JP4385328B2 - Steel for solid oxide fuel cell separator - Google Patents

Steel for solid oxide fuel cell separator Download PDF

Info

Publication number
JP4385328B2
JP4385328B2 JP2004241223A JP2004241223A JP4385328B2 JP 4385328 B2 JP4385328 B2 JP 4385328B2 JP 2004241223 A JP2004241223 A JP 2004241223A JP 2004241223 A JP2004241223 A JP 2004241223A JP 4385328 B2 JP4385328 B2 JP 4385328B2
Authority
JP
Japan
Prior art keywords
less
steel
fuel cell
oxidation resistance
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004241223A
Other languages
Japanese (ja)
Other versions
JP2006057153A (en
Inventor
昭宏 都地
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004241223A priority Critical patent/JP4385328B2/en
Publication of JP2006057153A publication Critical patent/JP2006057153A/en
Application granted granted Critical
Publication of JP4385328B2 publication Critical patent/JP4385328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は固体酸化物型燃料電池のセパレータに用いられる固体酸化物型燃料電池セパレータ用鋼に関する。   The present invention relates to a steel for a solid oxide fuel cell separator used for a separator of a solid oxide fuel cell.

燃料電池は、その発電効率が高いこと、SOx、NOx、COの発生量が少ないこと、負荷の変動に対する応答性が良いこと、コンパクトであること等の優れた特徴を有するため、火力発電の代替としての大規模集中型、都市近郊分散配置型、及び自家発電用等の巾広い発電システムへの適用が期待されている。
燃料電池の種類には用いる電解質により、りん酸型、溶融炭酸塩型、固体酸化物型、固体高分子型に分類されるが、なかでも固体酸化物型燃料電池は電解質として安定化ジルコニア等のセラミックスを用いており、従来、1000℃付近のかなり高温で運転されるものであった。
Fuel cells have excellent characteristics such as high power generation efficiency, low generation amount of SOx, NOx, CO 2 , good responsiveness to load fluctuations, and compactness. It is expected to be applied to wide-scale power generation systems such as large-scale centralized alternatives, distributed suburban areas, and private power generation.
Depending on the electrolyte used, fuel cell types are classified into phosphoric acid type, molten carbonate type, solid oxide type, and solid polymer type. Among them, solid oxide type fuel cells include electrolytes such as stabilized zirconia. It uses ceramics and has been conventionally operated at a fairly high temperature around 1000 ° C.

上述の固体酸化物型燃料電池は、高温で運転されるために電極反応に触媒を用いる必要がないこと、高温による化石燃料の内部改質が可能で石炭ガス等の多様な燃料を用いることができること、高温排熱を利用しガスタービン或いは蒸気タービン等と組み合わせ、いわゆるコンバインドサイクル発電とすることにより高効率の発電が可能となること、構成物が全て固体であるためコンパクトであること等の優れた特徴を有し、次世代の電力供給源として非常に有望視されている。   The above-mentioned solid oxide fuel cell is operated at a high temperature, so that it is not necessary to use a catalyst for the electrode reaction, fossil fuel can be internally reformed at a high temperature, and various fuels such as coal gas are used. It can be used, combined with gas turbines or steam turbines using high-temperature exhaust heat, and so-called combined cycle power generation enables high-efficiency power generation, and it is compact because all components are solid. Therefore, it is very promising as a next-generation power supply source.

しかしながら、固体酸化物型燃料電池の実用化のためには、まだ多くの検討課題が残されており、特に高出力密度が可能な平板型燃料電池の場合、重要な構成要素としてセパレータが挙げられる。
このセパレータは電解質、燃料極、空気極の三層を支持し、ガス流路を形成するとともに電流を流す役目を有する。従ってセパレータには、高温での電気伝導性、耐酸化性、更に電解質との熱膨張差が小さいこと等の特性が要求されることから、このような要求特性を鑑み、従来は導電性セラミックスが多く用いられてきた。
しかし、セラミックスは加工性が悪くまた高価であることから、燃料電池の大型化、実用化の面から問題を残している。
However, many problems remain to be solved for the practical application of solid oxide fuel cells. In particular, in the case of a flat plate fuel cell capable of high power density, a separator is an important component. .
This separator supports three layers of an electrolyte, a fuel electrode, and an air electrode, and has a function of forming a gas flow path and flowing current. Therefore, since separators are required to have properties such as electrical conductivity at high temperatures, oxidation resistance, and a small difference in thermal expansion from the electrolyte, in view of these required properties, conductive ceramics have conventionally been used. Many have been used.
However, since ceramics have poor processability and are expensive, there remains a problem in terms of enlargement and practical use of fuel cells.

