even when a Cr-based oxide is mainly used, an Fe-based alloy (for example, a Fe-Cr alloy such as SUS430) is more resistant to oxidation than a Ni-based alloy (for example, a Ni-Cr alloy represented by JIS NCF600). Sex is inferior.
Therefore, it is difficult to satisfy the oxidation resistance simply by using the Fe—Cr system.
[0012]
As a result of various investigations to solve the above-mentioned problems, the present inventor has obtained good oxidation resistance while mainly comprising a Cr-based oxide film by adding Hf to the Fe-Cr system, and after heating for a long time. Also found no peeling of the film. It has also been found that oxidation resistance is further improved by adding one or more of Y, rare earth elements and Zr in addition to Hf. It has been found that even if these additions are made, the oxide film formed is mainly composed of a Cr-based oxide film, so that the electrical resistance does not increase so much.
[0013]
That is, the present invention contains C 0.2% or less, Si 3.0% or less, Mn 1.0% or less, Cr 15 to 30%, Hf 0.5% or less in terms of% by weight, and Ni 2% or less, Al 1% as a selective element. Hereinafter, Ti 1% or less, one or two of Mo and W are contained in Mo + 1 / 2W at 5% or less and Nb 2% or less, and the balance is Fe and inevitable impurities. Steel for solid oxide fuel cell separator .
[0014]
Further, the present invention includes C0.2% or less, Si3.0% or less, Mn1.0% or less, Cr15-30%, Hf0.5% or less in terms of% by weight, and Ni2% or less as a selective element, Al1 % Or less, Ti 1% or less, 1 or 2 kinds of Mo and W in Mo + 1 / 2W, including 1 or 2 elements selected from elements of 5% or less and Nb 2% or less, and further Y0.5% or less, rare earth It is a steel for a solid oxide fuel cell separator containing one or more elements selected from elements of 0.2% or less and Zr of 1% or less , the balance being Fe and inevitable impurities .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the components in the present invention will be described below.
C has the effect of increasing the high temperature strength by forming carbides, while reducing the amount of Cr effective in oxidation resistance by degrading workability and combining with Cr. Therefore, it is limited to 0.2% or less. Desirably, it is 0.08% or less.
In the case of the present invention, Si has the effect of improving the oxidation resistance by forming a thin SiO 2 film near the interface between the Cr 2 O 3 oxide film and the base material. However, excessive addition causes a decrease in workability and toughness and causes a problem that the SiO 2 film becomes too thick and the electric conductivity of the film is lowered. Desirably, it is 0.2 to 2.0%.
[0016]
Mn is necessary for improving the adhesion of the Cr 2 O 3 coating. However, if it is added excessively, the oxidation resistance of the Mn-containing spinel oxide is insufficient, resulting in poor oxidation resistance. Therefore, Mn is limited to 1% or less. Desirably, it is 0.2 to 1.0%.
Cr is an important element for maintaining oxidation resistance and electrical conductivity by producing a Cr 2 O 3 based coating in the present invention. Therefore, a minimum of 15% is required. However, excessive addition is not so effective in improving oxidation resistance, but also causes deterioration of workability, so it is limited to 15 to 30%. Desirably, it is 18 to 25%.
Hf is an important element in the present invention. As described above, it is difficult to provide good oxidation resistance only with the Cr-based oxide film, but it has been found that the oxidation resistance is greatly improved by adding a small amount of Hf. This is presumably due to the effect of improving the adhesion of the oxide film. However, excessive addition degrades hot workability, so it is limited to 0.5% or less. Desirably, it is 0.01 to 0.3%.
[0017]
Y, rare earth elements, and Zr to which one or more elements are added as selective elements have the effect of further improving oxidation resistance by adding a small amount in combination with Hf. However, excessive addition degrades hot workability, so Y is limited to 0.5% or less, rare earth elements are limited to 0.2% or less, and Zr is limited to 1% or less. Desirably, Y is 0.01 to 0.3%, rare earth elements are 0.01 to 0.12%, and Zr is 0.05 to 0.8%.
Further, when an appropriate amount of Si or Mn is added to one or more of Hf, Y, rare earth elements and Zr, the oxidation resistance is further improved. This is considered to be mainly due to the improved adhesion of the oxide film due to the combined action of these elements. Zr, like Ti and Nb described later, combines with C to form a carbide, and improves the workability by C fixation and contributes to the improvement of strength.
[0018]
Each element of Ni, Al, Ti, Nb, Mo, and W is not necessarily added to the steel of the present invention, but can be added alone or in combination as necessary because of the following effects.
Ni is effective in improving toughness by adding a small amount to the steel of the present invention. However, Ni is an austenite-forming element, and excessive addition results in a ferrite-austenite two-phase structure, resulting in an increase in thermal expansion coefficient and an increase in cost. Further, excessive addition of Ni deteriorates the oxidation resistance. Therefore, Ni is limited to 2% or less. Desirably, it is 0.9% or less.
[0019]
Al is added as a deoxidizer. When a large amount of Al is added, an Al 2 O 3 film is formed. As described above, the Al 2 O 3 film is effective for oxidation resistance, but increases the electric resistance of the oxide film. Therefore, in the present invention, Al is limited to 1% or less in order to avoid the formation of an Al 2 O 3 film. Desirably, it is 0.5% or less.
Ti combines with C to form a carbide, and improves the workability by fixing C. However, in the vicinity of 1000 ° C., TiO or TiO 2 which is not very protective is formed and the oxidation resistance is deteriorated. Therefore, Ti is limited to 1% or less.
