JPH04358044A - High corrosion resistant steel sheet for molten carbonate type fuel cell separator - Google Patents

High corrosion resistant steel sheet for molten carbonate type fuel cell separator

Info

Publication number
JPH04358044A
JPH04358044A JP3133073A JP13307391A JPH04358044A JP H04358044 A JPH04358044 A JP H04358044A JP 3133073 A JP3133073 A JP 3133073A JP 13307391 A JP13307391 A JP 13307391A JP H04358044 A JPH04358044 A JP H04358044A
Authority
JP
Japan
Prior art keywords
fuel cell
pure
molten carbonate
environment
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3133073A
Other languages
Japanese (ja)
Inventor
Izumi Muto
泉 武藤
Toru Ito
叡 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3133073A priority Critical patent/JPH04358044A/en
Publication of JPH04358044A publication Critical patent/JPH04358044A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To offer a high corrosion resistant steel sheet for a molten carbonate type fuel cell separator. CONSTITUTION:The compsn. of an alustenitic stainless steel contg., by weight, <=0.1% carbon, <=1% silicon, <=35% manganese, 5 to 26% chromium, <=20% nickel and the balance iron with inevitable impurities is regulated to a one in which one side is coated with pure nickel or pure copper or an alloy contg. one of nickel and copper by >=80%. In molten calbonate of 700 deg.C, its corrosion amt. is one several compared to that of a 25 chromium 20 nickel steel as the conventional material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高温アルカリ炭酸塩を
使用する溶融炭酸塩型燃料電池セパレータ用の材料に関
するもので、アノード、カソード両環境での耐食性に優
れることを特徴とするものである。
[Industrial Application Field] The present invention relates to a material for a molten carbonate fuel cell separator using a high-temperature alkali carbonate, and is characterized by excellent corrosion resistance in both anode and cathode environments. .

【0002】0002

【従来の技術】溶融炭酸塩型燃料電池は、水素などの還
元性ガスと酸素などの酸化性ガスを炭酸塩の存在下で反
応させ電力を得るシステムである。電池は700℃前後
の高温で運転されるため腐食性の高い環境となっており
、電池の構成材料の耐食性が電池全体の寿命を決定して
いる。特に腐食の激しい部材は、アノード極とカソード
極を隔てているセパレータである。電池では、還元性ガ
スと酸化性ガスの特性の異なる2種類のガスを使用して
いるため、アノード極付近では還元性環境、カソード極
付近では酸化性環境となっている。このため、セパレー
タ上では片面で還元性環境での腐食、もう片面で酸化性
環境での機構の異なった腐食が起こっている。このため
、セパレータは還元性環境と酸化性環境での耐食性が共
に優れた材料でなくてはならない。さらに、セパレータ
は電流の通路にもなっているため、アルミナなどの電気
絶縁性の酸化スケールが生成する合金やセラミックスは
不適当である。
2. Description of the Related Art A molten carbonate fuel cell is a system that generates electricity by reacting a reducing gas such as hydrogen with an oxidizing gas such as oxygen in the presence of carbonate. Batteries are operated at high temperatures of around 700° C., creating a highly corrosive environment, and the corrosion resistance of the battery's constituent materials determines the lifespan of the entire battery. A member that is particularly corroded is the separator that separates the anode and cathode. Since a battery uses two types of gases, reducing gas and oxidizing gas, which have different characteristics, a reducing environment exists near the anode electrode, and an oxidizing environment exists near the cathode electrode. For this reason, corrosion occurs on one side of the separator in a reducing environment and on the other side in an oxidizing environment, with different mechanisms of corrosion occurring. Therefore, the separator must be made of a material that has excellent corrosion resistance in both reducing and oxidizing environments. Furthermore, since the separator also serves as a current path, alloys and ceramics that generate electrically insulating oxide scale, such as alumina, are unsuitable.