近年、固体酸化物型燃料電池の改良が著しく進み、運転温度が従来の1000℃付近から700〜950℃程度にまで低下させることが可能となってきたため、安価で信頼性のある金属材料によるセパレータ材開発が要求されている。
そこで本発明者らは、700〜950℃程度での特性を考慮したフェライト系金属材料の固体酸化物型燃料電池セパレータ用鋼として特開2003−173795号(特許文献1参照)に開示される合金を開発した。
この特開2003−173795号で示した合金は、固体酸化物型燃料電池のセパレータに用いることにより、700〜950℃付近において良好な電気伝導性を有する酸化被膜を形成すると共に、長時間の使用においても良好な耐酸化性、特に耐剥離性を有し、かつ電解質との熱膨張差が小さく、燃料電池の低コスト化及び高性能化を図ることができることから、比較的低温の700〜950℃程度で作動する固体酸化物型燃料電池の実用化、高効率化、大型化に大きく寄与できるという効果を奏するものである。
In recent years, solid oxide fuel cells have been remarkably improved and the operating temperature can be lowered from around 1000 ° C. to about 700 to 950 ° C. Therefore, a separator made of an inexpensive and reliable metal material Material development is required.
Therefore, the present inventors have disclosed an alloy disclosed in Japanese Patent Application Laid-Open No. 2003-173895 (see Patent Document 1) as a solid oxide fuel cell separator steel of a ferritic metal material considering characteristics at about 700 to 950 ° C. Developed.
The alloy shown in Japanese Patent Application Laid-Open No. 2003-173895 forms an oxide film having good electrical conductivity in the vicinity of 700 to 950 ° C. when used for a separator of a solid oxide fuel cell, and is used for a long time. In addition, since it has good oxidation resistance, in particular, peeling resistance, has a small difference in thermal expansion from the electrolyte, and can reduce the cost and performance of the fuel cell, it has a relatively low temperature of 700 to 950. This has the effect of greatly contributing to the practical use, high efficiency, and large size of the solid oxide fuel cell that operates at about ° C.

特開2003−173795号公報JP 2003-173895 A

固体酸化物型燃料電池を実用化するためには、およそ8〜10万時間以上の装置寿命が必要とされており、セパレータ用合金にも使用温度700〜950℃における長時間の耐酸化性が求められている。
しかしながら、特開2003−173795号に開示された合金を使用温度の範囲内で長時間の耐酸化性を調査した結果、上限温度(950℃)での高温長時間の耐酸化性には改良の余地が残されていることが分かった。
本発明の目的は、約700〜950℃において良好な電気伝導性を有する酸化被膜を形成するとともに、特に高温長時間の使用においても良好な耐酸化性を有する固体酸化物型燃料電池セパレータ用鋼を提供することである。
In order to put a solid oxide fuel cell into practical use, a device life of approximately 80 to 100,000 hours or more is required, and the separator alloy also has long-term oxidation resistance at a use temperature of 700 to 950 ° C. It has been demanded.
However, as a result of investigating the long-term oxidation resistance of the alloy disclosed in Japanese Patent Application Laid-Open No. 2003-173895 within the range of operating temperature, the high-temperature long-term oxidation resistance at the upper limit temperature (950 ° C.) was improved. It turns out that there is room.
An object of the present invention is to form a solid oxide fuel cell separator steel that forms an oxide film having good electrical conductivity at about 700 to 950 ° C. and has good oxidation resistance even when used at a high temperature for a long time. Is to provide.

本発明者らは特開2003−173795号に開示される合金をベースに、特開2003−173795号に示した合金が有する特性を維持したまま、使用温度の上限温度(950℃)で長時間の耐酸化性をより一層向上させるべく添加元素、含有量の種々検討を行なった結果、La、ZrとともにVを必須として積極的に添加することにより、安定して良好な耐酸化性が確保できることを新たに知見した。しかも、Vの必須添加によって局所的な酸化の加速を抑制できることも見出し、本発明に到達した。
即ち本発明は、質量%にて、C:0.2%以下、Si:1.0%以下、Mn:1.0%以下、Cr:15〜30%、Al:1%以下、Ni:2%以下、La:0.005〜0.2%、Zr:1%以下、V:0.01〜1.5%、残部はFe及び不可避的不純物でなり、不可避的不純物として、S:0.015%以下、O:0.010%以下、N:0.050%以下、B:0.0050%以下に制限し、かつ(1)式を満足する固体酸化物型燃料電池セパレータ用鋼である。
(O+2S)/(0.035Zr+0.16La)≦2.0…(1)式
The inventors of the present invention based on the alloy disclosed in Japanese Patent Application Laid-Open No. 2003-173795 for a long time at the upper limit temperature of use temperature (950 ° C.) while maintaining the characteristics of the alloy shown in Japanese Patent Application Laid-Open No. 2003-17395. As a result of various investigations of additive elements and contents to further improve the oxidation resistance of the steel, it is possible to ensure stable and good oxidation resistance by actively adding V together with La and Zr as essential. Newly discovered. In addition, the inventors have found that the essential addition of V can suppress local acceleration, and have reached the present invention.
That is, the present invention, in mass%, C: 0.2% or less, Si: 1.0% or less, Mn: 1.0% or less, Cr: 15-30%, Al: 1% or less, Ni: 2 % Or less, La: 0.005 to 0.2%, Zr: 1% or less, V: 0.01 to 1.5%, the balance is Fe and unavoidable impurities . It is a steel for a solid oxide fuel cell separator that is limited to 015% or less, O: 0.010% or less, N: 0.050% or less, B: 0.0050% or less, and satisfies the formula (1). .
(O + 2S) / (0.035Zr + 0.16La) ≦ 2.0 (1) formula

