JP4214921B2 - Fe-Cr alloy for fuel cell - Google Patents

Fe-Cr alloy for fuel cell Download PDF

Info

Publication number
JP4214921B2
JP4214921B2 JP2004015082A JP2004015082A JP4214921B2 JP 4214921 B2 JP4214921 B2 JP 4214921B2 JP 2004015082 A JP2004015082 A JP 2004015082A JP 2004015082 A JP2004015082 A JP 2004015082A JP 4214921 B2 JP4214921 B2 JP 4214921B2
Authority
JP
Japan
Prior art keywords
mass
less
fuel cell
alloy
interconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004015082A
Other languages
Japanese (ja)
Other versions
JP2005206884A (en
Inventor
信介 井手
伸 石川
康 加藤
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004015082A priority Critical patent/JP4214921B2/en
Publication of JP2005206884A publication Critical patent/JP2005206884A/en
Application granted granted Critical
Publication of JP4214921B2 publication Critical patent/JP4214921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池用Fe-Cr系合金に関し、特に、高温長時間での使用によっても優れた耐酸化性と電気伝導性とを兼備し、燃料電池の発電特性を低下させにくい固体酸化物型燃料電池用のインターコネクタやその周辺部材に用いられる燃料電池用Fe-Cr系合金に関するものである。   The present invention relates to an Fe-Cr alloy for a fuel cell, and in particular, a solid oxide that has excellent oxidation resistance and electrical conductivity even when used at high temperature for a long time, and hardly reduces the power generation characteristics of the fuel cell. The present invention relates to a fuel cell Fe-Cr alloy used for an interconnector for a fuel cell and its peripheral members.

燃料電池は、有害ガスの排出量が少なく、発電効率が高いために、大規模発電やコージェネレーションシステム、自動車用電源など、幅広い発電システムへの適用が期待されている。中でも、固体酸化物型燃料電池(固体電解質型燃料電池とも称する)は、700〜900℃の高温で作動するもので、電極反応に触媒を用いる必要がないこと、石炭改質ガス等の多様な燃料ガスが使用できること、高温排熱を利用するガスタービンあるいは蒸気タービン発電等との組み合わせが可能であるなどの優れた特徴を有しており、次世代のエネルギー源として注目されている。   Fuel cells are expected to be applied to a wide range of power generation systems such as large-scale power generation, cogeneration systems, and automobile power supplies because they emit less harmful gases and have high power generation efficiency. Among them, solid oxide fuel cells (also referred to as solid oxide fuel cells) operate at a high temperature of 700 to 900 ° C., and do not require the use of a catalyst for electrode reaction, It has excellent features such as the ability to use fuel gas and the combination with gas turbines utilizing high-temperature exhaust heat or steam turbine power generation, and has attracted attention as a next-generation energy source.

この固体酸化物型燃料電池は、図1にその一例を示すように、電解質1、電極2と3およびインターコネクタ4(セパレータとも称される)から構成されており、通常、電解質1にはイットリア安定化ジルコニア(YSZ)などのイオン伝導性固体電解質を用い、その両面に(La,Sr)MnO3等の陽極(空気極)2およびNi/YSZ(Niとイットリア安定化ジルコニアのサーメット)等の陰極(燃料極)3を取り付けて、電解質1を隔壁として一方に水素ガス等の燃料ガス5、他方に空気等の酸化性ガス6を供給して電気を取り出している。そして、インターコネクタ4は、電解質1、陽極2、陰極3の3層を支持し、ガス流路7を形成するとともに、電流を流す役目を担うものである。 As shown in FIG. 1, this solid oxide fuel cell is composed of an electrolyte 1, electrodes 2 and 3, and an interconnector 4 (also referred to as a separator). An ion-conducting solid electrolyte such as stabilized zirconia (YSZ) is used, and anodes (air electrode) 2 such as (La, Sr) MnO 3 and Ni / YSZ (cermet of Ni and yttria stabilized zirconia) are used on both sides. A cathode (fuel electrode) 3 is attached, and electricity is taken out by supplying a fuel gas 5 such as hydrogen gas to one side and an oxidizing gas 6 such as air to the other side using the electrolyte 1 as a partition. The interconnector 4 supports the three layers of the electrolyte 1, the anode 2, and the cathode 3, forms a gas flow path 7, and plays a role of flowing current.

上記固体酸化物型燃料電池のインターコネクタには、耐酸化性の他、電気伝導性、他部材との熱膨張整合性等が求められる。このような特性を得るためには、インターコネクタ用の材料としてCr含有合金を採用し、その表面にCr23主体の皮膜を生成させることが有効であり、従来からこの皮膜の効果を得るための成分設計が行われてきた。しかし、Cr含有合金を用いる場合には、高温におけるCr系酸化物の揮発・析出による電極の性能劣化(以降、「Cr被毒」と言う)を起こし易いという問題がある。 In addition to oxidation resistance, the interconnector of the solid oxide fuel cell is required to have electrical conductivity, thermal expansion matching with other members, and the like. In order to obtain such characteristics, it is effective to adopt a Cr-containing alloy as a material for the interconnector and to produce a film mainly composed of Cr 2 O 3 on the surface, and to obtain the effect of this film conventionally. Ingredient design has been performed. However, when a Cr-containing alloy is used, there is a problem that electrode performance deterioration (hereinafter referred to as “Cr poisoning”) easily occurs due to volatilization and precipitation of Cr-based oxides at a high temperature.

上記の問題点を解決する固体酸化物型燃料電池用金属材料としては、例えば、特許文献1には、C:0.1wt%以下、Si:0.5〜3.0wt%、Mn:3.0wt%以下、Cr:15〜30wt%、Ni:20〜60wt%、Al:2.5〜5.5wt%、残部が実質的にFeからなるオーステナイト系ステンレス鋼が開示されている。また、特許文献2には、C:0.2wt%以下、Si:0.2〜3.0wt%、Mn:0.2〜1.0wt%、Cr:15〜30wt%およびY:0.5wt%以下、REM:0.2wt%以下、Zr:1wt%以下の1種以上を含み、残部が実質的にFeからなる材料が、特許文献3には、C:0.2wt%以下、Si:3.0wt%以下、Mn:1.0wt%以下、Cr:15〜30wt%、Hf:0.5wt%以下、残部が実質的にFeからなる材料が開示されている。さらに、特許文献4には、C:0.03wt%以下、Mn:2.0wt%以下、Ni:0.6wt%以下、N:0.03wt%以下、Cr:10.0〜32.0wt%を含むとともに、Si:2.0wt%以下またはAl:6.0wt%以下の少なくとも1種以上を合計で1.5wt%以上含み、残部が実質的にFeからなるフェライト系ステンレス鋼が開示されている。
特開平06−264193号公報 特開平09−157801号公報 特開平10−280103号公報 特開2003−187828号公報
As a metal material for a solid oxide fuel cell that solves the above problems, for example, Patent Document 1 discloses that C: 0.1 wt% or less, Si: 0.5 to 3.0 wt%, Mn: 3.0 wt% or less, Cr : Austenitic stainless steel having 15 to 30 wt%, Ni: 20 to 60 wt%, Al: 2.5 to 5.5 wt%, and the balance being substantially Fe. In Patent Document 2, C: 0.2 wt% or less, Si: 0.2 to 3.0 wt%, Mn: 0.2 to 1.0 wt%, Cr: 15 to 30 wt% and Y: 0.5 wt% or less, REM: 0.2 wt% Hereinafter, Zr: 1 wt% or less containing at least one material, the balance being substantially composed of Fe is disclosed in Patent Document 3 as C: 0.2 wt% or less, Si: 3.0 wt% or less, Mn: 1.0 wt% Hereinafter, a material is disclosed in which Cr: 15 to 30 wt%, Hf: 0.5 wt% or less, and the balance substantially consisting of Fe. Further, Patent Document 4 includes C: 0.03 wt% or less, Mn: 2.0 wt% or less, Ni: 0.6 wt% or less, N: 0.03 wt% or less, Cr: 10.0 to 32.0 wt%, and Si: 2.0 There is disclosed a ferritic stainless steel containing at least one of wt% or less or Al: 6.0 wt% or less in total of 1.5 wt% or more and the balance being substantially made of Fe.
Japanese Patent Laid-Open No. 06-264193 JP 09-157801 A JP-A-10-280103 JP 2003-187828 A

しかしながら、特許文献1のオーステナイト系ステンレス鋼は、高価なNiを20〜60mass%と多量に添加する必要がある。また、AlとCrを多量に含むため、Al系酸化物を主体とした酸化皮膜を生成し、このAl系酸化物は、電気伝導性が低いことから、固体酸化物型燃料電池用インターコネクタとして用いるには不適当である。さらに、オーステナイト系ステンレス鋼は、電解質のイットリア安定化ジルコニアに比較して熱膨張係数が大きい(20℃から900℃までの熱膨張係数が、YSZ:9〜12×10-6/℃、オーステナイト系ステンレス鋼:16〜20×10-6/℃)ため、燃料電池の起動や停止の際に起こる温度変化に伴う熱膨張差によって、電解質や電極に割れが生ずる虞がある。また、特許文献2および特許文献3の材料は、Cr被毒を防止するという観点から設計された材料ではなく、実際にインターコネクタとして用いた場合には、電極性能の劣化は避けられない。さらに、特許文献4の材料は、インターコネクタとして用いた場合には、絶縁性の酸化物を形成するSiあるいはAlを多量に含むため、高温において電気抵抗が増加し、電池の性能を劣化させるという問題点がある。
上記のように、固体酸化物型燃料電池のインターコネクタ用として開発されている従来の金属材料は、必ずしも十分な特性を持つものではない。
However, the austenitic stainless steel of Patent Document 1 needs to add expensive Ni in a large amount of 20 to 60 mass%. In addition, since it contains a large amount of Al and Cr, an oxide film composed mainly of Al-based oxides is produced. Since this Al-based oxide has low electrical conductivity, it can be used as an interconnector for solid oxide fuel cells. Not suitable for use. Furthermore, the austenitic stainless steel has a larger coefficient of thermal expansion than that of the yttria-stabilized zirconia electrolyte (YSZ: 9 to 12 × 10 −6 / ° C., austenitic system has a coefficient of thermal expansion from 20 ° C. to 900 ° C. (Stainless steel: 16 to 20 × 10 −6 / ° C.) Therefore, there is a possibility that the electrolyte and the electrode may be cracked due to the difference in thermal expansion accompanying the temperature change that occurs when the fuel cell is started or stopped. Further, the materials of Patent Literature 2 and Patent Literature 3 are not materials designed from the viewpoint of preventing Cr poisoning, and when actually used as an interconnector, deterioration of electrode performance is inevitable. Furthermore, when the material of Patent Document 4 is used as an interconnector, it contains a large amount of Si or Al that forms an insulating oxide, so that the electrical resistance increases at high temperatures and the performance of the battery deteriorates. There is a problem.
As described above, conventional metal materials that have been developed for interconnectors of solid oxide fuel cells do not necessarily have sufficient characteristics.

本発明の目的は、耐酸化性や電気伝導性等の基本的な特性を確保した上でなおかつCr被毒を起こしにくい固体酸化物型燃料電池に用いて好適なFe-Cr系合金を提供することにある。   An object of the present invention is to provide an Fe—Cr alloy suitable for use in a solid oxide fuel cell that ensures basic characteristics such as oxidation resistance and electrical conductivity and is less susceptible to Cr poisoning. There is.

発明者らは、従来の金属材料が抱える上述した問題点を解決するために、耐酸化性や電気伝導性を大きく低下させずに、Cr被毒を抑制する方法について鋭意検討した。その結果、Fe-Cr系合金にMnを1.1〜2.0mass%添加した場合には、700〜900℃において鋼板の表層近傍にMn23が生成し、このMn23はCr系酸化物の揮発を抑制して電極性能の劣化を防ぐ効果を有すること、また、Mn23は電気抵抗も低く、酸化皮膜生成による電気伝導性の低下も少ないことを新たに見出し、本発明を完成するに至った。 In order to solve the above-described problems of conventional metal materials, the inventors diligently studied a method for suppressing Cr poisoning without significantly reducing oxidation resistance and electrical conductivity. As a result, when 1.1 to 2.0 mass% of Mn is added to the Fe—Cr alloy, Mn 2 O 3 is generated near the surface layer of the steel plate at 700 to 900 ° C., and this Mn 2 O 3 is a Cr oxide. Newly found that Mn 2 O 3 has the effect of preventing electrode performance deterioration by suppressing volatilization of metal, and that Mn 2 O 3 has low electrical resistance and little decrease in electrical conductivity due to oxide film formation. It came to do.

上記知見に基く本発明は、C:0.20mass%以下、Si:1.0mass%以下、Mn:1.1〜2.0mass%、Cr:10〜40mass%、Al:1.0mass%以下、Mo:0.03〜5.0mass%、Nb:0.1〜3.0mass%を含有し、かつSiおよびAlは下記の条件;
Si+Al≦1.2mass%
を満たして含有し、残部がFeおよび不可避的不純物からなることを特徴とする燃料電池用Fe-Cr系合金である。
The present invention based on the above knowledge is C: 0.20 mass% or less, Si: 1.0 mass% or less, Mn: 1.1 to 2.0 mass%, Cr: 10 to 40 mass%, Al: 1.0 mass% or less, Mo: 0.03 to 5.0 mass %, Nb: 0.1 to 3.0 mass%, and Si and Al are the following conditions;
Si + Al ≦ 1.2mass%
Is a Fe—Cr alloy for fuel cells, characterized in that the remainder is composed of Fe and inevitable impurities.

また、本発明のFe−Cr系合金は、上記成分組成に加えてさらにLaを0.005〜1.0mass%含有することが好ましい。 Further, Fe-Cr-based alloys of the present invention, in addition to the above chemical composition, it is preferable to have 0.005 to 1.0 mass% including the La.

また、本発明のFe-Cr系合金は、固体酸化物型燃料電池、なかでも、固体酸化物型燃料電池のインターコネクタに供されるものであることが好ましい。   The Fe—Cr alloy of the present invention is preferably used for a solid oxide fuel cell, particularly an interconnector for a solid oxide fuel cell.

本発明によれば、Fe-Cr系合金にMnを添加することにより、耐酸化性や電気伝導性等の特性に優れてなおかつCr被毒を起こしにくい燃料電池用金属材料を得ることができる。そのため、本発明のFe-Cr系合金を固体酸化物型燃料電池のインターコネクタに用いた場合には、高温・長時間の使用においてもセルの発電性能の劣化を抑制できるので、燃料電池の実用化、大型化に大きく寄与する。   According to the present invention, by adding Mn to an Fe—Cr alloy, it is possible to obtain a metal material for a fuel cell that is excellent in properties such as oxidation resistance and electrical conductivity and hardly causes Cr poisoning. Therefore, when the Fe-Cr alloy of the present invention is used for an interconnector of a solid oxide fuel cell, deterioration of the power generation performance of the cell can be suppressed even when used at a high temperature and for a long time. Greatly contributes to the increase in size and size.

本発明に係る燃料電池用Fe-Cr系合金の成分組成を上記範囲に制限する理由について説明する。
C:0.20mass%以下
Cは、炭化物を形成して高温強度を高める作用を有する元素である。この効果を得るためには、0.001mass%以上添加することが好ましい。しかし、C含有量が0.20mass%を超えると加工性を劣化させ、また、Crと結合することにより耐酸化性に有効なCr量が減少するため、0.20mass%以下に制限する必要がある。好ましくは0.10mass%以下である。
The reason why the component composition of the Fe-Cr alloy for fuel cells according to the present invention is limited to the above range will be described.
C: 0.20 mass% or less C is an element having an action of forming carbides and increasing high-temperature strength. In order to obtain this effect, 0.001 mass% or more is preferably added. However, if the C content exceeds 0.20 mass%, the workability deteriorates, and the amount of Cr effective for oxidation resistance is reduced by combining with Cr. Therefore, it is necessary to limit it to 0.20 mass% or less. Preferably it is 0.10 mass% or less.

Mn:1.1〜2.0mass%
Mnは、鋼板表層にMn23を生成してCr系酸化物の揮発を抑制することにより、燃料電池の発電特性の低下を防ぐ効果を有する重要な元素である。この効果を得るためには、1.1mass%以上添加する必要がある。より好ましくは1.5mass%以上である。しかし、過度に添加すると、酸化速度の増大を招き、電気伝導性を低下させるので2.0mass%以下に限定する。
Mn: 1.1-2.0mass%
Mn is an important element having an effect of preventing deterioration of power generation characteristics of the fuel cell by generating Mn 2 O 3 on the surface layer of the steel sheet and suppressing volatilization of Cr-based oxides. In order to acquire this effect, it is necessary to add 1.1 mass% or more. More preferably, it is 1.5 mass% or more. However, excessive addition causes an increase in oxidation rate and lowers electrical conductivity, so it is limited to 2.0 mass% or less.

Cr:10〜40mass%
Crは、鋼板表層にCr23皮膜を生成し、耐酸化性および電気伝導性を確保するために必要な重要元素である。このような効果を得るためには、10mass%以上の添加が必要である。一方、過度のCrの添加は、Cr系酸化物の揮発を促進し、また加工性の劣化を招くので、上限は40mass%に限定する。好ましくは10〜30mass%である。
Cr: 10-40mass%
Cr is an important element necessary for producing a Cr 2 O 3 film on the surface layer of the steel sheet and ensuring oxidation resistance and electrical conductivity. In order to acquire such an effect, addition of 10 mass% or more is required. On the other hand, excessive addition of Cr promotes volatilization of Cr-based oxides and causes deterioration of workability, so the upper limit is limited to 40 mass%. Preferably it is 10-30 mass%.

Si:1.0mass%以下、Al:1.0mass%以下、Si+Al≦1.2mass%
SiおよびAlは、絶縁性の酸化皮膜を形成して電気伝導性を低下させるので、それぞれ、1.0mass%以下に制限する。また、Siは、酸素との親和力がFe,Cr,Mn等の元素より大きくてAlより小さいために、酸化の初期において酸素分圧を下げ、絶縁性のAl23皮膜を生成し易くする。しかし、Alの量が少ない場合には、Siが多少含まれていてもAl23皮膜は生成しないため、その合計量を1.2mass%以下に制限する必要がある。好ましい合計量は1.0mass%以下である。
Si: 1.0 mass% or less, Al: 1.0 mass% or less, Si + Al ≦ 1.2 mass%
Since Si and Al form an insulating oxide film and reduce electrical conductivity, each is limited to 1.0 mass% or less. In addition, since Si has an affinity for oxygen greater than that of elements such as Fe, Cr, and Mn and smaller than that of Al, it lowers the oxygen partial pressure in the initial stage of oxidation, making it easier to produce an insulating Al 2 O 3 film. . However, when the amount of Al is small, an Al 2 O 3 film is not generated even if Si is contained to some extent, so the total amount needs to be limited to 1.2 mass% or less. A preferable total amount is 1.0 mass% or less.

Mo:0.03〜5.0mass%
Moは、高温強度を高め、耐酸化性を向上させる元素であり、この効果を得るためには0.03mass%以上添加する必要がある。しかし、添加量が5.0mass%を超えると加工性が劣化するため、5.0mass%以下とした。好ましくはMo:0.1〜3.0mass%である。
Mo: 0.03-5.0mass%
Mo is an element that increases the high-temperature strength and improves the oxidation resistance. To obtain this effect, it is necessary to add 0.03 mass% or more. However, if the added amount exceeds 5.0 mass%, the workability deteriorates, so the content was set to 5.0 mass% or less. Preferably, Mo is 0.1 to 3.0 mass%.

Nb:0.1〜3.0mass%
Nbは、Moと同様に、高温強度を高め、耐酸化性を向上させる作用を有する。この効果を得るためには0.1mass%以上添加する必要がある。しかし、添加量が3.0mass%を超えると、加工性が劣化するため3.0mass%を上限とする。好ましくはNb:0.1〜2.0mass%である。
Nb: 0.1-3.0mass%
Nb, like Mo, has the effect of increasing high temperature strength and improving oxidation resistance. In order to obtain this effect, it is necessary to add 0.1 mass% or more. However, if the addition amount exceeds 3.0 mass%, the workability deteriorates, so 3.0 mass% is the upper limit. Preferably it is Nb: 0.1-2.0mass%.

本発明のFe−Cr系合金は、上記必須成分以外に、必要に応じてLaを0.005〜1.0mass%添加することができる。
Laは、酸化皮膜の密着性を向上させ、耐酸化性を改善する効果を有する。その効果を得るためには、0.005mass%以上添加することが好ましい。しかし、過度の添加は、熱間加工性を劣化させるので、1.0mass%以下に制限する。好ましくは0.005〜0.5mass%である。
さらに、本発明のFe−Cr系合金は、Laと同様の効果を有するSc,Y,Ce,Pr,Nd,Pm,Sm,ZrおよびHfの中から選ばれる1種または2種以上を、Laを含めて合計で0.005〜1.0mass%の範囲で添加することができる。
Fe-Cr-based alloys of the present invention, in addition to the above essential components, if necessary, can be added La 0.005 to 1.0 mass%.
La has the effect of improving the adhesion of the oxide film and improving the oxidation resistance. In order to obtain the effect , 0 . It is preferable to add 005 mass% or more. However, excessive addition degrades hot workability, so 1 . Limit to 0 mass% or less. Preferably it is 0.005-0.5 mass%.
Furthermore, the Fe—Cr alloy of the present invention is composed of one or more selected from Sc, Y, Ce, Pr, Nd, Pm, Sm, Zr and Hf having the same effect as La. In addition, it can be added in a range of 0.005 to 1.0 mass% in total.

さらに、本発明のFe−Cr系合金は、上記成分以外に、Cu,Ni,V,W,Ta,Ti,MgおよびCaを、必要に応じて、Cu:0.20mass%以下、Ni:1.0mass%以下、V:1.0mass%以下、W:3.0mass%以下、Ta:2.0mass%以下、Ti:0.5mass%以下、Mg:0.05mass%以下、Ca:0.05mass%以下の範囲で添加することができる。
なお、上述した以外の成分は、Feおよび不可避的不純物である。但し、不純物であるP,S,Nは、それぞれP:0.05mass%以下、S:0.05mass%以下、N:0.5mass%以下に制限することが好ましい。
Furthermore, in addition to the above components, the Fe—Cr alloy of the present invention contains Cu, Ni, V, W, Ta, Ti, Mg and Ca, if necessary, Cu: 0.20 mass% or less, Ni: 1.0 mass %, V: 1.0 mass% or less, W: 3.0 mass% or less, Ta: 2.0 mass% or less, Ti: 0.5 mass% or less, Mg: 0.05 mass% or less, Ca: 0.05 mass% or less Can do.
Components other than those described above are Fe and inevitable impurities. However, the impurities P, S, and N are preferably limited to P: 0.05 mass% or less, S: 0.05 mass% or less, and N: 0.5 mass% or less, respectively.

次に、本発明の燃料電池用Fe-Cr系合金について説明する。
表層酸化物中のMn23
本発明のFe-Cr系合金は、固体酸化物型燃料電池の作動温度700℃〜900℃における長時間の使用によっても、Cr系酸化物の揮発を防止し、燃料電池の発電特性の低下を抑制するという優れた特徴を有する。その効果を発現するためには、燃料電池の作動環境下において、インターコネクタの表層に生成する酸化皮膜中にMn23が生成する必要がある。すなわち、固体酸化物型燃料電池の作動温度である700℃〜900℃の高温・長時間の使用環境下において、インターコネクタの表層に生成する酸化物中にMn23が生成し、このMn23によってCr系酸化物の揮発を抑制し、燃料電池の発電特性の低下を防ぐことができる。このMn23の生成の有無は、大気中で800℃×1000時間保持された試料の表面に生成した酸化物をX線回折した時、下記式;
相対強度=I(Mn23の(222)面のピーク強度)/I0(Mn23の(222)面のピーク強度)×100(%)
で定義される相対強度が1%以上か否かで判断することができる。なお、Mn23の生成量は極少量でも、最表層に存在するCr系酸化物の割合が大きく低減されるため、上記効果を得ることができる。
Next, the Fe—Cr alloy for fuel cells of the present invention will be described.
Mn 2 O 3 in the surface oxide
The Fe-Cr alloy of the present invention prevents the volatility of the Cr-based oxide and reduces the power generation characteristics of the fuel cell even when used for a long time at a solid oxide fuel cell operating temperature of 700 ° C to 900 ° C. It has an excellent feature of suppressing. In order to exhibit the effect, it is necessary to generate Mn 2 O 3 in the oxide film formed on the surface layer of the interconnector under the operating environment of the fuel cell. That is, Mn 2 O 3 is generated in the oxide generated on the surface layer of the interconnector under a high temperature and long-time use environment of 700 ° C. to 900 ° C. which is the operating temperature of the solid oxide fuel cell. 2 O 3 can suppress the volatilization of the Cr-based oxide and prevent the power generation characteristics of the fuel cell from being deteriorated. The presence or absence of the generation of Mn 2 O 3 is determined by the following formula when the oxide generated on the surface of the sample held in the atmosphere at 800 ° C. for 1000 hours is X-ray diffracted:
Relative intensity = I (Mn peak intensity of (222) plane of the 2 O 3) / I 0 (peak intensity of (222) plane of Mn 2 O 3) × 100 ( %)
It can be determined by whether or not the relative intensity defined by is 1% or more. Even if the amount of Mn 2 O 3 produced is extremely small, the above effect can be obtained because the ratio of the Cr-based oxide present in the outermost layer is greatly reduced.

電気抵抗値:50mΩ・cm2以下
本発明が目標とする燃料電池用Fe-Cr系合金の電気抵抗値(面積抵抗率)は、50mΩ・cm2以下である。ここでいう電気抵抗値(面積抵抗率)とは、図2に示すように、板厚×20mm角の冷延鋼板または熱延鋼板の試料を、厚さ1mm×20mm角のPt板で挟み、上下それぞれのPt板に電流印加用および電圧測定用のPt線を接合し、さらに0.2MPaの荷重をかけた状態で、これを大気雰囲気の800℃の炉中に1時間放置し、1.2Aの電流を流して上下のPt板間の電圧を測定し、その抵抗値に面積4cm2を掛けることによって得られる電気抵抗値のことである。この電気抵抗値が、50mΩ・cm2を超えると、電池の性能が著しく低下するため、この電気抵抗値は50mΩ・cm2以下であることが好ましい。より好ましくは45mΩ・cm2以下、さらに好ましくは40mΩ・cm2以下である。
Electrical resistance value: 50 mΩ · cm 2 or less The electrical resistance value (area resistivity) of the Fe—Cr alloy for fuel cells targeted by the present invention is 50 mΩ · cm 2 or less. As shown in FIG. 2, the electric resistance value (area resistivity) here is a cold rolled steel sheet or hot rolled steel sheet with a thickness of 20 mm square sandwiched between Pt plates with a thickness of 1 mm x 20 mm. Bonding Pt wires for current application and voltage measurement to the upper and lower Pt plates, and further applying a 0.2MPa load, this was left in a furnace at 800 ° C in an air atmosphere for 1 hour, and 1.2A It is an electrical resistance value obtained by passing a current and measuring the voltage between the upper and lower Pt plates and multiplying the resistance value by an area of 4 cm 2 . When this electrical resistance value exceeds 50 mΩ · cm 2 , the performance of the battery is remarkably deteriorated. Therefore, this electrical resistance value is preferably 50 mΩ · cm 2 or less. More preferably, it is 45 mΩ · cm 2 or less, and further preferably 40 mΩ · cm 2 or less.

電圧低下率:2.0%以下
本発明の燃料電池用Fe-Cr系合金は、固体酸化物型燃料電池のインターコネクタの素材として用いた場合には、電圧低下率が2.0%であることを目標特性としている。ここで上記電圧低下率とは、作動温度700〜900℃で電流密度0.2A/cm2の発電を行い、当初の電圧に対する1000時間発電した時の発電電圧の低下率を意味する。この電圧低下率が2.0%を超えるような場合には、燃料電池に要求される8〜10万時間という長時間の耐久性は得られないと評価できる。よって、上記電圧低下率は2.0%以下を目標とする。好ましくは1.8%以下である。
Voltage drop rate: 2.0% or less The target characteristic of the Fe-Cr alloy for fuel cells of the present invention is that the voltage drop rate is 2.0% when used as a material for an interconnector of a solid oxide fuel cell. It is said. Here, the voltage reduction rate means the rate of reduction of the generated voltage when power is generated at an operating temperature of 700 to 900 ° C. with a current density of 0.2 A / cm 2 and generated for 1000 hours with respect to the initial voltage. When the voltage drop rate exceeds 2.0%, it can be evaluated that the long-term durability of 80 to 100,000 hours required for the fuel cell cannot be obtained. Therefore, the target voltage drop rate is 2.0% or less. Preferably it is 1.8% or less.

次に、本発明のFe-Cr系合金の製造方法について、簡単に説明する。
本発明に係るFe-Cr系合金の溶製方法は、通常公知の方法を用いることができるので、特に限定する必要はないが、例えば、製鋼工程は、転炉、電気炉等で上記した適正組成範囲に調整した溶鋼を溶製し、強攪拌・真空酸素脱炭処理(SS−VOD)により2次精錬を行うのが好適である。鋳造方法は、生産性、品質の面からは連続鋳造法で行うのが好ましい。鋳造により得られた鋼片(スラブ)は、必要により再加熱し、熱間圧延し、700〜1200℃で熱延板焼鈍を施したのち、酸洗あるいはショットブラスト等により脱スケールし、熱延鋼板とする。
Next, a method for producing the Fe—Cr alloy of the present invention will be briefly described.
The melting method of the Fe—Cr alloy according to the present invention can be a generally known method, and therefore, it is not necessary to specifically limit it. For example, the steelmaking process is performed as described above using a converter, an electric furnace, or the like. It is preferable to melt molten steel adjusted to the composition range and perform secondary refining by strong stirring and vacuum oxygen decarburization treatment (SS-VOD). The casting method is preferably a continuous casting method in terms of productivity and quality. The steel slab (slab) obtained by casting is reheated as necessary, hot-rolled, hot-rolled sheet annealed at 700-1200 ° C, descaled by pickling or shot blasting, etc. A steel plate is used.

上記の熱延鋼板は、切削加工によりガス流路を形成してインターコネクタを作製する場合の素材として好適であり、その場合の板厚としては0.6〜8.0mmであることが好ましい。一方、プレス加工によりインターコネクタを作製する場合には、上記熱延鋼板をさらに冷間圧延し、あるいはさらに700〜1200℃の温度で焼鈍し、酸洗を施した冷延鋼板を素材とすることが好ましい。この場合の板厚としては0.03〜2.0mmであることが好ましい。なお、熱延鋼板をプレス用素材として用いても、また、冷延鋼板を切削加工用素材として用いてもよいことは勿論である。また、ガス流路を形成するための溝加工は、上記切削加工やプレス加工以外方法、例えば、コルゲート加工(corrugate)、エッチング加工、コイニング加工等の方法を用いても構わない。   The hot-rolled steel sheet is suitable as a material for forming an interconnector by forming a gas flow path by cutting, and the thickness in that case is preferably 0.6 to 8.0 mm. On the other hand, when producing an interconnector by press working, the hot-rolled steel sheet is further cold-rolled, or further annealed at a temperature of 700 to 1200 ° C., and pickled and cold-rolled steel sheet is used as a material. Is preferred. In this case, the plate thickness is preferably 0.03 to 2.0 mm. Of course, a hot-rolled steel sheet may be used as a pressing material, and a cold-rolled steel sheet may be used as a cutting material. Further, the groove processing for forming the gas flow path may be performed by a method other than the above-described cutting processing or press processing, for example, a corrugate processing, an etching processing, a coining processing, or the like.

また、上記熱延鋼板あるいは冷延鋼板は、固体酸化物型燃料電池のインターコネクタ以外の燃料電池構成部材(例えば、熱交換器や改質器等)にも用いることができる。なお、これらの部材に成形する際に溶接を行う場合には、その溶接方法は、特に限定されるものではなく、例えばMIG(Metal Inert Gas)、MAG(Metal Active Gas)、TIG(Tungsten Inert Gas)等の通常のアーク溶接方法や、スポット溶接、シーム溶接等の抵抗溶接方法および電鍵溶接方法などの高周波抵抗溶接、高周波誘導溶接、ろう付け等を適用することができる。   The hot-rolled steel plate or cold-rolled steel plate can also be used for fuel cell constituent members (for example, heat exchangers, reformers, etc.) other than the solid oxide fuel cell interconnector. In addition, when welding is performed when forming these members, the welding method is not particularly limited. For example, MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas) ), High-frequency resistance welding, high-frequency induction welding, brazing, and the like, such as resistance welding methods such as spot welding and seam welding, and electric key welding methods, can be applied.

表1に示す成分組成を有する種々のFe-Cr合金を、転炉−2次精錬の工程で溶製し、連続鋳造により200mm厚のスラブとした。これらのスラブを1250℃に加熱したのち、熱間圧延して板厚5mmの熱延鋼板とし、800〜1100℃の熱延板焼鈍と酸洗処理を施した。次いで、冷間圧延により板厚1mmの冷延鋼板とし、750〜1100℃の焼鈍を行い、酸洗処理を施した。この冷延焼鈍板からサンプルを切り出し、下記の試験に供した。
<酸化試験>
冷延焼鈍板から、1mm×30mm×30mmのサンプルを切り出し、大気雰囲気下で、800℃に加熱された炉中に1000時間加熱保持する酸化試験を行い、鋼板表面に生成した酸化物をX線回折し、生成酸化物を同定した。
<電気抵抗値の測定>
電気抵抗値は、図2のように厚さ1mm×20mm角のPt板を用いて酸化性試験後の試料(20mm×20mm×板厚1mm)をはさみ、上下それぞれのPt板に電流印加用、電圧測定用のPt線を接合し、さらに0.2MPaの荷重をかけた状態で800℃の炉に1時間放置し、1.2Aの電流を流した場合の電圧を測定し、得られた抵抗値に試料の面積4cm2を掛けることによって電気抵抗(面積抵抗率)を求めた。各サンプルについてn数3ずつ測定し、それらの平均値を電気抵抗値とした。
Various Fe—Cr alloys having the composition shown in Table 1 were melted in the converter-secondary refining process, and slabs having a thickness of 200 mm were formed by continuous casting. After heating these slabs to 1250 ° C., they were hot-rolled to obtain hot-rolled steel sheets having a thickness of 5 mm, and subjected to hot-rolled sheet annealing at 800 to 1100 ° C. and pickling treatment. Next, a cold-rolled steel sheet having a thickness of 1 mm was formed by cold rolling, annealing was performed at 750 to 1100 ° C., and pickling was performed. A sample was cut out from the cold-rolled annealed plate and subjected to the following test.
<Oxidation test>
A 1mm x 30mm x 30mm sample was cut out from the cold-rolled annealed plate, and an oxidation test was performed by heating and holding in a furnace heated to 800 ° C in an air atmosphere for 1000 hours. Diffracted to identify the product oxide.
<Measurement of electrical resistance value>
As shown in Fig. 2, the electrical resistance value is obtained by sandwiching a sample after oxidation test (20mm x 20mm x 1mm thickness) using a 1mm x 20mm square Pt plate, and applying current to the upper and lower Pt plates. Join a Pt wire for voltage measurement, leave it in a furnace at 800 ° C for 1 hour under a load of 0.2 MPa, measure the voltage when a current of 1.2 A is passed, and obtain the resistance value. The electrical resistance (area resistivity) was determined by multiplying the area of the sample by 4 cm 2 . For each sample, n number of 3 was measured and the average value thereof was defined as the electric resistance value.

Figure 0004214921
Figure 0004214921

また、上記のようにして得た冷延焼鈍板をインターコネクタに加工し、発電特性の評価を以下の要領で行った。
イットリア安定化ジルコニア(YSZ)を焼結させた厚さ0.2mm×105mm角の電解質板に、一方の面にはNiO粉末とYSZ粉末をNiOとYSZが質量比で4:6になるように混合した陰極(燃料極)材料を、もう一方の面にはLa0.8Sr0.2MnO3粉末とYSZ粉末を質重量比で8:2になるように混合した陽極(空気極)材料を、それぞれ厚さ50μmになるようにスクリーン印刷して1400℃で焼成し、単セルを作製した。この単セルの両側に、厚さ1mm×105mm角に切り出した冷延焼鈍板に、図3のように、深さ0.5mmのガス流路用の溝を5mm幅、5mm間隔で10本切削加工したインターコネクタを配して固体酸化物型燃料電池を作製した。このようにして得た燃料電池の燃料極側には、燃料ガスとして超高純度水素(純度99.9999%)を、空気極側には、酸化性ガスとして露点30℃の空気を流し、温度750℃で電流密度0.2A/cm2の発電を行い、1000時間後の電圧低下率を測定した。上記測定を、各Fe-Cr系合金についてn数3ずつ行い、それらの平均値を求めて長時間の発電特性を評価した。
Moreover, the cold-rolled annealing board obtained as mentioned above was processed into the interconnector, and the power generation characteristics were evaluated in the following manner.
A 0.2 mm x 105 mm thick electrolyte plate sintered with yttria-stabilized zirconia (YSZ) is mixed with NiO powder and YSZ powder on one side so that the mass ratio of NiO and YSZ is 4: 6. The cathode (fuel electrode) material was mixed, and the anode (air electrode) material mixed on the other side with a weight ratio of 8: 2 of La 0.8 Sr 0.2 MnO 3 powder and YSZ powder. A single cell was produced by screen printing to 50 μm and firing at 1400 ° C. On the both sides of this single cell, a cold-rolled annealed plate cut out to a thickness of 1 mm × 105 mm square, and as shown in Fig. 3, cut a gas channel groove with a depth of 0.5 mm at 5 mm width and 5 mm intervals. A solid oxide fuel cell was manufactured by arranging the interconnector. Ultra high purity hydrogen (purity 99.9999%) as a fuel gas was flowed to the fuel electrode side of the fuel cell thus obtained, and air with a dew point of 30 ° C. was flowed to the air electrode side as an oxidizing gas, and the temperature was 750 ° C. Then, power generation at a current density of 0.2 A / cm 2 was performed, and the voltage drop rate after 1000 hours was measured. The above measurement was carried out for each Fe—Cr alloy at an n number of 3, and the average value thereof was determined to evaluate the long-time power generation characteristics.

上記測定の結果、まとめて表2に示した。
インターコネクタ用Fe-Cr系合金におけるSi,Mn,Cr,Alが本発明の組成範囲にあるNo.1〜9、No.20〜22の材料はいずれも、酸化試験後の酸化皮膜中にMn23の生成が確認され、また、電圧低下率も1.5%以下と低く、良好な発電特性を示している。この結果は、適度なMnの添加により、酸化皮膜中にMn23が生成してCr系酸化物の揮発を抑制した結果であると考えられる。
The results of the above measurements are summarized in Table 2.
The materials No. 1 to 9 and No. 20 to 22 in which Si, Mn, Cr, and Al in the Fe-Cr alloy for interconnectors are in the composition range of the present invention are all included in the oxide film after the oxidation test. The formation of 2 O 3 was confirmed, and the voltage drop rate was as low as 1.5% or less, indicating good power generation characteristics. This result is considered to be the result of suppressing the volatilization of Cr-based oxides by the formation of Mn 2 O 3 in the oxide film by the appropriate addition of Mn.

これに対して、Si,Mn,Cr,Alが本発明の成分範囲にないNo.10〜19の材料はいずれも、電圧低下率が1.5%を超えており、燃料電池に要求される耐久性を達成できていない。例えば、No.17〜19は、従来材(特開平9-157801号の表2のNo.5、特開平10-280103号の表1のNo.3および特開2003-187828号公報の表1のNo.1)について、同様な測定を行った例を示したものであるが、No.17および18ではMn含有量が少ないためにMn23が生成せず、Cr系酸化物の揮発を抑制できずに電圧低下率が大きくなっている。また、No.19は、Mn含有量が少ない上に、Siを多量に含むためにX線回折では同定できない絶縁性の酸化物(SiO2は完全な結晶体を形成しない)が形成されて電気抵抗が増加した結果、発電性能が大きく低下している。 In contrast, the materials No. 10 to 19 in which Si, Mn, Cr, and Al are not included in the component range of the present invention have a voltage drop rate exceeding 1.5%, and are required for the fuel cell. Has not been achieved. For example, Nos. 17 to 19 are the conventional materials (No. 5 in Table 2 of JP-A-9-15801, No. 3 in Table 1 of JP-A-10-280103, and Table 1 in JP-A-2003-187828). No. 1) of No. 1) shows the same measurement, but No. 17 and 18 do not produce Mn 2 O 3 due to the low Mn content and volatilize Cr-based oxides. The voltage drop rate is increased without being suppressed. In No. 19, an Mn content is small and an insulating oxide (SiO 2 does not form a complete crystal) that cannot be identified by X-ray diffraction due to a large amount of Si is formed. As a result of the increase in resistance, the power generation performance is greatly reduced.

また、No.10やNo.15、16の材料は、Si,Al,Si+Alのいずれかが本発明の組成範囲よりも多いために、電気伝導性が乏しく、発電性能が大きく低下している。また、No.11のようにMn量が不足すると、Mn23が生成せず、Cr系酸化物の揮発による電極性能の低下を防げない。一方、No.12のようにMnを過剰に添加すると、酸化速度が増大し、酸化皮膜の成長による電気抵抗の増加が避けられない。また、No.13の材料は、Cr量が不足しているために耐酸化性に乏しく、酸化試験では異常酸化してFe34が生成した。逆に、No.14のようにCrを過剰に含有すると、Cr系酸化物の生成量が増加し、Mn23を生成させてもCr系酸化物の揮発を十分に抑制できずに発電性能が低下している。また、No.23,24の材料は、MoやNbが本発明の成分範囲より少ないために、耐酸化性が不足し、酸化皮膜の成長による電気伝導性の低下を防げないため、発電性能が低下している。 In addition, since the materials No. 10, No. 15 and 16 have any of Si, Al, and Si + Al in the composition range of the present invention, the electrical conductivity is poor and the power generation performance is greatly reduced. Further, when the amount of Mn is insufficient as in No. 11, Mn 2 O 3 is not generated, and deterioration of electrode performance due to volatilization of Cr-based oxides cannot be prevented. On the other hand, when Mn is added excessively as in No. 12, the oxidation rate increases and an increase in electrical resistance due to the growth of the oxide film is inevitable. In addition, the No. 13 material had poor oxidation resistance due to the lack of Cr content, and abnormal oxidation occurred in the oxidation test to produce Fe 3 O 4 . On the other hand, when Cr is excessively contained as in No. 14, the amount of Cr-based oxide generated increases, and even when Mn 2 O 3 is generated, volatilization of the Cr-based oxide cannot be sufficiently suppressed and power generation is performed. The performance is degraded. In addition, since the materials No. 23 and 24 have less Mo and Nb than the component ranges of the present invention, the oxidation resistance is insufficient, and the decrease in electrical conductivity due to the growth of the oxide film cannot be prevented. It is falling.

Figure 0004214921
Figure 0004214921

本発明の金属材料は、上述した固体酸化物型燃料電池用のインターコネクタやその周辺部材である熱交換器や改質器等に用いることができる他、その他の燃料電池や自動車用材料、ならびにCr系酸化物の揮発による材料の劣化が問題となるボイラー、ガスタービン等の材料にも好適に用いることができる。   The metal material of the present invention can be used for the above-described interconnector for solid oxide fuel cells and heat exchangers and reformers that are peripheral members thereof, as well as other fuel cells and automotive materials, and It can also be suitably used for materials such as boilers and gas turbines in which deterioration of materials due to volatilization of Cr-based oxides is a problem.

固体酸化物型燃料電池の構造を説明するための模式図である。It is a schematic diagram for demonstrating the structure of a solid oxide fuel cell. インターコネクタの電気抵抗値を測定する装置を模式的に示す図である。It is a figure which shows typically the apparatus which measures the electrical resistance value of an interconnector. 固体酸化物型燃料電池の発電特性を測定する装置を模式的に示す図である。It is a figure which shows typically the apparatus which measures the electric power generation characteristic of a solid oxide fuel cell.

符号の説明Explanation of symbols

1:電解質
2:電極(陽極、空気極)
3:電極(陰極、燃料極)
4:インターコネクタ(セパレータ)
5:燃料ガス(水素ガス)
6:酸化性ガス(空気)
7:ガス流路(溝)
8:電子(電気)
1: Electrolyte 2: Electrode (Anode, Air electrode)
3: Electrode (cathode, fuel electrode)
4: Interconnector (separator)
5: Fuel gas (hydrogen gas)
6: Oxidizing gas (air)
7: Gas flow path (groove)
8: Electronics (electricity)

Claims (4)

C:0.20mass%以下、
Si:1.0mass%以下、
Mn:1.1〜2.0mass%、
Cr:10〜40mass%、
Al:1.0mass%以下、
Mo:0.03〜5.0mass%、
Nb:0.1〜3.0mass%を含有し、かつSiおよびAlは下記の条件;
Si+Al≦1.2mass%
を満たして含有し、
残部がFeおよび不可避的不純物からなることを特徴とする燃料電池用Fe−Cr系合金。
C: 0.20 mass% or less,
Si: 1.0 mass% or less,
Mn: 1.1-2.0 mass%,
Cr: 10 to 40 mass%,
Al: 1.0 mass% or less,
Mo: 0.03-5.0 mass%,
Nb: 0.1 to 3.0 mass%, and Si and Al are the following conditions;
Si + Al ≦ 1.2 mass%
Satisfying and containing
A Fe-Cr alloy for a fuel cell, wherein the balance is Fe and inevitable impurities.
上記成分組成に加えてさらにLaを0.005〜1.0mass%含有することを特徴とする請求項1に記載の燃料電池用Fe−Cr系合金。 In addition to the above chemical composition, La and 0.005 to 1.0 mass% for fuel cell Fe-Cr-based alloy according to claim 1, characterized in that it has free. 上記Fe−Cr系合金は、固体酸化物型燃料電池に供されるものであることを特徴とする請求項1または2に記載の燃料電池用Fe−Cr系合金。 The Fe-Cr alloy for a fuel cell according to claim 1 or 2, wherein the Fe-Cr alloy is used for a solid oxide fuel cell. 上記Fe−Cr系合金は、固体酸化物型燃料電池のインタ−コネクタに供されるものであることを特徴とする請求項1または2に記載の燃料電池用Fe−Cr系合金。 3. The Fe—Cr alloy for a fuel cell according to claim 1, wherein the Fe—Cr alloy is used for an interconnector of a solid oxide fuel cell.
JP2004015082A 2004-01-23 2004-01-23 Fe-Cr alloy for fuel cell Expired - Lifetime JP4214921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015082A JP4214921B2 (en) 2004-01-23 2004-01-23 Fe-Cr alloy for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015082A JP4214921B2 (en) 2004-01-23 2004-01-23 Fe-Cr alloy for fuel cell

Publications (2)

Publication Number Publication Date
JP2005206884A JP2005206884A (en) 2005-08-04
JP4214921B2 true JP4214921B2 (en) 2009-01-28

Family

ID=34900658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015082A Expired - Lifetime JP4214921B2 (en) 2004-01-23 2004-01-23 Fe-Cr alloy for fuel cell

Country Status (1)

Country Link
JP (1) JP4214921B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742876B2 (en) * 2006-01-18 2011-08-10 Jfeスチール株式会社 Heat resistant material with excellent oxidation resistance and brazing
WO2015064739A1 (en) * 2013-11-01 2015-05-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel for use in fuel reformer and method of manufacturing ferritic stainless steel
KR101659185B1 (en) * 2014-12-26 2016-09-23 주식회사 포스코 Ferritic stainless steel
JP7151892B2 (en) 2020-03-02 2022-10-12 Jfeスチール株式会社 Ferritic stainless steel for solid oxide fuel cells

Also Published As

Publication number Publication date
JP2005206884A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
US7531053B2 (en) Fuel cell produced using a metallic material and its method of making
JP4310723B2 (en) Steel for solid oxide fuel cell separator
JP2003223904A (en) Separator for fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
EP1298228B2 (en) Steel for separators of solid-oxide type fuel cells
JP3097690B1 (en) Polymer electrolyte fuel cell
JPH09157801A (en) Steel for separator of solid electrolytic fuel cell
JP3097689B1 (en) Polymer electrolyte fuel cell
JPH06264193A (en) Metallic material for solid electrolyte type fuel cell
JP3269479B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator
JP3704655B2 (en) Steel for solid oxide fuel cell separator
JP2003187828A (en) Ferritic stainless steel for solid oxide type fuel cell member
JP4214921B2 (en) Fe-Cr alloy for fuel cell
JP4967831B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP2007016297A (en) Steel for solid-oxide fuel cell separator
JP4259225B2 (en) Metal material for fuel cell and solid oxide fuel cell
JP2005264298A (en) Metallic material for fuel cell and solid oxide type fuel cell
JPH06293941A (en) Metallic material for solid electrolyte type fuel cell
JP2005220416A (en) Metallic material for fuel cell, and solid oxide type fuel cell
JP3433435B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
JP2000265248A (en) Ferritic stainless steel for solid high polymer type fuel battery separator
JP2005264299A (en) Metallic material for fuel cell and solid oxide type fuel cell
WO2021177063A1 (en) Ferritic stainless steel for solid oxide fuel cell
JP4385328B2 (en) Steel for solid oxide fuel cell separator
JP3008798B2 (en) Ferritic stainless steel for molten carbonate fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4214921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term