JPH06293941A - Metallic material for solid electrolyte type fuel cell - Google Patents

Metallic material for solid electrolyte type fuel cell

Info

Publication number
JPH06293941A
JPH06293941A JP5101937A JP10193793A JPH06293941A JP H06293941 A JPH06293941 A JP H06293941A JP 5101937 A JP5101937 A JP 5101937A JP 10193793 A JP10193793 A JP 10193793A JP H06293941 A JPH06293941 A JP H06293941A
Authority
JP
Japan
Prior art keywords
less
steel
fuel cell
oxidation resistance
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5101937A
Other languages
Japanese (ja)
Inventor
Yoshitaka Nishiyama
佳孝 西山
Yoshio Taruya
芳男 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5101937A priority Critical patent/JPH06293941A/en
Publication of JPH06293941A publication Critical patent/JPH06293941A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To produce an austenitic stainless steel for solid electrolyte type fuel cell, having superior oxidation resistance and electric conductivity even in a high temp. oxidizing atmosphere. CONSTITUTION:The austenitic stainless steel has a composition consisting of <=0.15% C, 0.375-4.55% Si, <=3.0% Mn, 15-30% Cr, 20-60% Ni, 2.5-6.0% Al, and the balance Fe with inevitable impurities or further containing <=0.5%, in total, of one or more kinds among Y and rare earth elements and satisfying the inequality {Al(%)-1}/4<=Si(%)<=0.8Al(%)-0.25. If necessary, the content of S as an inevitable impurity is regulated to <=0.002% and also the total content of S and O is regulated to <=0.005%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、600℃以上の高温
酸化雰囲気中においても優れた耐酸化性と電気伝導性を
示す固体電解質型燃料電池用オ−ステナイト系ステンレ
ス鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel for solid oxide fuel cells, which exhibits excellent oxidation resistance and electric conductivity even in a high temperature oxidizing atmosphere of 600 ° C. or higher.

【0002】[0002]

【従来技術とその課題】近年、将来に予想される石油資
源枯渇と大気汚染を含む環境問題の観点から、石炭改質
ガスを利用することが可能で、かつエネルギ−変換効率
が高い燃料電池が次世代の電力供給源として脚光を浴び
始めており、1981年度からム−ンライト計画の一環
として「燃料電池発電技術の研究開発」が進められてき
た。
2. Description of the Related Art In recent years, from the viewpoint of environmental problems including depletion of petroleum resources and air pollution, which are expected in the future, there has been proposed a fuel cell that can use reformed coal gas and has high energy conversion efficiency. It has been in the spotlight as a next-generation power supply source, and "Research and development of fuel cell power generation technology" has been promoted as part of the Moonlight Project since 1981.

【0003】ところで、燃料電池は起電力を発生する電
解質の種類により“リン酸型",“溶融炭酸塩型",“固体
電解質型" 等に分類されており、各々運転温度も異なっ
ているが、その中で運転温度が200℃程度であるリン
酸型燃料電池は基本的な技術開発が終了し、実用間近と
なっている。
Fuel cells are classified into "phosphoric acid type", "molten carbonate type", "solid electrolyte type", etc. according to the type of electrolyte that generates electromotive force, and their operating temperatures are different. The basic technical development of the phosphoric acid fuel cell, which has an operating temperature of about 200 ° C., has been completed and is nearing practical use.

【0004】また、固体電解質型燃料電池は、運転温度
が1000℃にも達するために幾つかの未解決な問題を
抱えてはいるものの、 a) エネルギ−効率が他の発電システムより高い, b) 石炭改質ガス等種々の燃料ガスが利用可能である, c) NOX の発生が少なく環境への影響が小さい, d) 液体,融体を用いないため構造がコンパクトであ
る, 等の利点を数多く有していることから、次世代の最も期
待されている発電システムであると考えられている。
Further, the solid oxide fuel cell has some unsolved problems because the operating temperature reaches 1000 ° C., but a) its energy efficiency is higher than that of other power generation systems, b ) Various fuel gases such as coal reformed gas can be used, c) NO X generation is small and environmental impact is small, d) Structure is compact because liquid and melt are not used, etc. It is considered to be the most promising power generation system for the next generation because it has many

【0005】しかし、これらの燃料電池にあっては、製
造コストの低減,長寿命化,信頼性および保守性の問題
解決が今後の実用化を考える上で極めて重要な課題とな
っており、これらを満足させるための安価で高性能な材
料の開発が強く求められている。
However, in these fuel cells, the reduction of manufacturing cost, the prolongation of life, the solution of problems of reliability and maintainability are extremely important issues for practical use in the future. There is a strong demand for the development of inexpensive and high-performance materials to satisfy the above requirements.

【0006】特に、前述した固体電解質型燃料電池は電
池構成も含めて開発がこれからとも言えるものではある
が、その中の「平板型」のものは量産性に優れると共に
高出力密度が得られると期待されており、これに適用す
る材料の開発にしのぎが削られている。
In particular, the solid oxide fuel cell described above can be said to be developed including the cell structure, but the "plate type" among them is excellent in mass productivity and can obtain high output density. Expectations are high, and the development of materials applicable to this is under pressure.

【0007】即ち、「平板型」の固体電解質型燃料電池
は電解質と燃料極と空気極の薄膜3層から成る平坦な発
電膜とインタコネクタから構成されており、発電膜とイ
ンタコネクタとの間に波型支持層でガス流路を形成する
構造となっているが、実験室規模で検討されているイン
タ−コネクタや波型支持層等の構成部材には、耐酸化
性,高温での電気伝導性,電解質との熱膨張差から見た
整合性の点から従来より導電性セラミックスが用いられ
てきた。しかし、このような材料は、加工性が悪い上に
高温での強度も金属材料より小さく、しかも高価である
ことから、システムの大型化に対応できないという問題
を有していた。また、大面積化により、長時間の安定運
転に対する信頼性についても克服し難い問題も生じる。
そのため、安価で高性能な金属材料の開発が急務となっ
ていたのである。
That is, a "plate type" solid oxide fuel cell is composed of a flat power generation membrane composed of an electrolyte, a thin film of a fuel electrode and an air electrode and an interconnector, and between the power generation membrane and the interconnector. The corrugated support layer has a structure that forms a gas flow path, but the components such as the interconnector and corrugated support layer that are being studied in the laboratory are resistant to oxidation and electrical properties at high temperatures. Conventionally, conductive ceramics have been used because of their conductivity and compatibility with the difference in thermal expansion from the electrolyte. However, such a material has a problem that it cannot cope with an increase in the size of a system because it has poor workability, its strength at high temperature is smaller than that of a metal material, and it is expensive. In addition, due to the large area, there is a problem that it is difficult to overcome the reliability for stable operation for a long time.
Therefore, there has been an urgent need to develop inexpensive and high-performance metal materials.

【0008】ところで、高温での強度や耐久性に優れる
比較的安価な金属材料ということになると“ステンレス
鋼”が思い浮かぶが、上述のような固体電解質型燃料電
池のインタ−コネクタや波型支持層等の構成部材として
ステンレス鋼を適用しようとすると、1000℃という
極めて過酷な酸化環境での耐酸化性と高温での良電気伝
導性の確保という点で、これまでのステンレス鋼とは一
線を画する性能を付与することが必要となる。
By the way, "stainless steel" comes to mind when it comes to a relatively inexpensive metal material that is excellent in strength and durability at high temperatures. However, the above-mentioned interconnector and corrugated support of the solid oxide fuel cell are considered. When stainless steel is applied as a component such as a layer, it is different from conventional stainless steels in terms of ensuring oxidation resistance in an extremely harsh oxidizing environment of 1000 ° C and good electrical conductivity at high temperatures. It is necessary to give the image quality.

【0009】もっとも、耐酸化性については、鋼中に適
正量のAl,Si等の耐酸化性改善元素を添加することによ
ってある程度は改善されることが知られている。例え
ば、Fe基合金では、フェライト系の場合、15%以上の
Cr(以降、 成分割合を表す%は重量%とする)を添加し
た上で 2.0%以上のAlを添加すると表面に均一なAl系酸
化スケ−ルが安定に生成されるようになって耐酸化性に
優れた材料となるため、電熱線や自動車排気ガス改質触
媒の担体用部材として使用されている。また、オ−ステ
ナイト系のFe基合金では、例えば特公昭55−4349
8号公報にも開示されているように、15%以上のCrを
添加した上で 4.0%以上のAlを添加することによりやは
り表面に均一なAl系酸化スケ−ルが安定に生成されるよ
うになり、耐酸化性に優れた材料となる。
It is known, however, that the oxidation resistance is improved to some extent by adding an appropriate amount of an oxidation resistance improving element such as Al or Si to steel. For example, in Fe-based alloys, in the case of ferrite type,
If 2.0% or more of Al is added after adding Cr (hereinafter,% representing the component ratio is% by weight), a uniform Al-based oxide scale will be stably generated on the surface, and oxidation resistance will be improved. Since it is a material with excellent properties, it is used as a support member for heating wires and automobile exhaust gas reforming catalysts. Further, in an austenitic Fe-based alloy, for example, Japanese Patent Publication No.
As disclosed in Japanese Patent Publication No. 8, by adding 15% or more of Cr and then 4.0% or more of Al, a uniform Al-based oxide scale is stably formed on the surface. And becomes a material having excellent oxidation resistance.

【0010】しかしながら、一般的に耐酸化性に優れた
金属材料表面の生成酸化物は電気伝導性が低いことか
ら、このような耐熱材料をそのまま電池インタ−コネク
タや波型支持層等に適用することは難しいと考えられ、
それへの適用に際しては高温での電気伝導性確保のため
の工夫が必要である。特に、1000℃を超える条件で
のステンレス鋼の耐酸化性改善に最も望ましいと考えら
れるα-Al23 は絶縁性酸化物であり、1000℃付近
では10-6S/cm 程度の導電率しか示さない。
However, since the oxide formed on the surface of a metal material which is excellent in oxidation resistance generally has low electric conductivity, such a heat resistant material is directly applied to a battery interconnector, a corrugated support layer or the like. Is considered difficult,
When applying it, it is necessary to devise to secure electric conductivity at high temperature. In particular, α-Al 2 O 3, which is considered to be the most desirable for improving the oxidation resistance of stainless steel under conditions exceeding 1000 ° C, is an insulating oxide, and has a conductivity of about 10 -6 S / cm at around 1000 ° C. Only show.

【0011】しかるに、耐酸化性改善元素を含有させた
ステンレス鋼、特にオ−ステナイト系ステンレス鋼は加
工性が良好である上に高温強度や高温での耐酸化性に優
れているので、その基本的な特徴を損なうことなく高温
酸化雰囲気中での電気伝導性を確保することができれば
固体電解質型燃料電池の構成部材用材料として極めて有
望なものと考えられた。
However, since the stainless steel containing the oxidation resistance improving element, especially the austenitic stainless steel, has good workability and excellent high temperature strength and oxidation resistance at high temperature, its basic It was considered to be extremely promising as a material for a constituent member of a solid oxide fuel cell if it could secure electric conductivity in a high temperature oxidizing atmosphere without deteriorating the characteristic features.

【0012】このようなことから、本発明が目的とする
のは、セラミックス材料に比べて加工性や高温での機械
的強度に優れ、かつ安価であるというオ−ステナイト系
ステンレス鋼の基本的な特性,利点をそのまま備え、か
つ高温酸化雰囲気中においても優れた耐酸化性と電気伝
導性を示す固体電解質型燃料電池用オ−ステナイト系ス
テンレス鋼を提供することである。
Therefore, the object of the present invention is to improve the workability and mechanical strength at high temperature of the austenitic stainless steel, which is less expensive than the ceramic material. An object of the present invention is to provide an austenitic stainless steel for a solid oxide fuel cell, which has characteristics and advantages as they are, and which has excellent oxidation resistance and electrical conductivity even in a high temperature oxidizing atmosphere.

【0013】[0013]

【課題を解決するための手段】本発明者等は上記目的を
達成すべく鋭意研究を重ねた結果、次のような知見を得
ることができた。即ち、オ−ステナイト系ステンレス鋼
中に耐酸化性改善のための合金元素としてCr,Al,Si等
を添加した場合、酸化速度の点(酸化速度が減少するこ
と)からすると900℃以上での使用がある程度可能と
なるが、酸化スケ−ルの成長に伴い高温での電気伝導性
が低下する。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors were able to obtain the following knowledge. That is, when Cr, Al, Si, etc. are added to the austenitic stainless steel as alloying elements for improving the oxidation resistance, the oxidation rate is 900 ° C or higher from the viewpoint of the oxidation rate (the oxidation rate decreases). Although it can be used to some extent, the electrical conductivity at high temperature decreases as the oxide scale grows.

【0014】特に、オ−ステナイト系ステンレス鋼の場
合、1000℃を超えての適用では耐酸化性確保の点か
らAlを 4.0%以上添加することが最も有効であるが、Al
添加により鋼表面に絶縁性のAl系酸化スケ−ルが生成す
るため電気伝導の低下が著しい。そのため、このような
高Al添加のオ−ステナイト系ステンレス鋼を固体電解質
型燃料電池のインタ−コネクタ等の部材に適用すると、
電気抵抗が高くなるので電気特性が急激に低下する可能
性がある。
In particular, in the case of austenitic stainless steel, it is most effective to add Al in an amount of 4.0% or more from the viewpoint of securing oxidation resistance when applied at temperatures above 1000 ° C.
As a result of the addition, an insulative Al-based oxide scale is formed on the steel surface, resulting in a marked decrease in electrical conductivity. Therefore, when such a high Al-added austenitic stainless steel is applied to a member such as an interconnector of a solid oxide fuel cell,
Since the electrical resistance becomes high, the electrical characteristics may drop sharply.

【0015】しかしながら、Al,Siの適量添加が行われ
ないと1000℃程度の高温酸化雰囲気中ではFe−Cr系
主体のスピネル型酸化物が生成し、母材の耐酸化性が急
速に劣化する。
However, if proper amounts of Al and Si are not added, a spinel type oxide mainly composed of Fe-Cr is generated in a high temperature oxidizing atmosphere of about 1000 ° C, and the oxidation resistance of the base material is rapidly deteriorated. .

【0016】一方、Cr含有鋼では、組成調整により高温
酸化雰囲気中で表面に“1000℃での電気伝導性が約
2×10-3S/cm と比較的良好である Cr23 ”のスケ
−ルを形成させることができるが、この場合にはスケ−
ルの成長速度が速く、更にFe−Cr系のスピネル酸化物の
生成に伴い異常酸化が起きるので材料の劣化が加速度的
に進行する。従って、Cr系酸化スケ−ルの場合にはスケ
−ルが厚くなって電気伝導性が低下するだけでなく、加
熱中のスケ−ル剥離により電気伝導が非常に不安定とな
る。
On the other hand, in the Cr-containing steel, by adjusting the composition, the surface of "Cr 2 O 3 having a relatively good electric conductivity at 1000 ° C. of about 2 × 10 -3 S / cm" in a high temperature oxidizing atmosphere was added. A scale can be formed, but in this case the scale is
The growth rate of silicon is high, and abnormal oxidation occurs due to the formation of Fe-Cr spinel oxide, which accelerates the deterioration of the material. Therefore, in the case of the Cr-based oxide scale, not only the scale becomes thick and the electric conductivity is lowered, but also the electric conduction becomes very unstable due to the scale peeling during heating.

【0017】ところが、Siをはじめとした鋼の成分調整
によっては、高温酸化雰囲気中で生成する表面酸化スケ
−ルを、Al系酸化物を主体とし、これにCr系酸化物を含
有したものとすることができ、これによって耐酸化性と
電気伝導性が共に優れるオ−ステナイト系ステンレス鋼
を実現できることを見出した。
However, depending on the compositional adjustment of steel such as Si, the surface oxide scale produced in a high temperature oxidizing atmosphere is mainly composed of an Al-based oxide and contains a Cr-based oxide. It has been found that an austenitic stainless steel excellent in both oxidation resistance and electrical conductivity can be realized.

【0018】つまり、次に示す事項を究明したのであ
る。 a) Crを15%以上、Niを20%以上、更にAlを 4.0%
以上含有するステンレス鋼は、Al系酸化スケ−ルを生成
して850℃から950℃を超えるほどの温度領域にお
いても優れた耐酸化性を損なうことはないが、電気伝導
性に問題がある。 b) しかるに、上記合金系のオ−ステナイト系ステンレ
ス鋼においてAlを 2.5%以上に調整すると同時に、Si含
有量を“Al含有量に係わる特定の領域”に調整した場合
には、高温酸化雰囲気中においてAl系酸化物主体にCr系
酸化物を含有する酸化スケ−ルを生成するようになり、
このような鋼はAl系酸化スケ−ルを生成する耐熱合金よ
り耐酸化性が劣るものの、Fe−Cr−Ni系より耐酸化性に
優れる上、Al系酸化スケ−ルを生成する合金以上の電気
伝導性を示す。 c) しかも、上記ステンレス鋼に総量で 0.5%以下の
Y,希土類元素又はCaを更に添加した場合には、電気伝
導性を損なわずに材料の劣化寿命を延ばすことができ
る。 d) 更に、これらのステンレス鋼において不純物元素で
あるS及びOの含有量を特定の領域にまで低減した場合
には、異常酸化の発生がより一層抑えられて長時間にわ
たり優れた耐酸化性を維持する材料となる。
That is, the following matters were clarified. a) Cr 15% or more, Ni 20% or more, and Al 4.0%
The stainless steel containing the above does not deteriorate the excellent oxidation resistance even in the temperature range from 850 ° C. to over 950 ° C., although it produces an Al-based oxide scale, but it has a problem in electrical conductivity. b) However, when Al is adjusted to 2.5% or more in the above alloy-based austenitic stainless steel and the Si content is adjusted to "a specific region related to Al content", in a high temperature oxidizing atmosphere. In the oxide-based scale containing Al-based oxide mainly containing Cr-based oxide,
Although such steels are inferior in oxidation resistance to heat-resistant alloys that produce Al-based oxide scales, they are superior in oxidation resistance to Fe-Cr-Ni-based alloys and have a higher thermal resistance than alloys that produce Al-based oxide scales. Shows electrical conductivity. c) Moreover, when 0.5% or less in total of Y, rare earth elements or Ca is further added to the above stainless steel, the deterioration life of the material can be extended without impairing the electrical conductivity. d) Further, when the contents of the impurity elements S and O in these stainless steels are reduced to a specific region, abnormal oxidation is further suppressed and excellent oxidation resistance is obtained for a long time. It becomes a material to maintain.

【0019】本発明は、上記知見事項等を基にした更な
る検討の末に完成されたものであって、「オ−ステナイ
ト系ステンレス鋼を、C:0.15%以下, Si: 0.375
〜4.55%, Mn: 3.0%以下,Cr:15〜30%, N
i:20〜60%, Al: 2.5〜 6.0%を含有するか、
或いは更にY,希土類元素またはCaのうちの1種以
上:合計で 0.5%以下をも含み、 かつ式 {Al(%) −1}/4 ≦ Si(%) ≦ 0.8Al(%)−0.25 を満たしていて残部がFe及び不可避不純物より成ると共
に、 必要に応じて不可避不純物であるSの含有量が 0.0
02%以下で、 SとOとの合計含有量が 0.005%以下であ
る成分構成とすることにより、 固体電解質型燃料電池用
としても十分に満足できる高温酸化雰囲気中での優れた
耐酸化性,電気伝導性を備えしめた点」に大きな特徴を
有している。
The present invention has been completed after further studies based on the above findings and the like. "The austenitic stainless steel is C: 0.15% or less, Si: 0.375.
~ 4.55%, Mn: 3.0% or less, Cr: 15-30%, N
i: 20 to 60%, Al: 2.5 to 6.0%, or
Alternatively, one or more of Y, rare earth elements or Ca: including 0.5% or less in total, and having the formula {Al (%) -1} / 4 ≤ Si (%) ≤ 0.8 Al (%)-0.25 The balance is satisfied and the balance consists of Fe and unavoidable impurities, and the content of S, which is an unavoidable impurity, is 0.0 if necessary.
By making the composition such that the total content of S and O is 0.005% or less at 02% or less, excellent oxidation resistance in a high temperature oxidizing atmosphere, which can be sufficiently satisfied even for a solid oxide fuel cell, The point is that it has electrical conductivity. "

【0020】以下、本発明において、鋼の成分割合を前
記の如くに数値限定した理由を説明する。
In the present invention, the reason why the component ratio of steel is numerically limited as described above will be explained below.

【作用】[Action]

C:Cには鋼の機械的強度を確保する作用があるが、高
温での使用時或いは溶接熱影響部においてCr236 型の
炭化物を形成して加工性を劣化したり、Crによる耐酸化
性の向上効果を著しく減じたりするほか、スケ−ル剥離
を起こしやすくする元素であるので0.15%を超える含有
量とするのは避けなければならない。なお、機械的強度
を重視する場合は上限まで含有させることもあるが、C
含有量は低い方が好ましいと言える。もっとも、製鋼コ
ストの問題から実際上は0.0001%程度が下限値になると
言える。
C: Although the C has an effect of ensuring the mechanical strength of the steel, deteriorates the workability by forming a Cr 23 C 6 type carbide in or HAZ during use at high temperature, oxidation by Cr It is an element that not only significantly reduces the effect of improving the chemical conversion property but also facilitates scale peeling, so the content exceeding 0.15% must be avoided. If the mechanical strength is important, it may be contained up to the upper limit, but C
It can be said that the lower the content, the better. However, it can be said that about 0.0001% is actually the lower limit because of the problem of steelmaking costs.

【0021】Si:Siは本発明鋼において重要な成分であ
り、その含有量は図1の斜線で示す領域に調整する必要
がある。即ち、Si含有量が 0.375%を下回ったり、ある
いは直線「 Si(%)={Al(%) −1}/4」で示される値
を下回った場合には、高温酸化雰囲気中において均一な
Al系酸化スケ−ルのみ生成するので電気伝導性が問題と
なる。一方、Si含有量が4.55%を超えたり、直線「 Si
(%)=0.8Al(%)−0.25」で示される値を上回った場合に
は、Fe−Cr系主体のスピネル型酸化物が形成され、耐酸
化性が急激に低下する。従って、Si含有量は 0.375〜4.
55%で、かつ式 {Al(%) −1}/4 ≦ Si(%) ≦ 0.8Al(%)−0.25 を満たす値と定めた。
Si: Si is an important component in the steel of the present invention, and its content needs to be adjusted within the shaded region in FIG. That is, when the Si content is less than 0.375% or less than the value indicated by the straight line “Si (%) = {Al (%) −1} / 4”, it is uniform in the high temperature oxidizing atmosphere.
Since only Al-based oxide scale is produced, electrical conductivity becomes a problem. On the other hand, if the Si content exceeds 4.55%,
(%) = 0.8Al (%) − 0.25 ”is exceeded, a spinel type oxide mainly composed of Fe—Cr is formed and the oxidation resistance sharply decreases. Therefore, the Si content is 0.375-4.
The value was determined to be 55% and to satisfy the formula {Al (%)-1} / 4 ≤ Si (%) ≤ 0.8 Al (%)-0.25.

【0022】Mn:Mnは鋼中へ必然的に随伴される元素で
あってオ−ステナイト相安定化に有効な成分であるが、
高温での強度確保を目的として積極的に添加しても良
い。しかしながら、 3.0%を超えて含有させると耐酸化
性が急速に劣化することからMn含有量を 3.0%以下と定
めたが、0.01〜 3.0%の範囲で調整するのが望ましい。
Mn: Mn is an element that is inevitably accompanied in steel and is an effective component for stabilizing the austenite phase.
It may be positively added for the purpose of ensuring strength at high temperatures. However, if the content exceeds 3.0%, the oxidation resistance deteriorates rapidly, so the Mn content was defined as 3.0% or less, but it is desirable to adjust it in the range of 0.01 to 3.0%.

【0023】Cr:CrはAlと共に高温での耐酸化性を得る
のに必要な基本的な元素である。即ち、600℃を超え
る温度に加熱されて“電気伝導性をそれほど損なわない
Al系とCr系の酸化スケ−ル”を生成し耐酸化性を保つた
めには、15%以上のCr含有量が必要である。一方、3
0%を超えてCrを含有させてもそれ以上の耐酸化性向上
効果が得られないばかりか、成形性,加工性に悪影響が
出てくることから、Cr含有量は15〜30%と定めた。
Cr: Cr is a basic element necessary for obtaining oxidation resistance at high temperature together with Al. That is, it is heated to a temperature of over 600 ° C., “the electrical conductivity is not significantly impaired.
In order to generate an Al-based and Cr-based oxide scale "and maintain the oxidation resistance, a Cr content of 15% or more is necessary.
If Cr is contained in an amount of more than 0%, not only the effect of improving the oxidation resistance cannot be obtained, but also the formability and workability are adversely affected. Therefore, the Cr content is defined as 15 to 30%. It was

【0024】Ni:Niはオ−ステナイト鋼の基本的性質を
与えるのみならず、Al系酸化物にCr系酸化物を含有した
複合酸化スケ−ルを生成するのに重要な元素である。し
かし、その含有量が20%未満ではオ−ステナイト相が
不安定となるほか、Cr系もしくはAl系の単一スケ−ルし
か生成しない。一方、60%を超える鋼はコスト的に実
用し難いものであることから、Ni含有量は20〜60%
と定めた。
Ni: Ni is an important element not only for providing the basic properties of austenitic steel but also for forming a composite oxide scale containing a Cr-based oxide in an Al-based oxide. However, if the content is less than 20%, the austenite phase becomes unstable and only a single scale of Cr type or Al type is produced. On the other hand, the steel containing more than 60% is difficult to practically use in terms of cost, so the Ni content is 20 to 60%.
I decided.

【0025】Al:Alは本発明鋼において重要な基本元素
であり、Al系酸化物を主体としCr系酸化物を含有する複
合酸化スケ−ルを生成させるためには 2.5%以上含有さ
せる必要がある。しかし、 6.0%を含有させるとSi,Ni
量にかかわらずAl系酸化スケ−ルのみが均一に生成する
ようになるほか、常温での靱性低下が極めて顕著となる
ため、Al含有量は 2.5〜 6.0%と定めた。
Al: Al is an important basic element in the steel of the present invention, and it is necessary to contain Al in an amount of 2.5% or more in order to form a composite oxide scale mainly containing an Al oxide and containing a Cr oxide. is there. However, if 6.0% is included, Si, Ni
Regardless of the amount, only the Al-based oxide scale will be uniformly formed, and the toughness decrease at room temperature will be extremely remarkable, so the Al content was set to 2.5 to 6.0%.

【0026】Y,希土類元素(REM)及びCa:これら
の成分には鋼の耐酸化性を改善する等しい作用があり、
また鋼中のSを固定して熱間加工性を改善する作用をも
有しているので必要により1種又は2種以上の添加がな
されるが、過剰に含有させると粗大酸化物の生成して逆
に耐酸化性を劣化することから、含有量の上限は総量で
0.5%と定めたが、望ましくは総量で 0.1%以下に調整
するのが良い。
Y, rare earth element (REM) and Ca: these components have the same effect of improving the oxidation resistance of the steel,
Further, since it also has an effect of fixing S in the steel and improving hot workability, one or more kinds are added if necessary, but if it is contained in excess, coarse oxides are formed. On the contrary, since the oxidation resistance deteriorates, the upper limit of the total content is the total amount.
Although it was set to 0.5%, it is desirable to adjust the total amount to 0.1% or less.

【0027】S及びO:不可避的な不純物元素であるS
は 0.002%以下に規制するのが好ましい。なぜなら、S
含有量が 0.002%を超えるとMnSの形成が顕著となるた
めである。つまり、鋼中にMnSが形成されていると、高
温雰囲気中でこれが分解して遊離Sが粒界に濃化し、そ
のためCr,Al等の母材表面への拡散が阻害され保護皮膜
の形成,補修が行われ難くなる。
S and O: S which is an unavoidable impurity element
Is preferably regulated to 0.002% or less. Because S
This is because when the content exceeds 0.002%, the formation of MnS becomes remarkable. In other words, if MnS is formed in the steel, it decomposes in a high temperature atmosphere and the free S is concentrated in the grain boundaries, which prevents the diffusion of Cr, Al, etc. to the surface of the base metal and forms a protective film. Repair becomes difficult.

【0028】更に、粒界に存在するSは酸素(O)と結
合して酸化の起点となり、酸化スケ−ルの薄利要因とな
る。そこで、この弊害を防ぐため、必要に応じてMnより
も高温でより安定な硫化物を形成する希土類元素または
Ca等を添加し、Sの固定化が図られる。しかし、これら
の効果を高めるためには、鋼中のO濃度は低い方が良
い。なぜなら、これらの添加元素が酸化物を作りやす
く、鋼中のS固定元素として機能する以前に酸化物とし
て消費され、有効量が減少するためである。そこで、鋼
中の「S(%) +O(%) 」値は低い方が好ましいが、上記
弊害を十分に抑えるためにはこの値を 0.005%以下とす
べきである。
Further, S existing at the grain boundary is combined with oxygen (O) to serve as a starting point of oxidation, which causes a thin profit factor of the oxide scale. Therefore, in order to prevent this adverse effect, a rare earth element or a rare earth element that forms a more stable sulfide at a higher temperature than Mn as necessary.
Immobilization of S is achieved by adding Ca or the like. However, in order to enhance these effects, it is preferable that the O concentration in the steel is low. This is because these additional elements are likely to form oxides, are consumed as oxides before they function as S-fixing elements in steel, and the effective amount decreases. Therefore, it is preferable that the "S (%) + O (%)" value in the steel is low, but in order to sufficiently suppress the above-mentioned adverse effects, this value should be 0.005% or less.

【0029】その他、本発明鋼における不可避的不純物
元素の代表的なものとしてP,Cu及びNが挙げられる
が、以下、これらの含有量について説明する。 P:不純物であるPについては0.03%以下に規制するの
が好ましい。 Cu:鋼中へはNi源からの不純物としてCuが随伴されるこ
とがあるが、 1.5%程度までは許容される。 N:Nは鋼中のCr,Alと結合して窒化物を形成し、Cr,
Alによる高温の耐酸化性を低下させる元素であり、好ま
しくは0.10%以下に規制するのが良い。なお、鋼中の
C,Nの悪影響を減ずる目的で、必要に応じてCr或いは
AlよりもC,Nとの親和力の強いTi,Nb又はZrといった
安定化元素を添加しても良い。この安定化元素を添加す
る場合は、材料の脆化の問題から総量を 2.0%以下に抑
えることが必要である。
Other typical unavoidable impurity elements in the steel of the present invention include P, Cu and N. The contents of these elements will be described below. P: P as an impurity is preferably regulated to 0.03% or less. Cu: Cu may accompany the steel as an impurity from the Ni source, but up to about 1.5% is allowed. N: N combines with Cr and Al in steel to form a nitride,
It is an element that reduces the high temperature oxidation resistance of Al, and is preferably regulated to 0.10% or less. For the purpose of reducing the adverse effects of C and N in the steel, if necessary, Cr or
A stabilizing element such as Ti, Nb, or Zr, which has a stronger affinity for C and N than Al, may be added. When adding this stabilizing element, it is necessary to keep the total amount to 2.0% or less due to the problem of material embrittlement.

【0030】更に、Moも、高温での強度確保作用や耐食
性を改善する作用を有しているため必要に応じて添加し
ても良いが、10.0%を超えて添加してもそれ以上の性能
改善効果が得られない。
Further, since Mo also has a function of ensuring strength at high temperatures and a function of improving corrosion resistance, it may be added if necessary, but even if it is added in excess of 10.0%, a further performance is required. The improvement effect cannot be obtained.

【0031】ところで、本発明に係るオ−ステナイト系
ステンレス鋼が高温酸化雰囲気中で優れた耐酸化性と電
気伝導性を示すのは、形成されるスケ−ルがAl主体の酸
化物にCr主体の酸化物が適正割合で含まれた構成となる
ためである。つまり、Al主体の酸化物とCr主体の酸化物
で構成されるスケ−ルでは a) 絶縁性酸化物であるAl主体の酸化物へCr主体の酸化
物を生成させることにより電気伝導性が上がる, b) Cr主体の酸化物の増加により耐酸化性が低下し、更
にスケ−ル厚が増加することで電気伝導性が急激に低下
していく, という傾向があるため、Cr主体の酸化物の含有量は重要
であるが、本発明鋼に係る成分組成に調整されると高温
酸化雰囲気中でAl主体の酸化物に対し15〜60vol%
の割合でCr主体の酸化物が含まれるスケ−ルが形成さ
れ、優れた耐酸化性と電気伝導性とが両立するようにな
る。
By the way, the austenitic stainless steel according to the present invention exhibits excellent oxidation resistance and electrical conductivity in a high temperature oxidizing atmosphere because the scale formed is mainly composed of Al-based oxide and Cr-based. This is because the oxide is included in an appropriate ratio. In other words, in a scale composed of Al-based oxides and Cr-based oxides, a) Electrical conductivity is increased by forming Cr-based oxides into insulating-based Al-based oxides. , B) There is a tendency that the oxidation resistance decreases due to the increase of Cr-based oxides, and the electrical conductivity rapidly decreases due to the increase of the scale thickness. Content is important, but when adjusted to the composition according to the steel of the present invention, it is 15 to 60 vol% with respect to Al-based oxide in a high temperature oxidizing atmosphere.
A scale containing an oxide mainly composed of Cr is formed at a ratio of, and excellent oxidation resistance and electrical conductivity are compatible with each other.

【0032】次に、実施例により本発明を更に具体的に
説明する。
Next, the present invention will be described more specifically by way of examples.

【実施例】表1及び表2に示される成分組成の各鋼を真
空溶解炉にて溶製した後、鍛造,熱間圧延,冷間圧延を
施して厚さ2mmの板材とした。
[Examples] Steels having the compositions shown in Tables 1 and 2 were melted in a vacuum melting furnace, and then forged, hot-rolled and cold-rolled to obtain a plate material having a thickness of 2 mm.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】次に、上記各鋼板から各種試験材を切出
し、高温酸化雰囲気中での特性(耐酸化性,導電性)を
調査した。まず、各試験材を1000℃大気中で連続酸
化試験に供し、200時間経過後に取り出して表面に生
成した酸化物の種類を調べた。なお、この酸化物の種類
に関する調査は、表面に生成した酸化物をX線回折して
同定する方法(タ−ゲット:Cu,入射角α=0.3°)によ
った。この同定結果を表3に示す。
Next, various test materials were cut out from each of the above steel plates, and the characteristics (oxidation resistance, conductivity) in a high temperature oxidizing atmosphere were investigated. First, each test material was subjected to a continuous oxidation test in the air at 1000 ° C., and after 200 hours, it was taken out and the kind of oxide formed on the surface was examined. The investigation on the type of oxide was carried out by the method of identifying the oxide formed on the surface by X-ray diffraction (target: Cu, incident angle α = 0.3 °). The results of this identification are shown in Table 3.

【0036】[0036]

【表3】 [Table 3]

【0037】表3に示される結果からも、本発明鋼にお
いて生成した酸化物は「Al主体の酸化物(α-Al23)に
Cr主体の酸化物(Cr23)が複合されたもの」であること
が確認できる。これに対して、比較鋼25〜27,31および
33は Al23 スケ−ルを、また比較鋼23〜24,28〜30及
び32は何れも FeCr24 ,(FeCr24, Cr23, Al23)
多層スケ−ルを形成していることが分かる。更に、比較
鋼28についてスケ−ル断面の観察,EPME分析を行っ
たところ、 Al23 の内部酸化層が母材奥深く成長し、
その先端部にAlNが生成しているのが確認された。
The results shown in Table 3 also show that the oxide produced in the steel of the present invention was "a main oxide (α-Al 2 O 3 )."
It can be confirmed that the oxide is a composite of Cr-based oxide (Cr 2 O 3 ). In contrast, comparative steels 25-27, 31 and
33 is an Al 2 O 3 scale, and comparative steels 23 to 24, 28 to 30 and 32 are all FeCr 2 O 4 , (FeCr 2 O 4 , Cr 2 O 3 , Al 2 O 3 )
It can be seen that a multi-layer scale is formed. Further, when the scale cross section of Comparative Steel 28 was observed and EPME analysis was performed, an internal oxide layer of Al 2 O 3 grew deep in the base metal,
It was confirmed that AlN was generated at the tip.

【0038】また、図2は、種々割合でSiとAlを含有す
るオ−ステナイト系ステンレス鋼板について前記連続酸
化試験を行い、その生成酸化物の種類を同定して整理し
た結果を示しているが、SiおよびAlの含有量が本発明で
規定する範囲内に調整されて初めて生成酸化物が「Al主
体の酸化物(α-Al23)にCr主体の酸化物(Cr23)が複
合されたもの」となることが分かる。
FIG. 2 shows the results of conducting the above continuous oxidation test on the austenitic stainless steel sheets containing various ratios of Si and Al, identifying the types of the produced oxides, and arranging them. Only when the contents of Si, Si and Al are adjusted to fall within the range specified in the present invention, the produced oxide is “Al-based oxide (α-Al 2 O 3 ), Cr-based oxide (Cr 2 O 3 ). It is understood that it becomes a compound thing.

【0039】ところで、図3は、本発明鋼および比較鋼
23,24,27,30の1000℃大気中での酸化増量の経時
変化を比較したグラフであり、耐酸化性を評価するため
に整理したものである{酸化増量は試料と剥離スケ−ル
を含めた重量を測定し、単位面積当りの変化量(mg/cm2)
で評価している}。図3に示す酸化増量の経時変化か
ら、本発明鋼は比較鋼27(Al23 スケ−ルが形成されて
いる)より劣るものの、既存のFe−Cr系鋼(比較鋼24)
やFe−Cr−Ni系鋼(比較鋼23)に比べて耐酸化性に優れ
ていることが分かる。なお、Y,希土類元素,Caを添加
したものはスケ−ル剥離が見られず、より耐酸化性に優
れることも確認された。
By the way, FIG. 3 shows the steel of the present invention and the comparative steel.
It is the graph which compared the change with time of the oxidation increase of 23,24,27,30 in 1000 ℃ atmosphere, and arranged to evaluate the oxidation resistance {Oxidation increase is the sample and the peeling scale. Measure the weight including the change amount per unit area (mg / cm 2 )
Are evaluated in}. Although the steel of the present invention is inferior to the comparative steel 27 (where the Al 2 O 3 scale is formed) from the time course of the increase in oxidation shown in FIG. 3, it is an existing Fe-Cr steel (comparative steel 24).
It can be seen that the oxidation resistance is superior to that of Fe-Cr-Ni steel (Comparative Steel 23). It was also confirmed that the ones containing Y, rare earth elements, and Ca did not show scale peeling and were more excellent in oxidation resistance.

【0040】一方、図4は、本発明鋼5および14、並び
に比較鋼27および30の1000℃大気中での電気抵抗の
経時変化を示したグラフである。なお、この「電気抵抗
の経時変化」の測定は鋼板の厚さ方向で行い、結果は面
積抵抗(Ω・cm2)に換算して整理した。
On the other hand, FIG. 4 is a graph showing changes with time of the electric resistances of the inventive steels 5 and 14 and the comparative steels 27 and 30 in the atmosphere at 1000 ° C. In addition, the measurement of this "time-dependent change in electrical resistance" was performed in the thickness direction of the steel sheet, and the results were arranged in terms of area resistance (Ω · cm 2 ).

【0041】図4に示される結果からも、本発明鋼5お
よび14では0.10Ω・cm2 程度の低い電気抵抗を維持して
いて電気伝導性が極めて高いのに対して、 FeCr24
ケ−ル生成鋼30は時間経過と共に電気抵抗が上昇し、 A
l23 スケ−ル生成鋼27の場合には僅かの間に電気抵抗
が極めて高い値にまで急上昇していることが確認でき
る。なお、上記電気抵抗の経時変化傾向は、その他の本
発明鋼においても同様であった。そして、耐酸化性と同
じく電気伝導性に優れていることは固体電解質型燃料電
池部材(インタ−コネクタ等)に適用する上で重要な要
求性能であり、本発明鋼が固体電解質型燃料電池部材と
して非常に優れていることを確認できる。
From the results shown in FIG. 4, the steels 5 and 14 of the present invention maintain a low electric resistance of about 0.10 Ω · cm 2 and have an extremely high electric conductivity, whereas the FeCr 2 O 4 scale -The electrical resistance of the steel 30
In the case of the l 2 O 3 scale forming steel 27, it can be confirmed that the electric resistance sharply increased to an extremely high value in a short time. The tendency of the electric resistance to change with time was the same in the other steels of the present invention. Further, it is an important required performance when applied to a solid oxide fuel cell member (interconnector, etc.) that it is excellent in electrical conductivity as well as oxidation resistance, and the steel of the present invention is a solid oxide fuel cell member. You can see that it is very good.

【0042】[0042]

【効果の総括】以上に説明したように、この発明によれ
ば、高温酸化雰囲気中でも優れた耐酸化性,電気伝導性
を示し、固体電解質型燃料電池の構成部材として優れた
性能を発揮する比較的安価なオ−ステナイト系ステンレ
ス鋼を提供することが可能となり、固体電解質型燃料電
池の実用化に大きく寄与できるなど、産業上極めて優れ
た効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, a comparative example showing excellent oxidation resistance and electric conductivity even in a high temperature oxidizing atmosphere and exhibiting excellent performance as a constituent member of a solid oxide fuel cell. It is possible to provide austenitic stainless steel that is economically inexpensive, and it is possible to greatly contribute to the practical application of the solid oxide fuel cell, and it is possible to bring about an extremely excellent effect in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明鋼におけるSiとAlの含有量範囲を示した
グラフである。
FIG. 1 is a graph showing Si and Al content ranges in the steel of the present invention.

【図2】種々割合でSiとAlを含有するオ−ステナイト系
ステンレス鋼板の連続酸化試験で生成した酸化物の種類
を同定して整理した結果を示すグラフである。
FIG. 2 is a graph showing the results of identifying and arranging the types of oxides produced in the continuous oxidation test of austenitic stainless steel sheets containing Si and Al in various proportions.

【図3】実施例で作成した鋼について高温耐酸化性を比
較したグラフである。
FIG. 3 is a graph comparing the high temperature oxidation resistance of the steels produced in the examples.

【図4】実施例で作成した鋼について高温酸化雰囲気で
の電気抵抗変化を示したグラフである。
FIG. 4 is a graph showing changes in electric resistance of steels produced in Examples in a high temperature oxidizing atmosphere.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にてC:0.15%以下, Si:
0.375〜4.55%, Mn: 3.0%以下,Cr:15〜30%,
Ni:20〜60%, Al: 2.5〜 6.0%を含有
し、かつ式 {Al(%) −1}/4 ≦ Si(%) ≦ 0.8Al(%)−0.25 を満たしていて残部がFe及び不可避不純物より成ること
を特徴とする、固体電解質型燃料電池用オ−ステナイト
系ステンレス鋼。
1. A weight ratio of C: 0.15% or less, Si:
0.375 to 4.55%, Mn: 3.0% or less, Cr: 15 to 30%,
Ni: 20 to 60%, Al: 2.5 to 6.0%, and the formula {Al (%) -1} / 4 ≤ Si (%) ≤ 0.8 Al (%)-0.25 is satisfied and the balance is Fe and An austenitic stainless steel for a solid oxide fuel cell, characterized by comprising unavoidable impurities.
【請求項2】 重量割合にてC:0.15%以下, Si:
0.375〜4.55%, Mn: 3.0%以下,Cr:15〜30%,
Ni:20〜60%, Al: 2.5〜 6.0% Y,希土類元素またはCaのうちの1種以上:合計で 0.5
%以下 を含有し、かつ式 {Al(%) −1}/4 ≦ Si(%) ≦ 0.8Al(%)−0.25 を満たしていて残部がFe及び不可避不純物より成ること
を特徴とする、固体電解質型燃料電池用オ−ステナイト
系ステンレス鋼。
2. A weight ratio of C: 0.15% or less, Si:
0.375 to 4.55%, Mn: 3.0% or less, Cr: 15 to 30%,
Ni: 20-60%, Al: 2.5-6.0% Y, one or more of rare earth elements or Ca: 0.5 in total
% Or less, and satisfies the formula {Al (%) -1} / 4 ≤ Si (%) ≤ 0.8 Al (%)-0.25, the balance being Fe and unavoidable impurities. Austenitic stainless steel for electrolyte fuel cells.
【請求項3】 重量割合にてC:0.15%以下, Si:
0.375〜4.55%, Mn: 3.0%以下,Cr:15〜30%,
Ni:20〜60%, Al: 2.5〜 6.0%を含有
し、かつ式 {Al(%) −1}/4 ≦ Si(%) ≦ 0.8Al(%)−0.25 を満たしていて残部がFe及び不可避不純物より成ると共
に、不可避不純物であるSの含有量が 0.002%以下で、
SとOとの合計含有量が 0.005%以下であることを特徴
とする、固体電解質型燃料電池用オ−ステナイト系ステ
ンレス鋼。
3. A weight ratio of C: 0.15% or less, Si:
0.375 to 4.55%, Mn: 3.0% or less, Cr: 15 to 30%,
Ni: 20 to 60%, Al: 2.5 to 6.0%, and the formula {Al (%) -1} / 4 ≤ Si (%) ≤ 0.8 Al (%)-0.25 is satisfied and the balance is Fe and It consists of unavoidable impurities, and the content of S, an unavoidable impurity, is 0.002% or less,
An austenitic stainless steel for a solid oxide fuel cell, characterized in that the total content of S and O is 0.005% or less.
【請求項4】 重量割合にてC:0.15%以下, Si:
0.375〜4.55%, Mn: 3.0%以下,Cr:15〜30%,
Ni:20〜60%, Al: 2.5〜 6.0% Y,希土類元素またはCaのうちの1種以上:合計で 0.5
%以下 を含有し、かつ式 {Al(%) −1}/4 ≦ Si(%) ≦ 0.8Al(%)−0.25 を満たしていて残部がFe及び不可避不純物より成ると共
に、不可避不純物であるSの含有量が 0.002%以下で、
SとOとの合計含有量が 0.005%以下であることを特徴
とする、固体電解質型燃料電池用オ−ステナイト系ステ
ンレス鋼。
4. A weight ratio of C: 0.15% or less, Si:
0.375 to 4.55%, Mn: 3.0% or less, Cr: 15 to 30%,
Ni: 20-60%, Al: 2.5-6.0% Y, one or more of rare earth elements or Ca: 0.5 in total
% Or less, and satisfies the formula {Al (%) -1} / 4 ≤ Si (%) ≤ 0.8 Al (%)-0.25 with the balance being Fe and unavoidable impurities, and S which is an unavoidable impurity. Content of 0.002% or less,
An austenitic stainless steel for a solid oxide fuel cell, characterized in that the total content of S and O is 0.005% or less.
JP5101937A 1993-04-05 1993-04-05 Metallic material for solid electrolyte type fuel cell Pending JPH06293941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5101937A JPH06293941A (en) 1993-04-05 1993-04-05 Metallic material for solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5101937A JPH06293941A (en) 1993-04-05 1993-04-05 Metallic material for solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH06293941A true JPH06293941A (en) 1994-10-21

Family

ID=14313826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5101937A Pending JPH06293941A (en) 1993-04-05 1993-04-05 Metallic material for solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH06293941A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025890A1 (en) * 1997-11-17 1999-05-27 Ceramic Fuel Cells Limited A heat resistant steel
US6709781B2 (en) 2000-07-07 2004-03-23 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
JP2004259643A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Solid oxide fuel cell
JP2008522037A (en) * 2004-11-30 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Strip products that form perovskite or spinel surface coatings for electrical contacts
WO2008079480A1 (en) * 2006-12-27 2008-07-03 Utc Power Corporation Metal alloy bipolar plates for fuel cell
US7722974B2 (en) * 2000-11-30 2010-05-25 Siemens Aktiengesellschaft Fuel cell module comprising a magnetic shielding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025890A1 (en) * 1997-11-17 1999-05-27 Ceramic Fuel Cells Limited A heat resistant steel
US6709781B2 (en) 2000-07-07 2004-03-23 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
DE10132841B4 (en) * 2000-07-07 2007-08-23 Nippon Steel Corp. Separation plate for solid polymer fuel cells and process for their preparation and use of the separation plate in solid polymer fuel cells
US7722974B2 (en) * 2000-11-30 2010-05-25 Siemens Aktiengesellschaft Fuel cell module comprising a magnetic shielding
JP2004259643A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Solid oxide fuel cell
JP2008522037A (en) * 2004-11-30 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Strip products that form perovskite or spinel surface coatings for electrical contacts
WO2008079480A1 (en) * 2006-12-27 2008-07-03 Utc Power Corporation Metal alloy bipolar plates for fuel cell

Similar Documents

Publication Publication Date Title
US10196721B2 (en) Heat-resistant iron-chromium-aluminum alloy with low chromium vaporization rate and elevated thermal stability
JP3321888B2 (en) Metal materials for solid oxide fuel cells
KR100858572B1 (en) Metal material for fuel cell, fuel cell using the same and method for producing the material
JP2001523765A (en) Heat resistant steel
EP1298228B1 (en) Steel for separators of solid-oxide type fuel cells
JP2003173795A (en) Steel for solid oxide fuel cell separator
CA2833693C (en) Steel for solid oxide fuel cells having excellent oxidation resistance, and member for solid oxide fuel cells using same
JP3534285B2 (en) Solid electrolyte fuel cell separator steel
US6641780B2 (en) Ferritic stainless steel having high temperature creep resistance
JP4737600B2 (en) Steel for solid oxide fuel cell separator
JP3704655B2 (en) Steel for solid oxide fuel cell separator
JP2003187828A (en) Ferritic stainless steel for solid oxide type fuel cell member
JPH06146006A (en) Ferrite stainless steel material and its manufacture
JPH06293941A (en) Metallic material for solid electrolyte type fuel cell
JP2007016297A (en) Steel for solid-oxide fuel cell separator
CN106715743A (en) Steel for solid oxide fuel cells and method for producing same
JPH06146011A (en) Austenite stainless steel material and its manufacture
JP4385328B2 (en) Steel for solid oxide fuel cell separator
JP2005206884A (en) Fe-Cr ALLOY FOR FUEL CELL
WO2000075389A1 (en) Air-side solid oxide fuel cell components
CN116490632A (en) Stainless steel for solid oxide fuel cell, method for producing same, solid oxide fuel cell member, and solid oxide fuel cell
AU778950B2 (en) Air-side solid oxide fuel cell components
JPH08188853A (en) Ferritic stainless steel excellent in fused carbonate corrosion resistance