本発明の固体酸化物型燃料電池のセパレータ鋼は、特開2003−173795号に示した合金の改良合金であり、特開2003−173795号に示した合金が有する700〜950℃付近において良好な電気伝導性を有する酸化被膜を形成するとともに、電解質との熱膨張差が小さいという特性はそのまま維持し、特開2003−173795号に示した合金と比較し、特に長時間の使用においても良好な耐酸化性、耐剥離性を向上できたことから、燃料電池の低コスト化および高性能化を図ることができ、固体酸化物型燃料電池の実用化、高効率化、大型化に大きく寄与できる。   The separator steel of the solid oxide fuel cell of the present invention is an improved alloy of the alloy shown in Japanese Patent Application Laid-Open No. 2003-173895, and is good at around 700 to 950 ° C. that the alloy shown in Japanese Patent Application Laid-Open No. 2003-173795 has. In addition to forming an oxide film having electrical conductivity, the characteristic that the difference in thermal expansion from the electrolyte is small is maintained as it is, and it is good even when used for a long time as compared with the alloy shown in Japanese Patent Application Laid-Open No. 2003-173895. Since the oxidation resistance and peel resistance can be improved, the cost and performance of the fuel cell can be reduced, and it can greatly contribute to the practical use, high efficiency, and large size of the solid oxide fuel cell. .

本発明の固体酸化物型燃料電池セパレータ用鋼において、以下の範囲で各化学組成を規定した理由は以下の通りである。なお、特に記載のない限り質量%として記す。
V:0.01〜1.5%
Vは本発明にとって最も重要な元素の一つである。このVは、本発明者等の提案による特開2003−173795号では選択元素の一つとしたもので、その効果は、炭化物形成による加工性向上、強度向上を目的としているが、一方では耐酸化性を劣化させる元素と考えていた。
今回、長時間の使用においても良好な耐酸化性を更に向上させる効果を持った添加元素を種々検討した結果、Vを特定量必須添加することによって、従来予期しなかった安定して良好な耐酸化性を確保できるという異質な効果があることを見出した。また、その効果は、La、Zrと複合添加された時に最大となることを知見した。
そして、長時間の使用においても良好な耐酸化性を更に向上させる効果を最大限に発揮できる範囲を詳細に実験した結果、0.01〜1.5%の範囲であれば、前記の効果を発揮できるだけでなく、局所的な酸化の加速を抑制できる元素であることを見出した。
更にVは本発明鋼が酸化される時に形成される酸化膜の直下の金属中に濃化することによって、電気抵抗を低下させることなく耐酸化性を向上させるのに非常に有効な元素である。
以上説明する効果を得るためには最低0.01%以上の添加を必要とする。しかし、1.5%を超えて添加してもより一層の向上効果はなく、一次炭化物を多く形成して加工性を劣化させる。従って、Vは0.01〜1.5%の範囲に限定する。望ましくは0.03〜1.0%である。
In the steel for solid oxide fuel cell separator of the present invention, the reason why each chemical composition is specified in the following range is as follows. Unless otherwise specified, the mass% is indicated.
V: 0.01 to 1.5%
V is one of the most important elements for the present invention. This V is one of the selected elements in Japanese Patent Laid-Open No. 2003-173895 proposed by the present inventors, and its effect is aimed at improving workability and strength by forming carbides. It was thought to be an element that deteriorates properties.
As a result of various investigations of additive elements that have the effect of further improving the good oxidation resistance even after long-term use, the addition of a specific amount of V makes it possible to achieve stable and good acid resistance, which was previously unexpected. It has been found that there is a heterogeneous effect that can be secured. It was also found that the effect is maximized when combined with La and Zr.
And, as a result of conducting a detailed experiment on the range that can maximize the effect of further improving good oxidation resistance even in long-term use, if the range is 0.01 to 1.5%, the above effect is obtained. It has been found that the element can not only exert but also suppress local acceleration of oxidation.
Furthermore, V is an element that is very effective for improving the oxidation resistance without lowering the electric resistance by concentrating in the metal immediately below the oxide film formed when the steel of the present invention is oxidized. .
In order to obtain the effects described above, addition of at least 0.01% is required. However, even if added over 1.5%, there is no further improvement effect, and a large amount of primary carbide is formed and the workability is deteriorated. Therefore, V is limited to a range of 0.01 to 1.5%. Desirably, it is 0.03 to 1.0%.

C:0.2%以下
Cは、炭化物を形成して高温強度を増大させる作用を有するが、逆に加工性を劣化させ、またCrと結び付くことにより耐酸化性に有効なCr量を減少させる。従って0.2%以下に限定する。望ましくは、0.1%以下、更に望ましくは0.08%以下である。なお、好ましい下限は0.001%とするとよい。
Si:1.0%以下
Siは、セパレータに設けた高温ガスの流路となる溝の内面に、Cr系酸化層を主体とする被膜の形成に関与し、長時間の使用においても形成した酸化被膜が必要以上に成長したり、また剥離現象を起こしたりすることを防ぐ効果を有する元素である。Siの効果の一つには、恐らくCr酸化被膜と母材の界面付近に薄い不連続なSiO被膜を形成して耐酸化性を向上させるものと考えられる。
また、上記SiO被膜は母材とCr被膜の界面において母材、Cr被膜、SiO被膜が細かくからみ合った状態を形成しており、これによって母材との密着性を高め、Cr被膜の剥離を阻止する効果がある。このような効果は特に1000℃以上の高温において大きく、700〜950℃では必ずしも大きくないが、上記効果を得るためにはSiを少量添加することが必要である。
一方、過度の添加は加工性、靭性の低下を招くとともにSiO被膜が厚くなりすぎ、連続して酸化被膜の剥離を招いたり、被膜の電気伝導度が低下したりする問題が生じるので、Siは1.0%以下とする。望ましいSiの範囲は0.6%以下であり、更に望ましい範囲は0.2%未満である。なお、好ましい下限は0.01%とするとよい。
C: 0.2% or less C has the effect of increasing the high temperature strength by forming carbides, but conversely deteriorates workability and reduces the amount of Cr effective for oxidation resistance by combining with Cr. . Therefore, it is limited to 0.2% or less. Desirably, it is 0.1% or less, more desirably 0.08% or less. A preferable lower limit is 0.001%.
Si: 1.0% or less Si is involved in the formation of a coating mainly composed of a Cr-based oxide layer on the inner surface of a groove serving as a flow path for high-temperature gas provided in the separator, and is formed even after long-term use. It is an element having an effect of preventing the film from growing more than necessary and causing a peeling phenomenon. One of the effects of Si is probably that a thin discontinuous SiO 2 film is formed near the interface between the Cr 2 O 3 oxide film and the base material to improve the oxidation resistance.
The SiO 2 coating forms a state in which the base material, the Cr 2 O 3 coating, and the SiO 2 coating are finely entangled at the interface between the base material and the Cr 2 O 3 coating. And the effect of preventing the peeling of the Cr 2 O 3 coating. Such an effect is particularly great at a high temperature of 1000 ° C. or higher, and not necessarily high at 700 to 950 ° C. However, in order to obtain the above effect, it is necessary to add a small amount of Si.
On the other hand, excessive addition causes deterioration of workability and toughness, and the SiO 2 film becomes too thick, causing problems such as continuous peeling of the oxide film and lowering of the electrical conductivity of the film. Is 1.0% or less. A desirable Si range is 0.6% or less, and a more desirable range is less than 0.2%. A preferred lower limit is 0.01%.

Mn:1.0%以下
Mnは、Fe、Crとともにスピネル型酸化物を形成する。Mnを含むスピネル型酸化物層は、Crの酸化層の外側に形成される。このスピネル型酸化物層は固体酸化物型燃料電池のセラミックス電解質を劣化させるCrがセパレータ用鋼から蒸発するのを防ぐ保護効果を有する。また、このスピネル型酸化物は、通常Crに比べると酸化速度が大きいので、耐酸化性そのものに対しては不利に働く一方で、酸化被膜の平滑さを維持して、接触抵抗の低下や電解質に対して有害なCrの蒸発を防ぐ効果を有している。
一方、過度に添加すると前述のようにMn含有のスピネル型酸化物自体の耐酸化性不足のため耐酸化性が悪くなる。従って、Mnは1.0%以下に限定する。なお、好ましい下限は0.1%とするとよい。
Mn: 1.0% or less Mn forms a spinel oxide together with Fe and Cr. The spinel type oxide layer containing Mn is formed outside the Cr 2 O 3 oxide layer. This spinel oxide layer has a protective effect of preventing Cr, which degrades the ceramic electrolyte of the solid oxide fuel cell, from evaporating from the separator steel. In addition, since this spinel type oxide usually has a higher oxidation rate than Cr 2 O 3 , it works against the oxidation resistance itself, while maintaining the smoothness of the oxide film and reducing the contact resistance. It has the effect of preventing the decrease and evaporation of Cr harmful to the electrolyte.
On the other hand, if added excessively, as described above, the oxidation resistance of the Mn-containing spinel-type oxide itself is insufficient, resulting in poor oxidation resistance. Therefore, Mn is limited to 1.0% or less. A preferred lower limit is 0.1%.

Cr:15〜30%
Crは、本発明においてCr被膜の生成により、耐酸化性及び電気伝導性を維持するために重要な元素である。そのため最低限15%を必要とする。しかしながら過度の添加は耐酸化性向上にさほど効果がないばかりか加工性の劣化を招くので15〜30%に限定する。望ましいCrの範囲は17〜26%、更に望ましいCrの範囲は18〜25%である。
Al:1%以下
Alは、通常脱酸剤として添加される。Alを多く添加するとAl被膜が形成されるが、Al被膜は耐酸化性に対しては有効であるが、酸化被膜の電気抵抗を増大させる。従って、本発明の場合Al被膜の形成を避けるためにAlは1%以下に限定する。望ましくは0.001%以上0.5%未満である。更に望ましい範囲は0.001%以上0.3%未満である。
Cr: 15-30%
Cr is an important element for maintaining oxidation resistance and electrical conductivity by producing a Cr 2 O 3 coating in the present invention. Therefore, a minimum of 15% is required. However, excessive addition is not so effective in improving oxidation resistance, but also causes deterioration of workability, so it is limited to 15 to 30%. A desirable Cr range is 17 to 26%, and a more desirable Cr range is 18 to 25%.
Al: 1% or less Al is usually added as a deoxidizer. When a large amount of Al is added, an Al 2 O 3 film is formed. The Al 2 O 3 film is effective for oxidation resistance, but increases the electric resistance of the oxide film. Therefore, in the present invention, Al is limited to 1% or less in order to avoid the formation of the Al 2 O 3 film. Desirably, it is 0.001% or more and less than 0.5%. A more desirable range is 0.001% or more and less than 0.3%.