Nb, like Ti, combines with C to form carbides, and C fixation improves workability and increases high-temperature strength. However, excessive addition degrades oxidation resistance, so it is limited to 2% or less.
[0020]
Mo and W have the effect of increasing the high temperature strength, and therefore may be added when the high temperature strength is important. However, if excessively added, the oxidation resistance and workability deteriorate, so Mo + 1 / 2W is limited to 5% or less.
Due to the alloy composition described above, the electrical resistance of the oxide film at 1000 ° C. after heating at 1000 ° C. for 100 hours is preferably 50 mΩ · cm 2 or less, and the surface oxide scale is substantially peeled off after heating at 1100 ° C. for 100 hours. No steel for solid electrolyte fuel cell separator can be obtained.
[0021]
In the following elements, the electrical resistivity of the oxide film at 1000 ° C. after heating at 1000 ° C. for 100 hours satisfies 80 mΩ · cm 2 or less, and the scale peeling after heating at 1100 ° C. for 100 hours satisfies 0.5 mg / cm 2 or less. Additive elements can be included within the range. For example, the following range of additive elements can be included.
P ≦ 0.04% S ≦ 0.03% Cu ≦ 0.30%
V ≦ 0.5% Ta ≦ 0.5% Mg ≦ 0.02%
Ca ≦ 0.02% Co ≦ 2%
[0022]
【Example】
(Example 1)
Steel having the composition shown in Table 1 was melted in a vacuum induction furnace to produce a 10 kg ingot, and then heated to 1100 ° C. and forged into a 30 mm square bar. In Table 1, comparative steel No. 41 is an austenitic alloy known as NCF600. Comparative steel No. 44 is described in JP-A-6-264193. In the production process of these samples, No. 1 having a relatively high Cr content in the steel of the present invention. The alloy No. 9 was slightly flawed during forging and showed a tendency to be slightly inferior in workability. Test pieces were cut out from these materials and subjected to various tests.
[0023]
[Table 1]
Figure 0003704655
[0024]
First, using a cylindrical test piece having a diameter of 10 mm and a length of 20 mm, after heat treatment at 1000 ° C. in air for 100 hours, the type of oxide generated on the surface was examined by X-ray diffraction. Furthermore, the amount of peeling of the surface oxide scale was measured. Further, a 10 mm × 10 mm × 3 mm plate-like sample was heated in air at 1000 ° C. for 100 hours to form an oxide film on the surface, and then the electrical resistance at 1000 ° C. was measured. The electrical resistance was represented by sheet resistance (mΩ · cm 2 ). In most samples, oxide scale peeling was not observed after heating at 1000 ° C. for 100 hours. Therefore, as an accelerated test, the amount of oxide scale peeled after heating at 1100 ° C. for 100 hours and at 1000 ° C. for 1000 hours was investigated. It was. Furthermore, the thermal expansion coefficient from 30 degreeC to 1000 degreeC was measured about some samples. These test results are summarized in Table 2.
[0025]
[Table 2]
Figure 0003704655
[0026]
From Table 2, the steel of the present invention mainly forms a Cr 2 O 3 film by heating at 1000 ° C. × 100 Hr in the atmosphere, and the value of electric resistance is sufficiently small. On the other hand, Comparative Steel No. Since 42, 43 and 44 contain 2% or more of Al, an Al 2 O 3 film is formed, and the value of electric resistance is much larger than that of the steel of the present invention. Comparative steel No. No. 48 could not be confirmed by X-ray diffraction from the surface because of the high Si, but it is likely that a SiO 2 -based film was formed, and the electrical resistance value was high.
When the amount of surface scale peeling after heating at 1000 ° C. × 100 Hr in the atmosphere was compared, no peeling of the scale was observed in the steel of the present invention. It can be seen that No. 45 has a large amount of peeling due to a small amount of Cr and cannot withstand long-term use. Comparative steel No. As for 50, scale exfoliation was observed, but this was probably due to the fact that Mn was high and the amount of Mn 2 FeO 4 was increased in addition to not containing Hf.
[0027]
Furthermore, when the amount of surface scale peeling after heating at 1100 ° C. × 100 Hr in the atmosphere as an accelerated test was compared, the steel of the present invention was No. Except for 16, 17, and 18, scale peeling is not observed even when heated at a high temperature of 1100 ° C. No. In 16, 17, and 18, a very small amount of scale exfoliation was observed. This is probably because the amounts of Si and Mn were low. On the other hand, Comparative Steel No. In 41 (NCF600), 45, 46, 47, 49, and 50, peeling occurred. No. No. 46 shows no addition of Hf, Y, rare earth elements or Zr. No. 47 does not contain Hf and the amount of Si is low. It seems that No. 49 did not contain Hf and the amount of Mn was low, resulting in insufficient scale adhesion. No. 50 seems to be because Mn was too high without Hf as described above.
[0028]
When the surface scale exfoliation amount after heating at 1000 ° C. × 1000 Hr in the atmosphere, which is another accelerated test condition, is compared in the steel of the present invention, C is increased (No. 7), Cr is lowered (No. 8), Nb, Ti It can be seen that the amount of exfoliation of the scale is slightly increased with higher (No. 10), lower Si (No. 16), lower Mn (No. 17), and lower Si and Mn (No. 18).
Next, the value of the thermal expansion coefficient from room temperature to 1000 ° C. is the steel No. of the present invention. 1 to 5 is about 13 × 10 minus 6 / ° C., which is close to the value of zirconia. On the other hand, comparative steel No. 41, no. Since 44 is austenitic, it has a large coefficient of thermal expansion.
[0029]
【The invention's effect】
As described above, by using the steel of the present invention for a separator of a solid oxide fuel cell, the cost of the fuel cell can be reduced, which can greatly contribute to the practical use and enlargement of the fuel cell.

Claims (2)

重量%にてC0.2%以下、Si3.0%以下、Mn1.0%以下、Cr15〜30%、Hf0.5%以下を含み、および選択元素としてNi2%以下、Al1%以下、Ti1%以下、MoとWの1種または2種をMo+1/2Wで5%以下、Nb2%以下の元素から選ばれる1種または2種以上を含有し、残部Fe及び不可避的不純物からなることを特徴とする固体電解質型燃料電池セパレータ用鋼。In weight%, C0.2% or less, Si3.0% or less, Mn 1.0% or less, Cr15-30%, Hf0.5% or less, and Ni2% or less, Al1% or less, Ti1% or less as selective elements One or two of Mo and W are contained in Mo + 1 / 2W at 5% or less and Nb2% or less, and the balance is Fe and inevitable impurities. Steel for solid oxide fuel cell separator. 重量%にてC0.2%以下、Si3.0%以下、Mn1.0%以下、Cr15〜30%、Hf0.5%以下を含み、および選択元素としてNi2%以下、Al1%以下、Ti1%以下、MoとWの1種または2種をMo+1/2Wで5%以下、Nb2%以下の元素から選ばれる1種または2種以上を含み、さらにY0.5%以下、希土類元素0.2%以下、Zr1%以下の元素から選ばれる1種または2種以上を含み、残部Fe及び不可避的不純物からなることを特徴とする固体電解質型燃料電池セパレータ用鋼。In weight%, C0.2% or less, Si3.0% or less, Mn 1.0% or less, Cr15-30%, Hf0.5% or less, and Ni2% or less, Al1% or less, Ti1% or less as selective elements Including one or two of Mo and W at an Mo + 1 / 2W of 5% or less and Nb of 2% or less, further including Y 0.5% or less, rare earth element 0.2% or less A steel for a solid oxide fuel cell separator, comprising one or more elements selected from elements of 1% or less of Zr and comprising the balance Fe and unavoidable impurities.
JP08900997A 1997-04-08 1997-04-08 Steel for solid oxide fuel cell separator Expired - Fee Related JP3704655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08900997A JP3704655B2 (en) 1997-04-08 1997-04-08 Steel for solid oxide fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08900997A JP3704655B2 (en) 1997-04-08 1997-04-08 Steel for solid oxide fuel cell separator

Publications (2)

Publication Number Publication Date
JPH10280103A JPH10280103A (en) 1998-10-20
JP3704655B2 true JP3704655B2 (en) 2005-10-12

Family

ID=13958880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08900997A Expired - Fee Related JP3704655B2 (en) 1997-04-08 1997-04-08 Steel for solid oxide fuel cell separator

Country Status (1)

Country Link
JP (1) JP3704655B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP042597A0 (en) * 1997-11-17 1997-12-11 Ceramic Fuel Cells Limited A heat resistant steel
JP4524760B2 (en) * 2001-09-27 2010-08-18 日立金属株式会社 Oxidation resistant steel and solid oxide fuel cell parts using the same
DE60224249T3 (en) 2001-09-27 2012-10-18 Hitachi Metals, Ltd. Steel for solid oxide fuel cell separators
US6641780B2 (en) * 2001-11-30 2003-11-04 Ati Properties Inc. Ferritic stainless steel having high temperature creep resistance
EP1536031A4 (en) * 2002-08-09 2005-10-12 Jfe Steel Corp Metal material for fuel cell, fuel cell using the same and method for producing the material
US8518234B2 (en) * 2003-09-03 2013-08-27 Ati Properties, Inc. Oxidation resistant ferritic stainless steels
SE527933C2 (en) * 2004-05-19 2006-07-11 Sandvik Intellectual Property Heat-resistant steel
US20070087250A1 (en) * 2005-10-13 2007-04-19 Lewis Daniel J Alloy for fuel cell interconnect
DE102006007598A1 (en) * 2006-02-18 2007-08-30 Forschungszentrum Jülich GmbH Creep resistant ferritic steel
WO2011034002A1 (en) * 2009-09-16 2011-03-24 日立金属株式会社 Steel for solid oxide fuel cell having excellent oxidation resistance
CN109837471A (en) * 2017-11-29 2019-06-04 宜兴市联丰化工机械有限公司 A kind of Seal head blank production technology
EP4116454A1 (en) 2020-03-02 2023-01-11 JFE Steel Corporation Ferritic stainless steel for solid oxide fuel cell

Also Published As

Publication number Publication date
JPH10280103A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
JP4335439B2 (en) Heat resistant steel
JP3534285B2 (en) Solid electrolyte fuel cell separator steel
JP4737600B2 (en) Steel for solid oxide fuel cell separator
US7531053B2 (en) Fuel cell produced using a metallic material and its method of making
JP2003173795A (en) Steel for solid oxide fuel cell separator
JP3704655B2 (en) Steel for solid oxide fuel cell separator
Geng et al. Evaluation of several alloys for solid oxide fuel cell interconnect application
JP3321888B2 (en) Metal materials for solid oxide fuel cells
US6776956B2 (en) Steel for separators of solid-oxide type fuel cells
CA2465604C (en) Ferritic stainless steel having high temperature creep resistance
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP2003187828A (en) Ferritic stainless steel for solid oxide type fuel cell member
JP2007016297A (en) Steel for solid-oxide fuel cell separator
JP2007254794A (en) Solid polymer type fuel cell and stainless steel suitable for its separator
JP2003105503A (en) Steel for solid oxide type fuel battery separator
JP4299506B2 (en) Austenitic stainless steel for equipment that exchanges heat at 500-1000 ° C
JP4385328B2 (en) Steel for solid oxide fuel cell separator
JPH04358044A (en) High corrosion resistant steel sheet for molten carbonate type fuel cell separator
JP4214921B2 (en) Fe-Cr alloy for fuel cell
JPH06293941A (en) Metallic material for solid electrolyte type fuel cell
JP2007197837A (en) Oxidation resistant steel and component for solid-oxide type fuel cell obtained by using the same
JP3238812B2 (en) Metal materials for solid oxide fuel cells
Alman et al. Low coefficient of thermal expansion (CTE) nickel base superalloys for interconnect applications in intermediate temperature solid oxide fuel cells (SOFC)
JP3245304B2 (en) Metal material
KR100774097B1 (en) Ferritic type stainless steel containing yttrium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees