JP2007016297A - Steel for solid-oxide fuel cell separator - Google Patents

Steel for solid-oxide fuel cell separator Download PDF

Info

Publication number
JP2007016297A
JP2007016297A JP2005201677A JP2005201677A JP2007016297A JP 2007016297 A JP2007016297 A JP 2007016297A JP 2005201677 A JP2005201677 A JP 2005201677A JP 2005201677 A JP2005201677 A JP 2005201677A JP 2007016297 A JP2007016297 A JP 2007016297A
Authority
JP
Japan
Prior art keywords
less
steel
fuel cell
oxidation resistance
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005201677A
Other languages
Japanese (ja)
Inventor
Akihiro Tsuji
昭宏 都地
Toshihiro Uehara
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005201677A priority Critical patent/JP2007016297A/en
Publication of JP2007016297A publication Critical patent/JP2007016297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for a solid-oxide fuel cell separator on which an oxide film having satisfactory electric conductivity at about 700 to 950°C is formed and which has satisfactory oxidation resistance particularly even in use at a high temperature for a long period of time. <P>SOLUTION: The steel for a solid-oxide fuel cell separator has a composition which is composed of, by mass, ≤0.1% C, <0.2% (not including 0%) Si, 0.1 to 1.0% Mn, 17 to 26% Cr, ≤2% Ni, 0.01 to 0.8% Zr, one or more kinds among 0.01 to 0.3% Y and 0.005 to 0.2% rare earth elements (REM) and the balance essentially Fe and in which Al is controlled to ≤0.08% and further, as inevitable impurities, the contents of S, O, N and B are limited to ≤0.015%, ≤0.010%, ≤0.040% and ≤0.0030%, respectively, and also the following expression is satisfied: (O)/(0.028Si+0.003Mn+0.024Al+0.023Zr+0.14Y+0.08REM)≤1.0 ...(1). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は固体酸化物型燃料電池のセパレータに用いられる固体酸化物型燃料電池セパレータ用鋼に関する。   The present invention relates to a steel for a solid oxide fuel cell separator used for a separator of a solid oxide fuel cell.

燃料電池は、その発電効率が高いこと、SOx、NOx、COの発生量が少ないこと、負荷の変動に対する応答性が良いこと、コンパクトであること等の優れた特徴を有するため、火力発電の代替としての大規模集中型、都市近郊分散配置型、及び自家発電用等の巾広い発電システムへの適用が期待されている。
燃料電池の種類には用いる電解質により、りん酸型、溶融炭酸塩型、固体酸化物型、固体高分子型に分類されるが、なかでも固体酸化物型燃料電池は電解質として安定化ジルコニア等のセラミックスを用いており、1000℃付近のかなり高温で運転されている。
固体酸化物型燃料電池は、高温で運転されるために電極反応に触媒を用いる必要がないこと、高温による化石燃料の内部改質が可能で石炭ガス等の多様な燃料を用いることができること、高温排熱を利用しガスタービン或いは蒸気タービン等と組み合わせ、いわゆるコンバインドサイクル発電とすることにより高効率の発電が可能となること、構成物が全て固体であるためコンパクトであること等の優れた特徴を有し、次世代の電力供給源として非常に有望視されている。
Fuel cells have excellent characteristics such as high power generation efficiency, low generation amount of SOx, NOx, CO 2 , good responsiveness to load fluctuations, and compactness. It is expected to be applied to wide-scale power generation systems such as large-scale centralized alternatives, distributed suburban areas, and private power generation.
Depending on the electrolyte used, fuel cell types are classified into phosphoric acid type, molten carbonate type, solid oxide type, and solid polymer type. Among them, solid oxide type fuel cells include electrolytes such as stabilized zirconia. It uses ceramics and is operated at a fairly high temperature around 1000 ° C.
The solid oxide fuel cell is operated at a high temperature, so there is no need to use a catalyst for the electrode reaction, fossil fuel can be internally reformed at a high temperature, and various fuels such as coal gas can be used, Combined with gas turbine or steam turbine using high-temperature exhaust heat, so-called combined cycle power generation enables high-efficiency power generation, and is compact because all components are solid. And is very promising as a next-generation power supply source.

しかしながら、固体酸化物型燃料電池の実用化のためには、まだ多くの検討課題が残されており、特に高出力密度が可能な平板型燃料電池の場合、重要な構成要素としてセパレータが挙げられる。
このセパレータは電解質、燃料極、空気極の三層を支持し、ガス流路を形成するとともに電流を流す役目を有する。従ってセパレータには、高温での電気伝導性、耐酸化性、更に電解質との熱膨張差が小さいこと等の特性が要求されることから、このような要求特性を鑑み、従来は導電性セラミックスが多く用いられてきた。
しかし、セラミックスは加工性が悪くまた高価であることから、燃料電池の大型化、実用化の面から問題を残している。
However, many problems remain to be solved for the practical application of solid oxide fuel cells. In particular, in the case of a flat plate fuel cell capable of high power density, a separator is an important component. .
This separator supports three layers of an electrolyte, a fuel electrode, and an air electrode, and has a function of forming a gas flow path and flowing current. Therefore, since separators are required to have properties such as electrical conductivity at high temperatures, oxidation resistance, and a small difference in thermal expansion from the electrolyte, in view of these required properties, conductive ceramics have conventionally been used. Many have been used.
However, since ceramics have poor processability and are expensive, there remains a problem in terms of enlargement and practical use of fuel cells.

近年、固体酸化物型燃料電池の改良が著しく進み、運転温度が従来の1000℃付近から700〜950℃程度にまで低下させることが可能となってきたため、安価で信頼性のある金属材料によるセパレータ材開発が要求されている。
そこで本発明者らは、700〜950℃程度での特性を考慮したフェライト系金属材料の固体酸化物型燃料電池セパレータ用鋼として特開2003−173795号(特許文献1参照)に開示される合金を開発した。
この特開2003−173795号で示した合金は、固体酸化物型燃料電池のセパレータに用いることにより、700〜950℃付近において良好な電気伝導性を有する酸化被膜を形成すると共に、長時間の使用においても良好な耐酸化性、特に耐剥離性を有し、かつ電解質との熱膨張差が小さく、燃料電池の低コスト化及び高性能化を図ることができることから、比較的低温の700〜950℃程度で作動する固体酸化物型燃料電池の実用化、高効率化、大型化に大きく寄与できるという効果を奏するものである。
In recent years, solid oxide fuel cells have been remarkably improved and the operating temperature can be lowered from around 1000 ° C. to about 700 to 950 ° C. Therefore, a separator made of an inexpensive and reliable metal material Material development is required.
Therefore, the present inventors have disclosed an alloy disclosed in Japanese Patent Application Laid-Open No. 2003-173895 (see Patent Document 1) as a solid oxide fuel cell separator steel of a ferritic metal material considering characteristics at about 700 to 950 ° C. Developed.
The alloy shown in Japanese Patent Application Laid-Open No. 2003-173895 forms an oxide film having good electrical conductivity in the vicinity of 700 to 950 ° C. when used for a separator of a solid oxide fuel cell, and is used for a long time. In addition, since it has good oxidation resistance, in particular, peeling resistance, has a small difference in thermal expansion from the electrolyte, and can reduce the cost and performance of the fuel cell, it has a relatively low temperature of 700 to 950. This has the effect of greatly contributing to the practical use, high efficiency, and large size of the solid oxide fuel cell that operates at about ° C.

特開2003−173795号公報JP 2003-173895 A

固体酸化物型燃料電池を実用化するためには、およそ8〜10万時間以上の装置寿命が必要とされており、セパレータ用鋼にも使用温度700〜950℃における長時間の耐酸化性が求められている。そこで、固体酸化物型燃料電池の信頼性、長期耐久性をさらに向上させるためには、上記使用温度でのセパレータ用鋼の長時間耐酸化性をより一層向上させる必要がある。
本発明の目的は、約700〜950℃において良好な電気伝導性を有する酸化被膜を形成するとともに、特に高温長時間の使用においても良好な耐酸化性を有する固体酸化物型燃料電池セパレータ用鋼を提供することである。
In order to put a solid oxide fuel cell into practical use, an apparatus life of approximately 80 to 100,000 hours or more is required, and separator steel also has long-term oxidation resistance at a use temperature of 700 to 950 ° C. It has been demanded. Therefore, in order to further improve the reliability and long-term durability of the solid oxide fuel cell, it is necessary to further improve the long-term oxidation resistance of the separator steel at the above operating temperature.
An object of the present invention is to form a solid oxide fuel cell separator steel that forms an oxide film having good electrical conductivity at about 700 to 950 ° C. and has good oxidation resistance even when used at a high temperature for a long time. Is to provide.

本発明者らは特開2003−173795号に開示される合金をベースに、使用温度700〜950℃での長時間耐酸化性をより一層向上させるべく添加元素、含有量の種々検討を行なった。
その結果、脱酸元素として少量添加したAlが、セパレータとして高温で使用される時に母材の表面近傍および内部で酸化し体積膨張する時の圧力によって、保護膜のCr被膜が部分的に破損し、耐酸化性が低下することを知見した。そこで、Alを極めて低い特定のレベル以下に規制し、Alの内部酸化を低減することにより、長時間の耐酸化性が飛躍的に向上することを見出した。
更に、良好な耐酸化性を得るのに有効な元素であるZr、Y、希土類元素は、合金中のOが多いと酸化物を形成して介在物になりやすい。Zr、Y、希土類元素が介在物となって固定されてしまうと母材中に固溶するZr、Y、希土類元素の量が減少し、酸化膜の成長抑制、緻密化、密着性向上に寄与できる有効量が減少する。従って、添加したZr、Y、希土類元素を有効に作用させるためには、これらの元素の介在物をできるだけ少なくすることが有効であり、そのためには、単にOを不純物元素として低く抑えるだけでなく、脱酸効果を有するSi、Al量およびZr、Y、希土類元素量を同時に適正に制御することが良好な耐酸化性を維持するために必要であることを見出し、本発明に到達した。
Based on the alloy disclosed in Japanese Patent Application Laid-Open No. 2003-173895, the present inventors have conducted various studies on additive elements and contents in order to further improve long-term oxidation resistance at a use temperature of 700 to 950 ° C. .
As a result, when a small amount of Al added as a deoxidizing element is used as a separator at a high temperature, the protective film Cr 2 O 3 coating is partially formed by the pressure when it is oxidized and volume-expanded in the vicinity of and inside the base material. It was found that the oxidation resistance deteriorates. Thus, it has been found that long-term oxidation resistance can be drastically improved by regulating Al below a very low specific level and reducing the internal oxidation of Al.
Furthermore, Zr, Y, and rare earth elements, which are effective elements for obtaining good oxidation resistance, tend to form oxides by forming oxides when O in the alloy is large. If Zr, Y, and rare earth elements are fixed as inclusions, the amount of Zr, Y, and rare earth elements dissolved in the base material will decrease, contributing to the suppression of oxide film growth, densification, and improved adhesion. The effective amount that can be reduced. Therefore, in order to make the added Zr, Y, and rare earth elements act effectively, it is effective to reduce the inclusions of these elements as much as possible. For that purpose, not only can O be kept low as an impurity element. The present inventors have found that it is necessary to simultaneously control the amounts of Si, Al and Zr, Y, and rare earth elements having a deoxidizing effect in order to maintain good oxidation resistance.

即ち本発明は、質量%にて、C:0.1%以下、Si:0.2%未満(0%を含まず)、Mn:0.1〜1.0%、Cr:17〜26%、Ni:2%以下、Zr:0.01〜0.8%であって、Y:0.01〜0.3%と希土類元素(REM):0.005〜0.2%の一種または二種以上を含み、残部は実質的にFeでなり、Al:0.08%以下に規制し、更に不可避的不純物として、S:0.015%以下、O:0.010%以下、N:0.040%以下、B:0.0030%以下に制限し、且つ(1)式を満足する固体酸化物型燃料電池セパレータ用鋼である。
(O)/(0.028Si+0.003Mn+0.024Al+0.023Zr+0.14Y+0.08REM)≦1.0…(1)
That is, the present invention, in mass%, C: 0.1% or less, Si: less than 0.2% (excluding 0%), Mn: 0.1-1.0%, Cr: 17-26% Ni: 2% or less, Zr: 0.01-0.8%, Y: 0.01-0.3% and rare earth element (REM): 0.005-0.2% More than seeds, the balance is substantially Fe, Al is regulated to 0.08% or less, and further, as inevitable impurities, S: 0.015% or less, O: 0.010% or less, N: 0 0.040% or less, B: Steel for a solid oxide fuel cell separator that is limited to 0.0030% or less and satisfies the formula (1).
(O) / (0.028Si + 0.003Mn + 0.024Al + 0.023Zr + 0.14Y + 0.08REM) ≦ 1.0 ... (1)

本発明の固体酸化物型燃料電池のセパレータ鋼は、特開2003−173795号に示した合金において、Alを不純物元素として低く抑え、かつOとその他合金元素量をより最適に限定することによって、特開2003−173795号に示した合金が有する700〜950℃付近において良好な電気伝導性を有する酸化被膜を形成するとともに、電解質との熱膨張差が小さいという特性はそのまま維持し、特に長時間の使用においても良好な耐酸化性、耐剥離性を向上できたことから、燃料電池の低コスト化および高性能化を図ることができ、固体酸化物型燃料電池の実用化、高効率化、大型化に大きく寄与できる。   The separator steel of the solid oxide fuel cell according to the present invention is an alloy shown in Japanese Patent Application Laid-Open No. 2003-173895. By suppressing Al as an impurity element and further limiting the amount of O and other alloy elements more optimally, In addition to forming an oxide film having good electrical conductivity in the vicinity of 700 to 950 ° C. of the alloy shown in Japanese Patent Application Laid-Open No. 2003-173895, the characteristic that the difference in thermal expansion from the electrolyte is small is maintained as it is, especially for a long time. As a result, it was possible to reduce the cost and improve the performance of the fuel cell, and to put the solid oxide fuel cell to practical use and higher efficiency. It can greatly contribute to enlargement.

本発明の固体酸化物型燃料電池セパレータ用鋼において、以下の範囲で各化学組成を規定した理由は以下の通りである。なお、特に記載のない限り質量%として記す。
Al:0.08%以下
Alについては、本発明者らの提案による特開2003−173795号では脱酸元素の一つとしたもので、その効果は主に脱酸によるOの低減を目的としていた。
今回、長時間の耐酸化性をより一層向上させるべく添加元素、含有量の種々検討を行なった結果、Alを特に規制すべき元素として低く抑えることによって、安定して良好な耐酸化性を確保できるという効果があることを見出した。
そして、長時間の使用においても良好な耐酸化性を更に向上させる効果を最大限に発揮できる範囲を詳細に実験した結果、0.08%以下の範囲であれば、前記の効果を発揮できる。好ましくは0.05%以下であり、さらに好ましくは0.03%以下である。
C:0.1%以下
Cは、炭化物を形成して高温強度を増大させる作用を有するが、逆に加工性を劣化させ、またCrと結び付くことにより耐酸化性に有効なCr量を減少させる。従って0.1%以下に限定する。望ましくは、0.08%以下である。なお、好ましい下限は0.001%とするとよい。
In the steel for solid oxide fuel cell separator of the present invention, the reason why each chemical composition is specified in the following range is as follows. Unless otherwise specified, the mass% is indicated.
Al: 0.08% or less Al is one of the deoxidizing elements disclosed in Japanese Patent Application Laid-Open No. 2003-173895 proposed by the present inventors, and its effect was mainly aimed at reducing O by deoxidation. .
As a result of various investigations of additive elements and contents to further improve long-term oxidation resistance, stable and good oxidation resistance is ensured by keeping Al low as an element that should be specifically regulated. It was found that there is an effect that can be done.
And as a result of carrying out the experiment in detail about the range which can exhibit the effect which further improves favorable oxidation resistance in the long time use, if it is 0.08% or less, the said effect can be exhibited. Preferably it is 0.05% or less, More preferably, it is 0.03% or less.
C: 0.1% or less C has the effect of increasing the high temperature strength by forming carbides, but conversely deteriorates workability and reduces the amount of Cr effective in oxidation resistance by combining with Cr. . Therefore, it is limited to 0.1% or less. Desirably, it is 0.08% or less. A preferable lower limit is 0.001%.

Si:0.2%未満
Siは、Cr酸化被膜と母材の界面付近に薄いSiO被膜を形成して酸化膜を厚くするとともに、酸化被膜の電気伝導度を低下させることから、0.2%未満とする。好ましいSiの範囲は0.1%以下であり、更に望ましい範囲は0.05%以下である。なお、脱酸元素であるAlを低くした場合、同じく脱酸元素であるSiを脱酸目的で添加する必要があることから、好ましい下限は0.01%とするとよい。
Si: Less than 0.2% Si forms a thin SiO 2 film in the vicinity of the interface between the Cr 2 O 3 oxide film and the base material to increase the thickness of the oxide film, and lowers the electrical conductivity of the oxide film. Less than 0.2%. A preferable Si range is 0.1% or less, and a more desirable range is 0.05% or less. In addition, when Al which is a deoxidizing element is lowered, Si, which is also a deoxidizing element, needs to be added for the purpose of deoxidation. Therefore, the preferable lower limit is preferably 0.01%.

Mn:0.1〜1.0%
Mnは、Fe、Crとともにスピネル型酸化物を形成する。Mnを含むスピネル型酸化物層は、Crの酸化層の外側に形成される。このスピネル型酸化物層は固体酸化物型燃料電池のセラミックス電解質を劣化させるCrがセパレータ用鋼から蒸発するのを防ぐ保護効果を有する。また、このスピネル型酸化物は、通常Crに比べると酸化速度が大きいので、耐酸化性そのものに対しては不利に働く一方で、酸化被膜の平滑さを維持して、接触抵抗の低下や電解質に対して有害なCrの蒸発を防ぐ効果を有している。
一方、過度に添加すると前述のようにMn含有のスピネル型酸化物自体の耐酸化性不足のため耐酸化性が悪くなる。従って、Mnは0.1〜1.0%に限定する。好ましいMnの上限は0.8%である。また、好ましいMnの下限は0.2%である。
Mn: 0.1 to 1.0%
Mn forms a spinel oxide together with Fe and Cr. The spinel type oxide layer containing Mn is formed outside the Cr 2 O 3 oxide layer. This spinel oxide layer has a protective effect of preventing Cr, which degrades the ceramic electrolyte of the solid oxide fuel cell, from evaporating from the separator steel. In addition, since this spinel type oxide usually has a higher oxidation rate than Cr 2 O 3 , it works against the oxidation resistance itself, while maintaining the smoothness of the oxide film and reducing the contact resistance. It has the effect of preventing the decrease and evaporation of Cr harmful to the electrolyte.
On the other hand, if added excessively, as described above, the oxidation resistance of the Mn-containing spinel-type oxide itself is insufficient, resulting in poor oxidation resistance. Therefore, Mn is limited to 0.1 to 1.0%. A preferable upper limit of Mn is 0.8%. Moreover, the minimum with preferable Mn is 0.2%.

Cr:17〜26%
Crは、本発明においてCr被膜の生成により、耐酸化性及び電気伝導性を維持するために重要な元素である。そのため最低限17%を必要とする。しかしながら過度の添加は耐酸化性向上にさほど効果がないばかりか加工性の劣化を招くので17〜26%に限定する。好ましいCrの上限は25%であり、更に好ましい上限は24%である。好ましいCrの下限は18%であり、更に好ましい下限は20%である。
Ni:2%以下
Niは、本発明鋼に少量添加することにより靭性の向上に効果が有る。しかしNiはオーステナイト生成元素であり、過度の添加はフェライト−オーステナイトの二相組織となり、熱膨張係数の増加及びコストアップを招く。更に過度のNiの添加は耐酸化性を悪くする。従ってNiは2%以下に限定する。好ましくは1%以下である。なお、好ましい下限は0.1%とするとよい。
Cr: 17-26%
Cr is an important element for maintaining oxidation resistance and electrical conductivity by producing a Cr 2 O 3 coating in the present invention. Therefore, a minimum of 17% is required. However, excessive addition is not so effective in improving oxidation resistance, but also causes deterioration of workability, so it is limited to 17 to 26%. A preferable upper limit of Cr is 25%, and a more preferable upper limit is 24%. A preferable lower limit of Cr is 18%, and a more preferable lower limit is 20%.
Ni: 2% or less Ni is effective in improving toughness by adding a small amount to the steel of the present invention. However, Ni is an austenite-forming element, and excessive addition becomes a ferrite-austenite two-phase structure, resulting in an increase in thermal expansion coefficient and an increase in cost. Further, excessive addition of Ni deteriorates the oxidation resistance. Therefore, Ni is limited to 2% or less. Preferably it is 1% or less. A preferred lower limit is 0.1%.

Zr:0.01〜0.8%以下、Y:0.01〜0.3%と希土類元素(REM):0.005〜0.2%の一種または二種以上
Zr、Y、希土類元素(REM)は、少量添加により耐酸化性及び酸化皮膜の電気伝導度を大幅に改善する効果を有する。これは主に酸化被膜の密着性を改善することによると考えられる。
本発明においては、主にCr系酸化被膜で良好な耐酸化性を維持させているが、このCr系酸化被膜の密着性を向上させるためにZrを必須添加とし、さらにY、REMを単独または複合添加することが不可欠である。しかしながら過度の添加は熱間加工性を劣化させるので、Zrは0.01〜0.8%、Yは0.01〜0.3%、REMは0.005〜0.20%に限定する。好ましくは、Zr:0.01〜0.6%、Y:0.01〜0.2%、REM:0.005〜0.10%である。
更に好ましくは、Zr:0.01〜0.6%とREM:0.005〜0.20%の複合添加であり、酸化皮膜の密着性がより向上し、長時間加熱後においても酸化被膜の剥離を防止できる。希土類元素の中では、Laが最も酸化被膜の密着性向上に効果があることから、Zr:0.01〜0.6%とLa:0.005〜0.20%の複合添加が最も好ましい。
Zr: 0.01 to 0.8% or less, Y: 0.01 to 0.3% and rare earth element (REM): 0.005 to 0.2%, one or more kinds Zr, Y, rare earth elements ( REM) has the effect of greatly improving the oxidation resistance and the electrical conductivity of the oxide film when added in a small amount. This is considered to be mainly due to improving the adhesion of the oxide film.
In the present invention, good oxidation resistance is maintained mainly with a Cr-based oxide film, but in order to improve the adhesion of the Cr-based oxide film, Zr is essential, and Y and REM are used alone or Compound addition is essential. However, excessive addition deteriorates hot workability, so Zr is limited to 0.01 to 0.8%, Y is limited to 0.01 to 0.3%, and REM is limited to 0.005 to 0.20%. Preferably, they are Zr: 0.01-0.6%, Y: 0.01-0.2%, REM: 0.005-0.10%.
More preferably, it is a composite addition of Zr: 0.01 to 0.6% and REM: 0.005 to 0.20%, and the adhesion of the oxide film is further improved. Separation can be prevented. Among rare earth elements, since La is most effective in improving the adhesion of the oxide film, the combined addition of Zr: 0.01 to 0.6% and La: 0.005 to 0.20% is most preferable.

次に不可避的不純物元素の限定理由について述べる。
S:0.015%以下
Sは、Mn、La等と硫化物系介在物を形成して、耐酸化性に効果をもつ有効な希土類元素量を低下させ、耐酸化性を低下させるだけでなく、熱間加工性、表面肌を劣化させるため、0.015%以下に限定する。望ましくは、0.008%以下がよい。
O:0.010%以下
Oは、Al、Si、Mn、Cr、La、Zr等と酸化物系介在物を形成して、熱間加工性、冷間加工性を害するだけでなく、耐酸化性向上に大きく寄与する元素であるLa、Zr等の固溶量を減少させるため、これらの元素による耐酸化性向上効果を減じる。従って、0.010%以下に制限する。好ましくは、0.008%以下がよい。
N:0.040%以下
Nは、オーステナイト生成元素であるため、本発明のFe−Cr系フェライト鋼に過剰に添加するとオーステナイト相を生成してフェライト単相を維持できなくするだけでなく、Al、Cr等と窒化物系介在物を形成して熱間、冷間加工性を害するため、0.040%以下に制限する。好ましくは0.030%以下、更に好ましくは0.020%以下がよい。
Next, the reasons for limiting the inevitable impurity elements will be described.
S: 0.015% or less S not only lowers the oxidation resistance by forming sulfide inclusions with Mn, La, etc., but reducing the amount of effective rare earth elements effective in oxidation resistance. In order to deteriorate hot workability and surface skin, the content is limited to 0.015% or less. Desirably, it is 0.008% or less.
O: 0.010% or less O forms oxide inclusions with Al, Si, Mn, Cr, La, Zr, etc., and not only harms hot workability and cold workability, but also oxidation resistance. In order to reduce the solid solution amount of La, Zr, etc., which are elements that greatly contribute to the improvement of the property, the effect of improving the oxidation resistance by these elements is reduced. Therefore, it is limited to 0.010% or less. Preferably, it is 0.008% or less.
N: 0.040% or less N is an austenite-generating element. Therefore, when excessively added to the Fe—Cr ferritic steel of the present invention, N not only generates an austenite phase and cannot maintain a ferrite single phase, but also Al. In order to form nitride inclusions with Cr and the like and impair hot workability and cold workability, the content is limited to 0.040% or less. Preferably it is 0.030% or less, More preferably, 0.020% or less is good.

B:0.0030%以下
Bは、約700℃以上の高温で酸化被膜の成長速度を大きくすることで耐酸化性を劣化させるだけでなく、酸化被膜の表面粗さを大きくして酸化被膜と電極との接触面積を小さくすることによって接触抵抗を劣化させるため、不純物として0.0030%以下に制限し、できるだけ0%まで低減させる方が良い。好ましい上限は0.0020%以下がよく、更に好ましくは0.0010%未満がよい。
残部は実質的にFe
残部は実質的にFeとしたが、不可避的元素は含まれる。上述した不純物元素以外に、少量であれば本発明鋼の特性に基本的には影響しない以下の元素を下記の範囲内で本発明鋼に含有しても良い。
P≦0.04%、Cu≦0.30%、Mg≦0.02%、Ca≦0.02%、Co≦2%、Ti≦0.1%
B: 0.0030% or less B not only deteriorates the oxidation resistance by increasing the growth rate of the oxide film at a high temperature of about 700 ° C. or higher, but also increases the surface roughness of the oxide film, In order to degrade the contact resistance by reducing the contact area with the electrode, it is better to limit it to 0.0030% or less as an impurity and reduce it to 0% as much as possible. The upper limit is preferably 0.0020% or less, and more preferably less than 0.0010%.
The balance is substantially Fe
The balance is substantially Fe, but unavoidable elements are included. In addition to the impurity elements described above, the present invention steel may contain the following elements that basically do not affect the properties of the steel of the present invention within the following ranges as long as the amount is small.
P ≦ 0.04%, Cu ≦ 0.30%, Mg ≦ 0.02%, Ca ≦ 0.02%, Co ≦ 2%, Ti ≦ 0.1%

(1)式:(O)/(0.028Si+0.003Mn+0.024Al+0.023Zr+0.14Y+0.08REM)≦1.0
本発明鋼において、特に耐酸化性及び酸化皮膜の電気伝導度の向上に大きな効果を有するZr、Y、希土類元素(REM)が十分効果を発揮するには、これらの元素が酸化物系介在物等に完全に固定されないようにする必要がある。
そのためには、(1)式に示すように脱酸効果を有するAl、SiとZr、Y、REMの量に対するOの量の比率を低く抑えるのが有効である。しかし本発明鋼の特徴の一つは、脱酸効果を有するAlを極めて低いレベルに制限していることであり、またSi量も低く制限しているために、O量の制御が難しい。そこで、Zr、Y、REMの効果を十分発揮させるためには、この(1)式を使って、Al、Si、Zr、Y、REM、O量を総合的に管理することが重要である。
(1)式の値が1.0を超えると、Zr、Y、REMが介在物に固定されて耐酸化性及び酸化皮膜の電気伝導度向上に寄与しなくなることから、(1)式の値は1.0以下とした。なお、Y、REMのうち無添加の元素については0として計算する。
(1) Formula: (O) / (0.028Si + 0.003Mn + 0.024Al + 0.023Zr + 0.14Y + 0.08REM) ≦ 1.0
In the steel of the present invention, in order for Zr, Y and rare earth elements (REM), which have a great effect in improving the oxidation resistance and the electrical conductivity of the oxide film, to exhibit a sufficient effect, these elements are oxide inclusions. It is necessary to prevent it from being completely fixed to etc.
For that purpose, it is effective to keep the ratio of the amount of O to the amount of Al, Si and Zr, Y, REM having a deoxidizing effect low as shown in the formula (1). However, one of the features of the steel of the present invention is that Al having a deoxidizing effect is limited to a very low level, and the amount of Si is also limited, so that it is difficult to control the amount of O. Therefore, in order to sufficiently exhibit the effects of Zr, Y, and REM, it is important to comprehensively manage the amounts of Al, Si, Zr, Y, REM, and O using this equation (1).
If the value of the formula (1) exceeds 1.0, Zr, Y, and REM are fixed to the inclusions and do not contribute to the improvement of the oxidation resistance and the electric conductivity of the oxide film. Was 1.0 or less. In addition, it calculates as 0 about an additive-free element among Y and REM.

以下の実施例で本発明を更に詳しく説明する。
本発明鋼及び比較鋼を真空誘導炉にて溶製し10kgのインゴットを作製した。真空溶解時には、Alおよび不純物元素を規定内に低く抑えるために、純度の高い原料を選定するとともに炉内雰囲気等操業条件を制御して溶解を行った。
特にOについては、以下のように厳密な管理を行った。本来、O量を低く抑えるには、強力な脱酸元素であるAlを多く添加するのが一般的であるが、本発明鋼では、Alを低くする必要があるため、脱酸が不十分となる可能性があった。そこで、低Al化しつつO量を低く抑えるために、Alの添加量を脱酸効果が得られる範囲で必要最小限に抑え、かつ原料の選定、真空度等の操業条件を非常に厳しく管理して溶解を行った。但し、比較鋼の一部については、不純物元素の影響を調べるため、あえてこれらの考慮をしなかった。
その後、1100℃に加熱して30mm角の棒材に鍛伸し、780℃で1時間の焼鈍を行った。表1に本発明鋼No.1〜9、比較鋼No.11〜14の化学組成を示す。なお表1において、比較鋼No.11〜13は特開2003−173795号に開示される合金である。
The following examples further illustrate the present invention.
The steel of the present invention and the comparative steel were melted in a vacuum induction furnace to produce a 10 kg ingot. At the time of vacuum melting, in order to keep Al and impurity elements low within the specified range, raw materials with high purity were selected, and melting was performed by controlling operating conditions such as furnace atmosphere.
In particular, O was strictly managed as follows. Originally, in order to keep the amount of O low, it is common to add a large amount of Al, which is a strong deoxidizing element. However, in the steel of the present invention, it is necessary to reduce Al, so deoxidation is insufficient. There was a possibility. Therefore, in order to keep the amount of O low while reducing Al, the amount of Al added is kept to the minimum necessary to the extent that the deoxidation effect can be obtained, and the operating conditions such as selection of raw materials and degree of vacuum are managed very strictly. To dissolve. However, some of the comparative steels were not considered because of the influence of impurity elements.
Then, it heated to 1100 degreeC and forge-stretched to the 30-mm square bar | burr, and annealed at 780 degreeC for 1 hour. Table 1 shows the steel No. of the present invention. 1-9, comparative steel no. The chemical composition of 11-14 is shown. In Table 1, comparative steel No. 11 to 13 are alloys disclosed in Japanese Patent Application Laid-Open No. 2003-173795.

Figure 2007016297
Figure 2007016297

これらの素材から試験片を切り出し各種試験を行った。
まず、直径10mm、長さ20mmの円柱状試験片を用いて、大気中で950℃で1000Hr及び750℃で1000Hrの加熱処理を行なった後、酸化増量及び表面酸化スケールの剥離量を測定した。また、10mm×10mm×3mmの板状試験片を用いて、大気中で950℃で1000Hr加熱を行なって表面に酸化被膜を形成させた後、950℃における電気抵抗を測定した。さらに、大気中750℃で1000Hr加熱を行って表面に酸化被膜を形成させた後、750℃における電気抵抗を測定した。
なお電気抵抗はPtメッシュをPtペーストで試験片表面に固定して、4端子法で測定し、面積抵抗(mΩ・cm)で表した。これらの試験結果をまとめて表2に示す。
Test pieces were cut out from these materials and subjected to various tests.
First, using a cylindrical test piece having a diameter of 10 mm and a length of 20 mm, heat treatment was performed at 950 ° C. for 1000 hours and 750 ° C. for 1000 hours in the atmosphere, and then the oxidation increase and the surface oxide scale peeling amount were measured. Further, using a plate-shaped test piece of 10 mm W × 10 mm L × 3 mm t , heating was performed at 950 ° C. for 1000 hours in the air to form an oxide film on the surface, and then the electrical resistance at 950 ° C. was measured. Further, after heating at 750 ° C. in the atmosphere for 1000 hours to form an oxide film on the surface, the electrical resistance at 750 ° C. was measured.
The electrical resistance was measured by a four-terminal method with a Pt mesh fixed to the surface of the test piece with a Pt paste, and expressed as a sheet resistance (mΩ · cm 2 ). These test results are summarized in Table 2.

Figure 2007016297
Figure 2007016297

表2より、Al量が多い比較鋼No.11に比べて、本発明鋼では大気中950℃×1000Hrおよび750℃で1000Hr加熱後に、円柱試験片の酸化増量が少ない。これはAlを十分に低減したことにより内部酸化が低減して保護膜のCr被膜が安定化されたためと考えられる。
比較鋼No.12は、Si量が多いため、耐酸化性が十分でない。比較鋼No.13は、(1)式の値が大きく、耐酸化性に効果のあるZr,REMの効果が十分発揮できず、スケールの剥離が観察され、また電気抵抗も高くなっている。
また、Alを多く含む比較鋼No.14は、耐酸化性は良好であるが、酸化被膜の電気抵抗が極めて高く、固体酸化物型燃料電池セパレータに適用するには好ましくない特性しか得られなかった。
一方で本発明鋼は、大気中950℃で1000Hr加熱を行なって表面に酸化被膜を形成させた後に950℃において測定した電気抵抗の値、また、750℃で1000Hr加熱を行なって表面に酸化被膜を形成させた後に750℃において測定した電気抵抗の値は、いずれも十分に小さい。
From Table 2, comparative steel No. 1 with a large amount of Al. Compared to 11, the steel of the present invention has less oxidation increase of the cylindrical specimen after heating at 950 ° C. × 1000 Hr and 750 ° C. for 1000 Hr in the atmosphere. This is considered to be because the internal oxidation was reduced and the Cr 2 O 3 coating of the protective film was stabilized by sufficiently reducing Al.
Comparative steel No. No. 12 is not sufficient in oxidation resistance because of the large amount of Si. Comparative steel No. No. 13, the value of the formula (1) is large, the effects of Zr and REM which are effective in oxidation resistance cannot be sufficiently exhibited, peeling of the scale is observed, and the electric resistance is also high.
Further, comparative steel No. 1 containing a large amount of Al. No. 14 had good oxidation resistance, but the electric resistance of the oxide film was extremely high, and only properties not desirable for application to a solid oxide fuel cell separator were obtained.
On the other hand, the steel according to the present invention has an electric resistance value measured at 950 ° C. after forming an oxide film on the surface by heating at 950 ° C. in the atmosphere for 1000 hours, and an oxide film on the surface by heating at 750 ° C. for 1000 hours. The values of the electrical resistance measured at 750 ° C. after forming the film are sufficiently small.

本発明鋼の固体酸化物型燃料電池セパレータ鋼は700〜950℃付近において良好な電気伝導性を有する酸化被膜を形成すると共に、長時間加熱においても良好な耐酸化性、特に耐剥離性を有し、かつ電解質との熱膨張差が小さいという特性を有するものであるため、同様な特性が求められる用途であれば棒鋼、線材、粉末、粉末焼結体、多孔質体、鋼箔、等の種々の形状に加工して使用することが可能である。   The solid oxide fuel cell separator steel of the present invention forms an oxide film having good electrical conductivity in the vicinity of 700 to 950 ° C., and also has good oxidation resistance, especially peel resistance, even when heated for a long time. In addition, since it has the property that the difference in thermal expansion from the electrolyte is small, such as steel bars, wire rods, powders, powder sintered bodies, porous bodies, steel foils, etc. It can be used after being processed into various shapes.

Claims (1)

質量%にて、C:0.1%以下、Si:0.2%未満(0%を含まず)、Mn:0.1〜1.0%、Cr:17〜26%、Ni:2%以下、Zr:0.01〜0.8%であって、Y:0.01〜0.3%と希土類元素(REM):0.005〜0.2%の一種または二種以上を含み、残部は実質的にFeでなり、Al:0.08%以下に規制し、更に不可避的不純物として、S:0.015%以下、O:0.010%以下、N:0.040%以下、B:0.0030%以下に制限し、且つ(1)式を満足することを特徴とする固体酸化物型燃料電池セパレータ用鋼。
(O)/(0.028Si+0.003Mn+0.024Al+0.023Zr+0.14Y+0.08REM)≦1.0…(1)
In mass%, C: 0.1% or less, Si: less than 0.2% (not including 0%), Mn: 0.1 to 1.0%, Cr: 17 to 26%, Ni: 2% Hereinafter, Zr: 0.01 to 0.8%, including Y: 0.01 to 0.3% and rare earth element (REM): 0.005 to 0.2%, or two or more kinds, The balance is substantially Fe, Al is regulated to 0.08% or less, and further, as inevitable impurities, S: 0.015% or less, O: 0.010% or less, N: 0.040% or less, B: Steel for solid oxide fuel cell separator, limited to 0.0030% or less and satisfying the formula (1).
(O) / (0.028Si + 0.003Mn + 0.024Al + 0.023Zr + 0.14Y + 0.08REM) ≦ 1.0 ... (1)
JP2005201677A 2005-07-11 2005-07-11 Steel for solid-oxide fuel cell separator Pending JP2007016297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201677A JP2007016297A (en) 2005-07-11 2005-07-11 Steel for solid-oxide fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201677A JP2007016297A (en) 2005-07-11 2005-07-11 Steel for solid-oxide fuel cell separator

Publications (1)

Publication Number Publication Date
JP2007016297A true JP2007016297A (en) 2007-01-25

Family

ID=37753710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201677A Pending JP2007016297A (en) 2005-07-11 2005-07-11 Steel for solid-oxide fuel cell separator

Country Status (1)

Country Link
JP (1) JP2007016297A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131180A1 (en) * 2008-04-24 2009-10-29 大阪瓦斯株式会社 Cell for solid oxide fuel battery
WO2011034002A1 (en) 2009-09-16 2011-03-24 日立金属株式会社 Steel for solid oxide fuel cell having excellent oxidation resistance
WO2012144600A1 (en) 2011-04-22 2012-10-26 日立金属株式会社 Steel for solid oxide fuel cells having excellent oxidation resistance, and member for solid oxide fuel cells using same
US10995384B2 (en) 2014-09-30 2021-05-04 Hitachi Metals, Ltd. Steel for solid oxide fuel cells and manufacturing method thereof
WO2023074807A1 (en) * 2021-10-27 2023-05-04 京セラ株式会社 Electroconductive member, electrochemical cell, electrochemical cell device, module and module storage device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131180A1 (en) * 2008-04-24 2009-10-29 大阪瓦斯株式会社 Cell for solid oxide fuel battery
JP4659136B2 (en) * 2008-04-24 2011-03-30 大阪瓦斯株式会社 Solid oxide fuel cell
US8865373B2 (en) 2008-04-24 2014-10-21 Osaka Gas Co., Ltd. Cell for solid oxide fuel cell
KR101553270B1 (en) 2008-04-24 2015-09-15 오사까 가스 가부시키가이샤 Cell for solid oxide fuel cell
WO2011034002A1 (en) 2009-09-16 2011-03-24 日立金属株式会社 Steel for solid oxide fuel cell having excellent oxidation resistance
US9065084B2 (en) 2009-09-16 2015-06-23 Hitachi Metals, Ltd. Steel for solid oxide fuel cell having excellent oxidation resistance
WO2012144600A1 (en) 2011-04-22 2012-10-26 日立金属株式会社 Steel for solid oxide fuel cells having excellent oxidation resistance, and member for solid oxide fuel cells using same
JP5257803B2 (en) * 2011-04-22 2013-08-07 日立金属株式会社 Steel for solid oxide fuel cell excellent in oxidation resistance and member for solid oxide fuel cell using the same
US10995384B2 (en) 2014-09-30 2021-05-04 Hitachi Metals, Ltd. Steel for solid oxide fuel cells and manufacturing method thereof
WO2023074807A1 (en) * 2021-10-27 2023-05-04 京セラ株式会社 Electroconductive member, electrochemical cell, electrochemical cell device, module and module storage device

Similar Documents

Publication Publication Date Title
JP4310723B2 (en) Steel for solid oxide fuel cell separator
JP4737600B2 (en) Steel for solid oxide fuel cell separator
CA2774035C (en) Steel for solid oxide fuel cell having excellent oxidation resistance
JP3534285B2 (en) Solid electrolyte fuel cell separator steel
US6776956B2 (en) Steel for separators of solid-oxide type fuel cells
JP5257803B2 (en) Steel for solid oxide fuel cell excellent in oxidation resistance and member for solid oxide fuel cell using the same
JP3321888B2 (en) Metal materials for solid oxide fuel cells
JP2007016297A (en) Steel for solid-oxide fuel cell separator
JP3704655B2 (en) Steel for solid oxide fuel cell separator
SE527933C2 (en) Heat-resistant steel
JP5306631B2 (en) Ferritic steel for solid oxide fuel cells and other high temperature applications
JP4385328B2 (en) Steel for solid oxide fuel cell separator
JP6120199B2 (en) Steel for solid oxide fuel cell and method for producing the same
JP4524760B2 (en) Oxidation resistant steel and solid oxide fuel cell parts using the same
JP2003105503A (en) Steel for solid oxide type fuel battery separator
JP4259225B2 (en) Metal material for fuel cell and solid oxide fuel cell
JP2010013727A (en) Ferritic stainless steel superior in oxidation resistance
JP4214921B2 (en) Fe-Cr alloy for fuel cell
JP2005264298A (en) Metallic material for fuel cell and solid oxide type fuel cell
JP2016141853A (en) Steel for solid oxide type fuel cell separator
JP2005264299A (en) Metallic material for fuel cell and solid oxide type fuel cell