Ni:2%以下
Niは、本発明鋼に少量添加することにより靭性の向上に効果が有る。しかしNiはオーステナイト生成元素であり、過度の添加はフェライト−オーステナイトの二相組織となり、熱膨張係数の増加及びコストアップを招く。更に過度のNiの添加は耐酸化性を悪くする。従ってNiは2%以下に限定する。望ましくは1%以下である。なお、好ましい下限は0.1%とするとよい。
La:0.005〜0.2%、Zr:1%以下
La、Zrは、少量複合添加により耐酸化性及び酸化皮膜の電気伝導度を大幅に改善する効果を有する。特に少量のSi、Mn添加と組み合わせた場合の耐酸化性向上効果が大きく、長時間加熱後においても酸化被膜の剥離を防止できる。これは主に酸化被膜の密着性を改善することによると考えられる。本発明においてはCr系酸化被膜のみで耐酸化性を持たせているが、このCr系酸化被膜の密着性を向上させるためにLa、Zrの複合添加は不可欠である。しかしながら過度の添加は熱間加工性を劣化させるので、Laは0.005〜0.2%、Zrは1%以下に限定する。望ましくは、La:0.01〜0.15%、Zr:0.01%〜0.8%である。
なお、Zrは、Cと結び付いて炭化物を形成し、C固定により加工性を向上させ、また強度向上にも寄与する。
Ni: 2% or less Ni is effective in improving toughness by adding a small amount to the steel of the present invention. However, Ni is an austenite-forming element, and excessive addition becomes a ferrite-austenite two-phase structure, resulting in an increase in thermal expansion coefficient and cost increase. Further, excessive addition of Ni deteriorates the oxidation resistance. Therefore, Ni is limited to 2% or less. Desirably, it is 1% or less. A preferred lower limit is 0.1%.
La: 0.005 to 0.2%, Zr: 1% or less La and Zr have the effect of greatly improving the oxidation resistance and the electrical conductivity of the oxide film by adding a small amount. In particular, the effect of improving the oxidation resistance when combined with a small amount of Si and Mn is great, and peeling of the oxide film can be prevented even after heating for a long time. This is considered to be mainly due to improving the adhesion of the oxide film. In the present invention, only the Cr-based oxide film has oxidation resistance, but in order to improve the adhesion of the Cr-based oxide film, combined addition of La and Zr is indispensable. However, excessive addition deteriorates hot workability, so La is limited to 0.005 to 0.2% and Zr is limited to 1% or less. Desirably, La: 0.01 to 0.15%, Zr: 0.01% to 0.8%.
Zr is combined with C to form a carbide, improves the workability by fixing with C, and contributes to the improvement of strength.

次に不可避的不純物元素の限定理由について述べる。
S:0.015%以下
Sは、Mn、La等と硫化物系介在物を形成して、耐酸化性に効果をもつ有効な希土類元素量を低下させ、耐酸化性を低下させるだけでなく、熱間加工性、表面肌を劣化させるため、0.015%以下に限定する。望ましくは、0.008%以下がよい。
O:0.010%以下
Oは、Al、Si、Mn、Cr、La、Zr等と酸化物系介在物を形成して、熱間加工性、冷間加工性を害するだけでなく、耐酸化性向上に大きく寄与する元素であるLa、Zr等の固溶量を減少させるため、これらの元素による耐酸化性向上効果を減じる。従って、0.010%以下に制限する。望ましくは、0.008%以下がよい。
Next, the reasons for limiting the inevitable impurity elements will be described.
S: 0.015% or less S not only lowers the oxidation resistance by forming sulfide inclusions with Mn, La, etc., but reducing the amount of effective rare earth elements effective in oxidation resistance. In order to deteriorate hot workability and surface skin, the content is limited to 0.015% or less. Desirably, it is 0.008% or less.
O: 0.010% or less O forms oxide inclusions with Al, Si, Mn, Cr, La, Zr, etc., and not only harms hot workability and cold workability, but also oxidation resistance. In order to reduce the solid solution amount of La, Zr, etc., which are elements that greatly contribute to the improvement of the property, the effect of improving the oxidation resistance by these elements is reduced. Therefore, it is limited to 0.010% or less. Desirably, it is 0.008% or less.