【0003】このような技術的課題があるにもかかわら
ず、従来のセパレータには耐アノード環境用の材料選定
が行われていた。たとえば、アノード極の還元性環境下
では、Niなど電気化学的に貴な金属は耐食性が良好で
あるため、高NiのSUS310Sステンレス鋼(Fe
−25Cr−20Ni)がSUS316L(Fe−17
Cr−12Ni−2.5Mo)よりも有望視されている
。さらにNi量を高めたステンレス鋼として、特開昭6
3−190143号公報においては、Crを15〜35
%、Niを15〜35%添加した上にAlとYを複合添
加したFe基合金が開示されている。また、純Niや純
Auなどのように、金属自体の電位がもともと貴なもの
はアノード環境で極めて耐食性が良いことも従来から知
られていた。
Despite these technical problems, materials for conventional separators have been selected to be resistant to anode environments. For example, in the reducing environment of the anode electrode, electrochemically noble metals such as Ni have good corrosion resistance, so high Ni SUS310S stainless steel (Fe
-25Cr-20Ni) is SUS316L (Fe-17
It is considered more promising than Cr-12Ni-2.5Mo). In addition, as a stainless steel with increased Ni content,
In Publication No. 3-190143, Cr is 15 to 35
%, an Fe-based alloy containing 15 to 35% Ni and a combined addition of Al and Y is disclosed. Furthermore, it has been known for a long time that metals such as pure Ni and pure Au, which have an inherently noble potential, have extremely good corrosion resistance in an anode environment.

【0004】しかし、セパレータの置かれているもう一
方の環境である酸化性のカソード環境において、アノー
ド環境での耐食性に優れる純Niおよび高Ni合金は、
NiOの生成と溶解により、逆に耐食性が極めて悪いと
いう問題点が存在した。同様に、Ni量の少ないカソー
ド環境での耐食性が良好なステンレス鋼は、合金の電位
が充分に貴にはならないためにアノード環境での耐食性
は低いという問題が存在した。
However, in the oxidizing cathode environment, which is the other environment in which the separator is placed, pure Ni and high Ni alloys have excellent corrosion resistance in the anode environment.
On the contrary, there was a problem in that corrosion resistance was extremely poor due to the formation and dissolution of NiO. Similarly, stainless steel, which has a small amount of Ni and has good corrosion resistance in a cathode environment, has a problem in that its corrosion resistance in an anode environment is low because the potential of the alloy does not become sufficiently noble.

【0005】この様に、現状ではアノード環境とカソー
ド環境の両方での耐食性を有するセパレータ用の材料は
未だ開発されていない。
[0005] As described above, at present, no separator material has yet been developed that has corrosion resistance in both the anode environment and the cathode environment.

【0006】[0006]

【発明が解決しようとする課題】本発明は、溶融炭酸塩
型燃料電池のセパレータに求められる、アノード環境と
カソード環境での耐食性を合わせ持った材料の提供を目
的としてなされたものである。
SUMMARY OF THE INVENTION The object of the present invention is to provide a material that has both corrosion resistance in an anode environment and a cathode environment, which is required for a separator of a molten carbonate fuel cell.

【0007】[0007]

【課題を解決するための手段】本発明者は、当初、上記
課題を解決するためにアノードとカソードの双方での耐
食性に優れる単一の金属材料を探索した。その結果、上
記のような相矛盾する合金元素の役割を発見するに至り
、耐還元性の腐食特性を有する金属材料と耐酸化性の腐
食特性を有する金属材料を複合化することで、電気伝導
性に優れ、かつ高耐食性の材料を得ることに成功した。
[Means for Solving the Problems] In order to solve the above problems, the present inventor initially searched for a single metal material that has excellent corrosion resistance for both the anode and the cathode. As a result, we discovered the contradictory roles of alloying elements as described above, and by combining metal materials with reduction-resistant corrosion characteristics and metal materials with oxidation-resistant corrosion characteristics, we can improve electrical conductivity. We succeeded in obtaining a material with excellent properties and high corrosion resistance.

【0008】本発明の要旨とするところは、重量パーセ
ントで、C:0.1%以下、Si:1%以下、Mn:3
5%以下、Cr:5〜26%、Ni:20%以下を含み
、残部はFeと不可避不純物とからなるオーステナイト
系ステンレス鋼板の片面が純Niあるいは純Cuまたは
NiとCuとのうち一つを80%以上含む合金により覆
われていることを特徴とする溶融炭酸塩型燃料電池セパ
レータ用高耐食鋼板にある。
The gist of the present invention is that C: 0.1% or less, Si: 1% or less, Mn: 3% by weight.
5% or less, Cr: 5 to 26%, Ni: 20% or less, and the remainder is Fe and unavoidable impurities.One side of the austenitic stainless steel plate contains pure Ni, pure Cu, or one of Ni and Cu. A highly corrosion-resistant steel sheet for a molten carbonate fuel cell separator, characterized in that it is covered with an alloy containing 80% or more.

【0009】[0009]

【作用】以下に、本発明を詳細に説明する。本発明の複
合鋼板は、オーステナイト系ステンレス鋼が燃料電池の
カソード極側に、純Niあるいは純CuまたはNiとC
uとのうち一つを80%以上含む合金がアノード極側に
なるように燃料電池内に配置する。
[Operation] The present invention will be explained in detail below. The composite steel sheet of the present invention has austenitic stainless steel on the cathode side of a fuel cell, with pure Ni, pure Cu, or Ni and C.
The alloy containing 80% or more of one of u and u is placed in the fuel cell so that it is on the anode side.

【0010】まず、カソード環境用のオーステナイト系
ステンレス鋼成分範囲の限定理由に ついて述べる。C:Cにはステンレス鋼の高温強度を向
上させる作用がある。しかし、過度の添加は合金の熱間
加工性を害するために、0.1%以下に限定する。 Si:Siには耐酸化性と高温強度を改善する作用があ
る。しかし、多量の添加は加工性を阻害するため、1%
以下に限定する。
First, the reason for limiting the range of austenitic stainless steel components for the cathode environment will be described. C: C has the effect of improving the high temperature strength of stainless steel. However, excessive addition impairs the hot workability of the alloy, so it is limited to 0.1% or less. Si: Si has the effect of improving oxidation resistance and high temperature strength. However, adding a large amount inhibits processability, so 1%
Limited to the following.

【0011】Mn:Mnはオーステナイト相形成元素で
あり、高温強度や靱性に優れるオーステナイト相を得る
ために有効である。しかし、35%超の添加は加工性を
害するため、製造コスト上昇につながる。そのため、M
n添加量は35%以下とする。 Cr:CrはFeと共に溶融炭酸塩中にて複合酸化物か
ら成る酸化スケールを形成し、溶融炭酸塩中でのステン
レス鋼の耐食性を向上させる効果がある。ところが、電
池のカソード側の電位はCr酸化物の溶解電位域にある
ため、酸化スケールがCr酸化物主体になるほど多量の
Crを添加すると、かえって耐食性が劣化する。したが
って、Cr添加量は安定な酸化スケールを形成し、かつ
Cr酸化物の溶解も起こらない範囲に制限する必要があ
る。そのため、Cr添加量は5%〜26%とする。
Mn: Mn is an austenite phase-forming element and is effective for obtaining an austenite phase having excellent high-temperature strength and toughness. However, addition of more than 35% impairs processability, leading to an increase in manufacturing costs. Therefore, M
The amount of n added is 35% or less. Cr: Cr forms an oxide scale consisting of a composite oxide in molten carbonate together with Fe, and has the effect of improving the corrosion resistance of stainless steel in molten carbonate. However, since the potential on the cathode side of the battery is in the dissolution potential range of Cr oxide, adding so much Cr that the oxide scale is mainly composed of Cr oxide will actually deteriorate the corrosion resistance. Therefore, the amount of Cr added must be limited to a range that forms a stable oxide scale and does not cause dissolution of Cr oxide. Therefore, the amount of Cr added is set to 5% to 26%.

【0012】Ni:Niはオーステナイト生成元素であ
り、加工性や靱性また高温強度を確保するためにオース
テナイト相を得る際に有用な元素である。しかし、カソ
ード側環境の電位域において、NiやNi酸化物は溶解
するため、多量の添加はカソード雰囲気での耐食性を劣
化させる。そのため、Ni添加量は20%以下とする。
Ni: Ni is an austenite-forming element and is an element useful in obtaining an austenite phase in order to ensure workability, toughness, and high-temperature strength. However, since Ni and Ni oxide dissolve in the potential range of the cathode side environment, adding a large amount deteriorates corrosion resistance in the cathode atmosphere. Therefore, the amount of Ni added is set to 20% or less.

【0013】次に、アノード環境用の材料の選定理由に
ついて述べる。純Ni、純Cuともに、電気化学的に貴
な電位を示す金属である。純金属はもちろんそれらのう
ち一つを80%以上含む合金も貴な電位を示し、アノー
ド環境においてイオンよりも金属状態が安定となり優れ
た耐食性を示す。Ni、Cuともに80%未満では合金
の電位が充分貴にはならず耐食性向上は望めない。これ
らの金属と合金は安価であり、金属箔もしくは薄板とし
ての製造が容易であり圧延法によるクラッド化が容易で
あるばかりでなく、めっきによりこれら金属やその合金
をオーステナイト系ステンレス鋼の片面に被覆すること
も可能な元素である。しかも、上記のカソード環境用の
オーステナイト系ステンレス鋼と熱膨張率が近く、電池
の昇温や冷却過程での熱応力によるわん曲も小さい。
Next, the reason for selecting the material for the anode environment will be described. Both pure Ni and pure Cu are metals that exhibit an electrochemically noble potential. Not only pure metals but also alloys containing 80% or more of these metals exhibit a noble potential, and in the anode environment, the metal state becomes more stable than that of ions and exhibits excellent corrosion resistance. If both Ni and Cu are less than 80%, the potential of the alloy will not become sufficiently noble and no improvement in corrosion resistance can be expected. These metals and alloys are not only inexpensive and easy to manufacture as metal foils or thin sheets, and can be easily made into cladding by rolling, but also can be coated on one side of austenitic stainless steel by plating. It is an element that can also be Moreover, it has a thermal expansion coefficient close to that of the austenitic stainless steel for use in the cathode environment, and is less likely to warp due to thermal stress during the temperature rising or cooling process of the battery.

【0014】[0014]

【実施例】以下、実施例に基づき本発明を詳細に説明す
る。本発明範囲の供試材として、表1に化学組成を示し
たオーステナイト系ステンレス鋼をカソード側環境用と
して、純Ni、純Cu、Ni−15%Cu合金、および
Cu−10%Sn合金とのクラッド鋼を試作した。複合
鋼板は圧延法により作製したクラッド鋼板を試験に使用
した。アノード側のNiおよびCuの厚さは仕上がりで
0.1mm、オーステナイト系ステンレス鋼は仕上がり
で0.7mmになるように制御した。また、比較材とし
て0.8mm厚さの市販SUS310SとSUS316
Lステンレス鋼板を使用した。耐食性は、700℃のL
i2 CO3 −K2 CO3 塩(Li2 CO3 
:K2 CO3 =62モル%:38モル%)中での3
000分 間の定電位分極試験での減肉厚さにより評価
した。その際に、電位はO2 /CO2 、Au電極(
O2 :CO2 =30vol%:70vol%)を基
準にして測定した。アノード極の環境を模擬する場合に
は、溶融塩をH2 を72%、CO2 を18%、H2
 Oを10%混合した雰囲気に保持して、−950mV
の電位を付与した。カソード極の環境を模擬する場合に
は溶融塩をAirを70vol%とCO2 を30vo
l%混合したガス雰囲気に保持し、試験片に−100m
Vの電位を付与した。本試験の場合、アノードとカソー
ドでの耐食性を同時に試験することはできないため、ク
ラッド鋼の片面のみ溶融塩に接するようにアルミナセメ
ントで片面と端面を被覆して試験に供試し、片面づつの
評価とした。また、クラッド鋼を電気炉内で700℃に
10時間加熱して、冷却後のわん曲の程度を図1に示し
た板の曲がりの程度により評価した。昇温速度は100
℃/h、冷却速度は50℃/hとした。試験片の大きさ
は、50mm×50mmを使用した。
EXAMPLES The present invention will be explained in detail below based on examples. As test materials within the scope of the present invention, austenitic stainless steel whose chemical composition is shown in Table 1 was used for the cathode side environment, and pure Ni, pure Cu, Ni-15%Cu alloy, and Cu-10%Sn alloy were used. A prototype of clad steel was produced. The composite steel plate used in the test was a clad steel plate produced by a rolling method. The finished thickness of Ni and Cu on the anode side was controlled to be 0.1 mm, and the finished thickness of austenitic stainless steel was controlled to be 0.7 mm. In addition, commercially available SUS310S and SUS316 with a thickness of 0.8 mm were used as comparison materials.
L stainless steel plate was used. Corrosion resistance is L at 700℃
i2 CO3 -K2 CO3 Salt (Li2 CO3
: K2 CO3 = 62 mol%: 38 mol%)
Evaluation was made by the thickness reduction in a constant potential polarization test for 1,000 minutes. At that time, the potential is O2 /CO2, Au electrode (
The measurement was performed based on O2:CO2=30vol%:70vol%). When simulating the environment of the anode electrode, the molten salt should be mixed with 72% H2, 18% CO2, H2
Maintaining an atmosphere containing 10% O, -950 mV
A potential of . When simulating the environment of the cathode, use 70 vol% of molten salt and 30 vol% of CO2.
The test piece was kept in a gas atmosphere containing 1% of
A potential of V was applied. In the case of this test, since it is not possible to test the corrosion resistance at the anode and cathode at the same time, the clad steel was tested by covering one side and the end face with alumina cement so that only one side of the clad steel was in contact with the molten salt, and evaluating one side at a time. And so. Further, the clad steel was heated to 700° C. for 10 hours in an electric furnace, and the degree of curvature after cooling was evaluated by the degree of curvature of the plate shown in FIG. The heating rate is 100
°C/h, and the cooling rate was 50 °C/h. The size of the test piece used was 50 mm x 50 mm.

【0015】表2に、各クラッド鋼と比較材のステンレ
ス鋼の溶融塩中での減肉厚さを示す。アノード環境とカ
ソード環境での減肉厚さを合計したものを右端に示した
。この値で比較すると、本発明のクラッド鋼は従来材の
SUS310SやSUS316Lに比べて数倍の耐食性
があることがわかる。また、アノード環境側での減肉厚
さが極めて薄いため、純Niと純Cuもしくはそのうち
一つを80%以上含む合金を100μm程度の厚さのめ
っき層とした場合においても、充分に耐食性を維持でき
ることがわかる。
Table 2 shows the thickness reduction of each clad steel and comparative stainless steel in molten salt. The sum of the thinning thicknesses in the anode and cathode environments is shown on the far right. Comparing these values, it can be seen that the clad steel of the present invention has several times the corrosion resistance of conventional materials SUS310S and SUS316L. In addition, since the thinning thickness on the anode environment side is extremely thin, sufficient corrosion resistance can be achieved even when a plating layer of about 100 μm thick is made of pure Ni, pure Cu, or an alloy containing 80% or more of one of them. It turns out that it can be maintained.

【0016】表3に、所定の熱サイクル後の湾曲量を測
定した結果を示す。セパレータとしての許容値は5μm
である。本発明クラッド鋼の湾曲の程度は許容値以下で
あり、燃料電池の構成部材としての性能に問題はない。
Table 3 shows the results of measuring the amount of curvature after a predetermined thermal cycle. The permissible value as a separator is 5μm
It is. The degree of curvature of the clad steel of the present invention is below the permissible value, and there is no problem with its performance as a component of a fuel cell.

【0017】[0017]

【表1】[Table 1]

【0018】[0018]

【表2】[Table 2]

【0019】[0019]

【表3】[Table 3]

【0020】[0020]

【発明の効果】本発明は、溶融炭酸塩型燃料電池内で最
も腐食の激しいセパレータとして、充分使用に耐えうる
耐食性を有するクラッド鋼を得ることに成功したもので
ある。本発明のクラッド鋼は、現在SUS316やSU
S310Sなどが使用されている燃料電池のセパレータ
として非常に有効である。本発明鋼の使用により、溶融
炭酸塩型燃料電池の長寿命化がはかれる。
The present invention has succeeded in obtaining a clad steel having sufficient corrosion resistance to withstand use as a separator, which is the most severely corroded separator in a molten carbonate fuel cell. The clad steel of the present invention is currently SUS316 or SU
It is very effective as a separator for fuel cells in which S310S and the like are used. By using the steel of the present invention, the life of the molten carbonate fuel cell can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】クラッド鋼の熱サイクルによる湾曲の程度を評
価する際に用いた湾曲量の定義と計測方法を示した側面
図である。
FIG. 1 is a side view showing the definition and measurement method of the amount of curvature used in evaluating the degree of curvature due to thermal cycles of clad steel.

【符号の説明】[Explanation of symbols]

1    クラッド鋼 2    湾曲量 1 Clad steel 2 Amount of curvature

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量パーセントで、 C:0.1%以下、 Si:1%以下、 Mn:35%以下、 Cr:5〜26%、 Ni:20%以下を含み、残部はFeと不可避不純物と
からなるオーステナイト系ステンレス鋼板の片面が純N
iあるいは純CuまたはNiとCuとのうち一つを80
%以上含む合金により覆われていることを特徴とする溶
融炭酸塩型燃料電池セパレータ用高耐食鋼板。
Claim 1: Contains, in weight percent, C: 0.1% or less, Si: 1% or less, Mn: 35% or less, Cr: 5 to 26%, Ni: 20% or less, the remainder being Fe and unavoidable impurities. One side of the austenitic stainless steel plate is made of pure N.
i or pure Cu or one of Ni and Cu at 80%
1. A highly corrosion-resistant steel sheet for use in a molten carbonate fuel cell separator, characterized in that it is covered with an alloy containing % or more.
JP3133073A 1991-06-04 1991-06-04 High corrosion resistant steel sheet for molten carbonate type fuel cell separator Withdrawn JPH04358044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3133073A JPH04358044A (en) 1991-06-04 1991-06-04 High corrosion resistant steel sheet for molten carbonate type fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3133073A JPH04358044A (en) 1991-06-04 1991-06-04 High corrosion resistant steel sheet for molten carbonate type fuel cell separator

Publications (1)

Publication Number Publication Date
JPH04358044A true JPH04358044A (en) 1992-12-11

Family

ID=15096218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3133073A Withdrawn JPH04358044A (en) 1991-06-04 1991-06-04 High corrosion resistant steel sheet for molten carbonate type fuel cell separator

Country Status (1)

Country Link
JP (1) JPH04358044A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046723A1 (en) * 1999-04-19 2000-10-25 Sumitomo Metal Industries, Ltd. Stainless steel product for producing polymer electrode fuel cell
WO2003028939A1 (en) * 2001-09-26 2003-04-10 Nippon Metal Industry Co., Ltd. Stainless steel-copper clad and method for production thereof
KR100381470B1 (en) * 1995-12-30 2003-07-18 한국전력공사 Corrosion-resistant separation plate for molten carbonate fuel cell
US6709781B2 (en) 2000-07-07 2004-03-23 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
EP1726674A1 (en) * 2004-03-18 2006-11-29 JFE Steel Corporation Metal material for current-carrying member, separator for fuel cell utilizing the same and fuel cell including the same
US7385163B2 (en) 2003-12-11 2008-06-10 Automotive Componets Holdings, Llc Fuel tank assembly and method of assembly
WO2009013571A1 (en) * 2007-07-25 2009-01-29 Ansaldo Fuel Cells S.P.A. Current collector for fuel cells
KR100950673B1 (en) * 2007-12-24 2010-04-02 주식회사 포스코 A fabrication method and separators for planar solid oxide fuel cells

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381470B1 (en) * 1995-12-30 2003-07-18 한국전력공사 Corrosion-resistant separation plate for molten carbonate fuel cell
EP1046723A1 (en) * 1999-04-19 2000-10-25 Sumitomo Metal Industries, Ltd. Stainless steel product for producing polymer electrode fuel cell
US6379476B1 (en) 1999-04-19 2002-04-30 Sumitomo Metal Industries, Ltd. Stainless steel product for producing polymer electrode fuel cell
US6709781B2 (en) 2000-07-07 2004-03-23 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
DE10132841B4 (en) * 2000-07-07 2007-08-23 Nippon Steel Corp. Separation plate for solid polymer fuel cells and process for their preparation and use of the separation plate in solid polymer fuel cells
WO2003028939A1 (en) * 2001-09-26 2003-04-10 Nippon Metal Industry Co., Ltd. Stainless steel-copper clad and method for production thereof
US7385163B2 (en) 2003-12-11 2008-06-10 Automotive Componets Holdings, Llc Fuel tank assembly and method of assembly
EP1726674A1 (en) * 2004-03-18 2006-11-29 JFE Steel Corporation Metal material for current-carrying member, separator for fuel cell utilizing the same and fuel cell including the same
EP1726674A4 (en) * 2004-03-18 2007-10-24 Jfe Steel Corp Metal material for current-carrying member, separator for fuel cell utilizing the same and fuel cell including the same
US8278009B2 (en) 2004-03-18 2012-10-02 Jfe Steel Corporation Metallic material for conductive member, separator for fuel cell using the same, and fuel cell using the separator
WO2009013571A1 (en) * 2007-07-25 2009-01-29 Ansaldo Fuel Cells S.P.A. Current collector for fuel cells
KR100950673B1 (en) * 2007-12-24 2010-04-02 주식회사 포스코 A fabrication method and separators for planar solid oxide fuel cells

Similar Documents

Publication Publication Date Title
JP2004520479A (en) High temperature material
JP3534285B2 (en) Solid electrolyte fuel cell separator steel
KR100615126B1 (en) Ferritic stainless steel having high temperature creep resistance
JP4737600B2 (en) Steel for solid oxide fuel cell separator
JP3321888B2 (en) Metal materials for solid oxide fuel cells
KR20170063900A (en) Ferritic stainless steel material, separator for solid polymer fuel cells which uses same, and solid polymer fuel cell
JP3097690B1 (en) Polymer electrolyte fuel cell
WO2013018322A1 (en) Stainless steel for fuel cell separator
JP3236755B2 (en) Oxidation resistant metal material
JPWO2009060900A1 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP3097689B1 (en) Polymer electrolyte fuel cell
JPH04358044A (en) High corrosion resistant steel sheet for molten carbonate type fuel cell separator
JP3269479B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator
JP3704655B2 (en) Steel for solid oxide fuel cell separator
JP5306631B2 (en) Ferritic steel for solid oxide fuel cells and other high temperature applications
JP2000309854A (en) Austenitic stainless steel for current-carrying electric parts, and fuel cell
JP3238812B2 (en) Metal materials for solid oxide fuel cells
JP2932211B2 (en) Corrosion resistant stainless steel for molten carbonate fuel cells
JPH06293941A (en) Metallic material for solid electrolyte type fuel cell
JP3245304B2 (en) Metal material
JP4385328B2 (en) Steel for solid oxide fuel cell separator
CN109355468A (en) A kind of cobalt improved austenitic stainless steel of copper vanadium and its process and heat treatment method
KR100774097B1 (en) Ferritic type stainless steel containing yttrium
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
JP3161269B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903