N:0.050%以下
Nは、オーステナイト生成元素であるため、本発明のFe−Cr系フェライト鋼に過剰に添加するとオーステナイト相を生成してフェライト単相を維持できなくするだけでなく、Al、Cr等と窒化物系介在物を形成して熱間、冷間加工性を害するため、0.050%以下に制限する。望ましくは0.030%以下、更に望ましくは0.020%以下がよい。
B:0.0050%以下
Bは、約700℃以上の高温で酸化被膜の成長速度を大きくすることで耐酸化性を劣化させるだけでなく、酸化被膜の表面粗さを大きくして酸化被膜と電極との接触面積を小さくすることによって接触抵抗を劣化させるため、不純物として0.0050%以下に制限し、できるだけ0%まで低減させる方が良い。望ましい上限は0.0020%以下がよく、更に望ましくは0.0010%未満がよい。
残部は実質的にFe
残部は実質的にFeとしたが、不可避的元素は含まれる。上述した不純物元素以外に、少量であれば本発明鋼の特性に基本的には影響しない以下の元素を下記の範囲内で本発明鋼に含有しても良い。
P≦0.04%、Cu≦0.30%、Mg≦0.02%、Ca≦0.02%、Co≦2%
N: 0.050% or less Since N is an austenite-forming element, when excessively added to the Fe-Cr ferritic steel of the present invention, not only does the austenite phase form and the ferrite single phase cannot be maintained, but Al In order to form nitride inclusions with Cr and the like and impair hot workability and cold workability, the content is limited to 0.050% or less. Desirably, it is 0.030% or less, and more desirably 0.020% or less.
B: 0.0050% or less B not only deteriorates the oxidation resistance by increasing the growth rate of the oxide film at a high temperature of about 700 ° C. or higher, but also increases the surface roughness of the oxide film. In order to degrade the contact resistance by reducing the contact area with the electrode, it is better to limit the impurity to 0.0050% or less and reduce it to 0% as much as possible. The desirable upper limit is 0.0020% or less, and more desirably less than 0.0010%.
The balance is substantially Fe
The balance is substantially Fe, but unavoidable elements are included. In addition to the impurity elements described above, the present invention steel may contain the following elements that basically do not affect the properties of the steel of the present invention within the following ranges as long as the amount is small.
P ≦ 0.04%, Cu ≦ 0.30%, Mg ≦ 0.02%, Ca ≦ 0.02%, Co ≦ 2%

本発明鋼において、特に耐酸化性及び酸化皮膜の電気伝導度の向上に大きな効果を有するLa、Zrが十分効果を発揮するには、これらの元素が硫化物系介在物や酸化物系介在物に完全に固定されないようにする必要がある。そのためには、(1)式に示すようにZr、Laの添加量に対するSとOの量の比率を低く抑えるのが有効である。
(1)式の値が2.0を超えるとZr、Laが介在物の固定されて耐酸化性及び酸化皮膜の電気伝導度向上に寄与しなくなることから、(1)式の値は2.0以下とした。
In the steel of the present invention, La and Zr, which have a great effect on improving the oxidation resistance and the electrical conductivity of the oxide film, are effective in sufficiently exhibiting these elements such as sulfide inclusions and oxide inclusions. It is necessary to prevent it from being completely fixed. For this purpose, it is effective to keep the ratio of the amount of S and O to the amount of Zr and La added as shown in the equation (1) low.
If the value of the equation (1) exceeds 2.0, inclusions are fixed and Zr and La do not contribute to improving the oxidation resistance and the electric conductivity of the oxide film. Therefore, the value of the equation (1) is 2. 0 or less.

以下の実施例で本発明を更に詳しく説明する。
本発明鋼及び比較鋼を真空誘導炉にて溶製し10kgのインゴットを作製した。真空溶解時には、不純物元素を規定内に低く抑えるために、純度の高い原料を選定するとともに炉内雰囲気等操業条件を制御して、S、O、N、B等の混入、残存を抑制した。但し、比較鋼の一部については、不純物元素の影響を調べるため、あえてこれらの考慮をしなかった。
その後、1100℃に加熱して20mm厚さの平角材に鍛伸し、780℃で1時間の焼鈍を行った。さらに2mm厚さの鋼板に熱間圧延した後、0.5mm厚さの鋼板に冷間圧延し、780℃で1時間の焼鈍を行なった。表1に本発明鋼No.1〜9、比較鋼No.11〜16の化学組成を示す。なお表2において、比較鋼No.11〜14は特開2003−173795号に開示される合金である。
The following examples further illustrate the present invention.
The steel of the present invention and the comparative steel were melted in a vacuum induction furnace to produce a 10 kg ingot. At the time of vacuum melting, in order to keep the impurity element low within the specified range, a high-purity raw material was selected and the operating conditions such as the furnace atmosphere were controlled to suppress the mixing and remaining of S, O, N, B, and the like. However, some of the comparative steels were not considered because of the influence of impurity elements.
Then, it heated to 1100 degreeC and forge-stretched to the 20 mm-thick flat material, and annealed at 780 degreeC for 1 hour. Furthermore, after hot-rolling to a 2 mm-thick steel plate, it was cold-rolled to a 0.5 mm-thick steel plate and annealed at 780 ° C. for 1 hour. Table 1 shows the steel No. of the present invention. 1-9, comparative steel no. The chemical composition of 11-16 is shown. In Table 2, the comparative steel No. 11 to 14 are alloys disclosed in Japanese Patent Application Laid-Open No. 2003-173895.

Figure 0004385328
Figure 0004385328

これらの素材から試験片を切り出し各種試験を行った。
まず、直径10mm、長さ20mmの円柱状試験片および厚さ0.4mm、幅15mm、長さ20mmの薄板試験片を用いて、大気中で950℃で1000Hrの加熱処理を行なった後、酸化増量及び表面酸化スケールの剥離量を測定した。また、10mm×10mm×3mmの板状試験片を用いて、大気中で950℃で100Hr加熱を行なって表面に酸化被膜を形成させた後、950℃における電気抵抗を測定した。さらに、大気中750℃で1000Hr加熱を行って表面に酸化被膜を形成させた後、750℃における電気抵抗を測定した。
なお電気抵抗はPtメッシュをPtペーストで試験片表面に固定して、4端子法で測定し、面積抵抗(mΩ・cm)で表した。これらの試験結果をまとめて表2に示す。
Test pieces were cut out from these materials and subjected to various tests.
First, using a cylindrical test piece having a diameter of 10 mm and a length of 20 mm and a thin plate test piece having a thickness of 0.4 mm, a width of 15 mm, and a length of 20 mm, heat treatment was performed at 950 ° C. in air for 1000 hours, followed by oxidation. The increase amount and the amount of peeling of the surface oxide scale were measured. Further, using a plate-shaped test piece of 10 mm W × 10 mm L × 3 mm t , heating was performed at 950 ° C. for 100 hours in the air to form an oxide film on the surface, and then the electric resistance at 950 ° C. was measured. Further, after heating at 750 ° C. in the atmosphere for 1000 hours to form an oxide film on the surface, the electrical resistance at 750 ° C. was measured.
The electrical resistance was measured by a four-terminal method with a Pt mesh fixed to the surface of the test piece with a Pt paste, and expressed as a sheet resistance (mΩ · cm 2 ). These test results are summarized in Table 2.

Figure 0004385328
Figure 0004385328

表2より、Laを含まない比較鋼No.11、Vを含まない比較鋼No.12〜14に比べて、本発明鋼では大気中950℃×1000Hr加熱後に、円柱試験片の酸化増量が少なく、かつ剥離スケールも発生していない。また、本発明鋼では薄板試験片においても酸化増量が少なく、良好な耐酸化性を有している。これはVが酸化被膜直下に濃化して酸化の促進を抑制しているためと考えられる。
比較鋼No.11においては、Laとの複合添加になっていないため、酸化促進を抑制する効果が不十分であると考えられる。
比較鋼No.15は、O量が多かったり、La、Zrの添加量が少なかったりするために式(1)の値が大きくなり、耐酸化性に効果のあるLa、Zrの効果が十分発揮できず、スケールの剥離が観察され、また電気抵抗も高くなっている。
また、Alを多く含む比較鋼No.16は、耐酸化性は非常に良好であるが、酸化被膜の電気抵抗が極めて高く、固体酸化物型燃料電池セパレータに適用するには好ましくない特性しか得られなかった。
From Table 2, comparative steel No. 11 and comparative steel No. Compared with 12-14, in the steel of the present invention, after heating in the atmosphere at 950 ° C. × 1000 Hr, the amount of increase in oxidation of the cylindrical test piece is small, and no peeling scale is generated. Further, the steel according to the present invention has a small oxidation increase even in a thin plate test piece and has a good oxidation resistance. This is presumably because V is concentrated just below the oxide film to suppress the promotion of oxidation.
Comparative steel No. In No. 11, since it is not combined with La, the effect of suppressing oxidation promotion is considered to be insufficient.
Comparative steel No. 15 has a large amount of O and a small amount of La and Zr, so the value of the formula (1) becomes large, and the effect of La and Zr effective in oxidation resistance cannot be sufficiently exhibited. Is observed, and the electrical resistance is high.
Further, comparative steel No. 1 containing a large amount of Al. No. 16 had very good oxidation resistance, but the electric resistance of the oxide film was extremely high, and only properties not desirable for application to a solid oxide fuel cell separator were obtained.

一方で本発明鋼は、大気中950℃で100Hr加熱を行なって表面に酸化被膜を形成させた後に950℃において測定した電気抵抗の値、また、750℃で1000Hr加熱を行なって表面に酸化被膜を形成させた後に750℃において測定した電気抵抗の値は、いずれも十分に小さく、V添加による電気抵抗値への影響は認められない。
さらに、950℃で1000Hr加熱後の酸化増量測定用試験片を目視で確認したところ、本発明鋼はVの積極添加によって局所的な酸化の加速は見られなかった。
また、特開2003−173795号では同一の効果を奏する元素と考えていたNb、Ta、Hf及びVの各元素のうち、V必須添加による高温長時間の耐酸化性を向上させる効果が確認できたが、Nb、Ta、Hfを添加した比較鋼No.12〜14では、高温長時間の耐酸化性の改善効果は認められなかった
On the other hand, the steel of the present invention was heated at 950 ° C. in the atmosphere for 100 hours to form an oxide film on the surface, and then the electrical resistance value measured at 950 ° C. The values of the electrical resistance measured at 750 ° C. after forming the film are all sufficiently small, and the influence of the addition of V on the electrical resistance value is not recognized.
Furthermore, when the test piece for measuring the increase in oxidation after heating at 950 ° C. for 1000 hours was visually confirmed, the steel of the present invention did not show local acceleration due to the positive addition of V.
Further, among the elements of Nb, Ta, Hf and V, which are considered to have the same effect in Japanese Patent Application Laid-Open No. 2003-173895, the effect of improving the oxidation resistance at high temperature and long time due to the essential addition of V can be confirmed. However, comparative steel No. with Nb, Ta and Hf added. In 12-14, the improvement effect of the oxidation resistance at high temperature and long time was not recognized.

本発明鋼の固体酸化物型燃料電池セパレータ鋼は700〜950℃付近において良好な電気伝導性を有する酸化被膜を形成すると共に、長時間加熱においても良好な耐酸化性、特に耐剥離性を有し、かつ電解質との熱膨張差が小さいという特性を有するものであるため、同様な特性が求められる用途であれば棒鋼、線材、粉末、粉末焼結体、多孔質体、鋼箔、等の種々の形状に加工して使用することが可能である。   The solid oxide fuel cell separator steel of the present invention forms an oxide film having good electrical conductivity in the vicinity of 700 to 950 ° C., and also has good oxidation resistance, especially peeling resistance, even when heated for a long time. In addition, since it has the characteristic that the thermal expansion difference with the electrolyte is small, if it is an application that requires similar characteristics, such as steel bars, wire rods, powders, powder sintered bodies, porous bodies, steel foils, etc. It can be used after being processed into various shapes.

Claims (1)

質量%にて、C:0.2%以下、Si:1.0%以下、Mn:1.0%以下、Cr:15〜30%、Al:1%以下、Ni:2%以下、La:0.005〜0.2%、Zr:1%以下、V:0.01〜1.5%、残部はFe及び不可避的不純物でなり、不可避的不純物として、S:0.015%以下、O:0.010%以下、N:0.050%以下、B:0.0050%以下に制限し、かつ(1)式を満足することを特徴とする固体酸化物型燃料電池セパレータ用鋼。
(O+2S)/(0.035Zr+0.16La)≦2.0…(1)式
In mass%, C: 0.2% or less, Si: 1.0% or less, Mn: 1.0% or less, Cr: 15-30%, Al: 1% or less, Ni: 2% or less, La: 0.005 to 0.2%, Zr: 1% or less, V: 0.01 to 1.5%, the balance is Fe and unavoidable impurities . As unavoidable impurities, S: 0.015% or less, O : 0.010% or less, N: 0.050% or less, B: 0.0050% or less, and satisfying the formula (1), steel for solid oxide fuel cell separators
(O + 2S) / (0.035Zr + 0.16La) ≦ 2.0 (1) formula
JP2004241223A 2004-08-20 2004-08-20 Steel for solid oxide fuel cell separator Expired - Fee Related JP4385328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241223A JP4385328B2 (en) 2004-08-20 2004-08-20 Steel for solid oxide fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241223A JP4385328B2 (en) 2004-08-20 2004-08-20 Steel for solid oxide fuel cell separator

Publications (2)

Publication Number Publication Date
JP2006057153A JP2006057153A (en) 2006-03-02
JP4385328B2 true JP4385328B2 (en) 2009-12-16

Family

ID=36104876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241223A Expired - Fee Related JP4385328B2 (en) 2004-08-20 2004-08-20 Steel for solid oxide fuel cell separator

Country Status (1)

Country Link
JP (1) JP4385328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180125598A (en) 2016-07-04 2018-11-23 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel, its steel sheet and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716054B2 (en) 2012-07-13 2015-05-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent electrical conductivity and adhesion of oxide film
JP6444320B2 (en) 2014-01-14 2019-01-09 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent electrical conductivity and adhesion of oxide film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180125598A (en) 2016-07-04 2018-11-23 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel, its steel sheet and manufacturing method thereof
KR20200015820A (en) 2016-07-04 2020-02-12 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel, steel sheet thereof, and methods for producing these

Also Published As

Publication number Publication date
JP2006057153A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4737600B2 (en) Steel for solid oxide fuel cell separator
KR100858572B1 (en) Metal material for fuel cell, fuel cell using the same and method for producing the material
CA2774035C (en) Steel for solid oxide fuel cell having excellent oxidation resistance
JP2003173795A (en) Steel for solid oxide fuel cell separator
JP3534285B2 (en) Solid electrolyte fuel cell separator steel
US6776956B2 (en) Steel for separators of solid-oxide type fuel cells
JP5257803B2 (en) Steel for solid oxide fuel cell excellent in oxidation resistance and member for solid oxide fuel cell using the same
JP3321888B2 (en) Metal materials for solid oxide fuel cells
JP3704655B2 (en) Steel for solid oxide fuel cell separator
JP2007016297A (en) Steel for solid-oxide fuel cell separator
SE527933C2 (en) Heat-resistant steel
JP4385328B2 (en) Steel for solid oxide fuel cell separator
JP2008121113A (en) Ferritic steel for solid oxide fuel cell and other high temperature application
JP4524760B2 (en) Oxidation resistant steel and solid oxide fuel cell parts using the same
JP2008303436A (en) Ferritic stainless steel for separator of solid high polymer type fuel cell, and solid high polymer type fuel cell using the same
JP2003105503A (en) Steel for solid oxide type fuel battery separator
JP4259225B2 (en) Metal material for fuel cell and solid oxide fuel cell
JP4214921B2 (en) Fe-Cr alloy for fuel cell
JPH06293941A (en) Metallic material for solid electrolyte type fuel cell
JP2010013727A (en) Ferritic stainless steel superior in oxidation resistance
JP2005264298A (en) Metallic material for fuel cell and solid oxide type fuel cell
KR100774097B1 (en) Ferritic type stainless steel containing yttrium
JP2016141853A (en) Steel for solid oxide type fuel cell separator
JP2005220416A (en) Metallic material for fuel cell, and solid oxide type fuel cell
JP2005264299A (en) Metallic material for fuel cell and solid oxide type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees