JP3161269B2 - Stainless steel with excellent resistance to molten carbonate corrosion - Google Patents

Stainless steel with excellent resistance to molten carbonate corrosion

Info

Publication number
JP3161269B2
JP3161269B2 JP03037495A JP3037495A JP3161269B2 JP 3161269 B2 JP3161269 B2 JP 3161269B2 JP 03037495 A JP03037495 A JP 03037495A JP 3037495 A JP3037495 A JP 3037495A JP 3161269 B2 JP3161269 B2 JP 3161269B2
Authority
JP
Japan
Prior art keywords
molten carbonate
corrosion
corrosion resistance
stainless steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03037495A
Other languages
Japanese (ja)
Other versions
JPH08225892A (en
Inventor
佳孝 西山
芳男 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP03037495A priority Critical patent/JP3161269B2/en
Publication of JPH08225892A publication Critical patent/JPH08225892A/en
Application granted granted Critical
Publication of JP3161269B2 publication Critical patent/JP3161269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶融炭酸塩型燃料電池
等に用いられる耐溶融炭酸塩腐食性に優れたステンレス
鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel having excellent molten carbonate corrosion resistance used for a molten carbonate fuel cell or the like.

【0002】[0002]

【従来の技術】21世紀における石油資源枯渇問題や大
気汚染を含めた環境問題に対処するために、次世代の電
力供給源として石炭改質ガスが利用できる燃料電池が脚
光を浴び始めている。燃料電池は起電力を発生する電解
質によってリン酸型、溶融炭酸塩型、固体電解質型など
の種類があり、各々運転温度、発電効率が異なる。この
うち、LNGと石炭改質ガスを利用する溶融炭酸塩型燃
料電池は分散型電源やガスタービンとの複合発電による
大規模集中型電源として注目されている。現在100k
W級スタックの開発が終了し、1MW級のプラントの開
発に着手されている。しかしながら、このような大型化
を実現し、商用プラントとして実用化されるためには長
時間の安定性と信頼性、さらには低コスト化が重要とな
る。
2. Description of the Related Art In order to cope with environmental problems including the depletion of petroleum resources and air pollution in the 21st century, fuel cells that can use coal reformed gas as a next-generation power supply source are beginning to attract attention. Fuel cells are of a phosphoric acid type, a molten carbonate type, a solid electrolyte type, and the like, depending on the electrolyte that generates the electromotive force, and each has a different operating temperature and power generation efficiency. Among them, a molten carbonate fuel cell using LNG and coal reformed gas has been attracting attention as a large-scale centralized power supply by combined use of a distributed power supply and a gas turbine. Currently 100k
The development of the W class stack has been completed, and the development of a 1 MW class plant has been started. However, in order to realize such a large size and put it into practical use as a commercial plant, long-term stability and reliability and further cost reduction are important.

【0003】現状での大きな問題ひとつとして、電解質
として使用されるLi2 CO3 やK2 CO3 等を混合し
た溶融炭酸塩による金属材料の腐食がある。特に、600
〜700 ℃の高温の溶融炭酸塩に接するセパレータ材や集
電板はカソード側において激しい腐食環境にさらされ、
電池寿命劣化の要因となっている。
[0003] One of the major problems at present is the corrosion of metal materials by molten carbonate mixed with Li 2 CO 3 or K 2 CO 3 used as an electrolyte. In particular, 600
Separator materials and current collectors in contact with high-temperature molten carbonate at ~ 700 ° C are exposed to severe corrosive environment on the cathode side.
This is a cause of battery life deterioration.

【0004】現在、セパレータ材には、SUS316L(Fe-17C
r-12Ni-2.5Mo) やSUS310S(Fe-25Cr-20Ni) が用いられて
いるが、耐食性は満足されていない。溶融炭酸塩に対す
る耐食性の改善策として特公平4-37154 号公報では 1〜
2 %のAlを添加することが、特開昭63-190143 号公報で
は0.1 〜0.9 %のAlとY とを複合添加することが開示さ
れており、また特開平1ー252750号公報及び特開平 1-252
757 号公報にはSi量を0.2 %以下に規制し、かつAlを添
加したステンレス鋼もしくはNi基合金が開示されてい
る。
At present, SUS316L (Fe-17C) is used as a separator material.
Although r-12Ni-2.5Mo) and SUS310S (Fe-25Cr-20Ni) are used, their corrosion resistance is not satisfactory. As a measure to improve the corrosion resistance to molten carbonate, Japanese Patent Publication No.
Japanese Unexamined Patent Publication No. 63-190143 discloses that adding 2% of Al involves adding 0.1 to 0.9% of Al and Y in a combined manner. 1-252
No. 757 discloses a stainless steel or a Ni-based alloy in which the amount of Si is regulated to 0.2% or less and Al is added.

【0005】特開昭64-68449号公報にはFe、Cr、Ni量
を、特開平4-247852号公報にはCr、Ni量及びMn量を規定
して耐食性を改善したステンレス鋼が開示されている。
しかしながら、これらステンレス鋼もしくはNi基合金
は SUS316L等の従来材に比し、耐食性の向上が見られる
というものであり、長時間の耐用を考えた場合、溶融炭
酸塩に対する耐食性はまだ十分ではないという問題があ
る。
Japanese Patent Application Laid-Open No. 64-68449 discloses a stainless steel in which the amounts of Fe, Cr and Ni are specified, and Japanese Patent Application Laid-Open No. 4-247852 specifies the amounts of Cr, Ni and Mn to improve the corrosion resistance. ing.
However, these stainless steels or Ni-based alloys are said to have improved corrosion resistance compared to conventional materials such as SUS316L, and considering long-term durability, corrosion resistance to molten carbonate is not yet sufficient. There's a problem.

【0006】さらに、特公平 4-13825号公報では耐食性
の大幅な改善を図るため、Al単独もしくはAlとSiを複合
添加することが提案されている。しかし、Al添加を基本
としたものであり電池本体の部材として使用する場合、
電池特性として重要である良好な電気伝導性を損なう恐
れがある。
Further, Japanese Patent Publication No. Hei 4-13825 proposes to add Al alone or a combination of Al and Si in order to greatly improve the corrosion resistance. However, when it is based on Al addition and is used as a battery body member,
Good electrical conductivity, which is important as battery characteristics, may be impaired.

【0007】[0007]

【発明が解決しようとする課題】このように溶融炭酸塩
型燃料電池に使用される金属材料については、溶融炭酸
塩中での腐食機構が十分に解明されていないこともあ
り、決定的な耐食性材料は開発されていないのが現状で
ある。
As described above, regarding the metal materials used in the molten carbonate fuel cell, the mechanism of corrosion in the molten carbonate has not been sufficiently elucidated, and the decisive corrosion resistance has been determined. At present, no material has been developed.

【0008】本発明の目的は、溶融炭酸塩型燃料電池の
構造部材に使用できる金属材料として、アノード側環境
及びカソード側環境において優れた耐溶融炭酸塩腐食性
を有するステンレス鋼を提供することにある。
An object of the present invention is to provide a stainless steel having excellent molten carbonate corrosion resistance in an anode side environment and a cathode side environment as a metal material which can be used for a structural member of a molten carbonate type fuel cell. is there.

【0009】[0009]

【課題を解決するための手段】本発明者らは、溶融炭酸
塩型燃料電池において、特にカソード側環境においても
優れた耐溶融炭酸塩腐食性を有するFe-Cr-Ni系ステンレ
ス鋼の材料開発を目指し、広範囲にわたり化学成分を変
えた材料について生成するスケールの組成、構造に着目
し、系統的な調査、研究を重ねた結果、以下のような知
見を得るに至った。
Means for Solving the Problems The present inventors have developed a material for a molten carbonate fuel cell, in particular, a Fe-Cr-Ni stainless steel having excellent molten carbonate corrosion resistance even in a cathode environment. With a focus on the composition and structure of the scales generated for materials with widely varied chemical components, systematic investigations and studies were repeated, and the following findings were obtained.

【0010】A)材料表面に生成するCr系主体の酸化物
は、一般にFe系酸化物に比べ腐食速度が小さくかつ安定
であることから耐食性に優れる。しかしながら溶融炭酸
塩中において、Cr系酸化物は容易に電解質であるLi2CO3
と反応し、LiCrO2を形成するため長時間での耐食性が劣
るばかりか電解質の損失を招くこと。
A) Cr-based oxides formed on the surface of a material generally have a lower corrosion rate and are more stable than Fe-based oxides, and therefore have excellent corrosion resistance. However, in the molten carbonate, the Cr-based oxide is easily an electrolyte, Li 2 CO 3
To form LiCrO 2 , resulting in poor corrosion resistance over a long period of time and loss of electrolyte.

【0011】B)Cr量を低減することにより電解質の損
失が抑制されること。
B) The loss of electrolyte is suppressed by reducing the amount of Cr.

【0012】C)Cr量低減による耐溶融炭酸塩腐食性の
低下に対し、耐食性改善元素を調査した結果、Si、Moの
添加が有効であること。SiはCr系酸化物の保護性皮膜と
合金との界面にSiO2を形成し、皮膜の密着性を高める効
果がある。主として溶融炭酸塩がガス側として存在する
環境での腐食を抑制する。しかし、特にカソード雰囲気
において溶融炭酸塩に対する腐食を抑制するには多量の
Si量が必要となる。
C) As a result of investigating elements for improving corrosion resistance against the reduction of molten carbonate corrosion resistance due to the reduction of Cr content, addition of Si and Mo is effective. Si forms SiO 2 at the interface between the Cr-based oxide protective film and the alloy, and has the effect of increasing the adhesion of the film. Corrosion is suppressed mainly in an environment where molten carbonate exists as a gas side. However, in order to suppress corrosion to molten carbonate especially in the cathode atmosphere, a large amount of
Si amount is required.

【0013】D)Moは溶融炭酸塩中へFe、Cr等の合金成
分の溶出を促進するため必ずしも耐溶融炭酸塩腐食性に
有効な元素とは言えない。しかしながら Si が0.8 %以
上含有された合金においてはMoは腐食抑制効果が顕著に
表れ、さらにSiの存在によりFe、Cr等の溶出が低減され
ること。このようにSiとMoを適正量添加することによ
り、Siを多量添加せずとも溶融炭酸塩による腐食を抑制
し、長時間にわたり安定した耐食性を示す。
D) Mo is not necessarily an effective element for molten carbonate corrosion resistance because it promotes elution of alloy components such as Fe and Cr into molten carbonate. However, in an alloy containing 0.8% or more of Si, Mo has a remarkable corrosion inhibitory effect, and the elution of Fe, Cr, etc. is reduced by the presence of Si. Thus, by adding appropriate amounts of Si and Mo, corrosion by molten carbonate is suppressed without adding a large amount of Si, and stable corrosion resistance is exhibited for a long time.

【0014】E)前記D)のMoの効果は、Cuを添加する
ことにより更に促進され、特に溶融炭酸塩中での耐食性
に優れ、長時間にわたり安定していること。
E) The effect of Mo in D) is further promoted by adding Cu, and particularly, it has excellent corrosion resistance in molten carbonate and is stable for a long time.

【0015】本発明は、これらの知見に基づき完成させ
たものであり、その要旨は、「重量%で、C:0.15%以
下、Mn:2%以下、Cr:10〜25%、Ni:7〜30%、Si:0.
8〜4%、Mo:0.1〜3%Cu:0.1〜2%を含有し、かつSi
+2×Mo>2%を満足し、残部実質的に Feおよび不可避的
不純物からなる耐溶融炭酸塩腐食性に優れたステンレス
鋼」にある。
The present invention has been completed on the basis of these findings, and the gist of the invention is that "in terms of% by weight, C: 0.15% or less, Mn: 2% or less, Cr: 10 to 25%, Ni: 7%. ~ 30%, Si: 0.
8~4%, Mo: 0.1~3%, Cu: it contains 0.1% to 2%, and Si
+ 2 × Mo> 2%, and the balance substantially consists of Fe and unavoidable impurities and has excellent corrosion resistance to molten carbonate ”.

【0016】[0016]

【作用】Si、Moの耐溶融炭酸塩腐食性に及ぼす影響を調
べるため、17%Cr-12 %Niステンレス鋼を用いSi、Mo含
有量を種々変え腐食試験を行った。
[Action] In order to examine the effect of Si and Mo on molten carbonate corrosion resistance, corrosion tests were performed using 17% Cr-12% Ni stainless steel with various contents of Si and Mo.

【0017】図1は、腐食試験結果で、Si含有量と板厚
減少量の関係を示す。
FIG. 1 shows the result of the corrosion test, showing the relationship between the Si content and the thickness reduction.

【0018】Si含有量を変化させたMoを含まない17%Cr
-12 %Niステンレス鋼の熱延鋼板を製造し、それから腐
食試験片を採取して、それをワイヤで吊るしLi2CO3:K2C
O3=62:38(モル比)の混合塩中に半浸漬状態で、650 ℃
でガス組成 CO2 :空気=30:70(体積比)の雰囲気ガス中
にて 720時間保持した後、腐食減量を測定した。腐食減
量は、前記加熱前の試験片の板厚から加熱後脱スケール
した試験片の板厚を差し引いて求めた。溶融炭酸塩中に
浸漬している液相側ではSi量の増加による板厚減少の違
いは認められなかったが、未浸漬部であるガス相側では
Si 量が2 %を越えたあたりから板厚減少が小さくなる
ことが明らかとなった。
17% Cr not containing Mo with varied Si content
Production of hot rolled steel sheet of -12% Ni stainless steel, then taking corrosion test specimens, suspending them with wires and Li 2 CO 3 : K 2 C
O 3 = 62: 38 (molar ratio) mixed salt at 650 ° C in semi-soaked state
After holding for 720 hours in an atmosphere gas having a gas composition of CO 2 : air = 30: 70 (volume ratio), the corrosion loss was measured. The corrosion weight loss was obtained by subtracting the thickness of the test piece descaled after heating from the thickness of the test piece before heating. On the liquid phase side immersed in the molten carbonate, no difference in sheet thickness reduction was observed due to the increase in Si content, but on the gas phase side, which was not immersed,
It became clear that the decrease in sheet thickness became small when the Si content exceeded 2%.

【0019】図2は、腐食試験で得られた結果で、Mo含
有量と板厚減少量の関係を示す。
FIG. 2 shows the results obtained in the corrosion test, showing the relationship between the Mo content and the thickness reduction.

【0020】Si無添加及び1 %Siを含有した17%Cr-12
%Niステンレス鋼を用い、Mo含有量を変化させ、前記と
同じ方法で腐食試験を行った。Si無添加鋼ではMoの効果
は小さく、一方1 %のSiを含むステンレス鋼ではMoの添
加で著しい耐食性の改善が認められた。
17% Cr-12 containing no Si and 1% Si
The corrosion test was performed in the same manner as described above, using a% Ni stainless steel and changing the Mo content. The effect of Mo was small in the steel without Si, while the corrosion resistance of the stainless steel containing 1% Si was significantly improved by the addition of Mo.

【0021】以下、本発明のステンレス鋼における各成
分の作用効果と含有量の限定理由について述べる。
Hereinafter, the function and effect of each component in the stainless steel of the present invention and the reason for limiting the content will be described.

【0022】C:Cはオーステナイト組織の安定化を促
進するとともに高温強度を高めるのに有効な元素である
ので、含有量は0.01%以上とすることが望ましいが、0.
15%を越えると熱間加工性を阻害するので0.15%以下に
限定する。
C: Since C is an element effective for promoting the stabilization of the austenite structure and increasing the high-temperature strength, its content is desirably 0.01% or more.
If it exceeds 15%, hot workability is impaired, so the content is limited to 0.15% or less.

【0023】Mn:Mnは、溶製時の脱酸剤として添加され
るものである。また、オーステナイト組織の安定化に有
効であるので0.1 %以上含有させるのが好ましいが、一
方多量の添加は溶融炭酸塩の腐食を助長するので上限を
2 %とする。
Mn: Mn is added as a deoxidizing agent at the time of melting. Further, it is effective to stabilize the austenite structure, so it is preferable to contain 0.1% or more. On the other hand, the addition of a large amount promotes corrosion of molten carbonate, so the upper limit is made.
2%.

【0024】Cr:Crはカソード側環境において、耐溶融
炭酸塩腐食性を向上させる作用があり、Siを含有する合
金中ではその効果は10%以上で発揮される。しかしなが
ら、Cr含有量が増えると、表面に生成するCr系酸化物が
電解質であるLi2CO3と反応し、LiCrO2を形成し、電解質
中に溶出しやすく皮膜の安定性を低下させ、また電解質
の損失を招くことから、Crを25%以下に制限する。好ま
しくは12%〜22%である。
Cr: Cr has the effect of improving the molten carbonate corrosion resistance in the cathode side environment, and its effect is exhibited at 10% or more in the alloy containing Si. However, when the Cr content increases, the Cr-based oxide generated on the surface reacts with the electrolyte Li 2 CO 3 to form LiCrO 2, which easily elutes into the electrolyte and reduces the stability of the film, and Cr is limited to 25% or less because of loss of electrolyte. Preferably it is 12% to 22%.

【0025】Ni:Niはオーステナイト組織の安定化及び
クリープ強度の向上のため必要な元素であるが、7 %未
満ではその効果が小さく、他方含有量が30%を超えると
熱間加工性を阻害するのでその範囲を7 %以上、30%以
下とする。
Ni: Ni is an element necessary for stabilizing the austenite structure and improving the creep strength, but if its content is less than 7%, its effect is small, while if its content exceeds 30%, it impairs hot workability. Therefore, the range should be 7% or more and 30% or less.

【0026】Si:Siは本発明において重要な元素であ
る。後述するMoの溶融炭酸塩中での腐食抑制効果を有効
に発揮するためには 0.8%以上の添加が必要である。Si
はCr系酸化物と合金の界面でSiO2として存在し、主とし
て溶融炭酸塩が存在するガス相側での耐食性を向上させ
るとともに、Cr系酸化物の密着性を高め長時間保護性皮
膜を安定に形成させる効果がある。しかしながら、含有
量の増加とともに加工性、溶接性の低下が著しくなるた
め上限を4 %とする。さらにMoの効果を高め、安定した
耐食性のためには1 %〜4 %とするのが好ましい。
Si: Si is an important element in the present invention. In order to effectively exert the effect of inhibiting corrosion of Mo in molten carbonate, which will be described later, it is necessary to add 0.8% or more. Si
Is present as SiO 2 at the interface between the Cr-based oxide and the alloy, which improves corrosion resistance mainly on the gas phase side where molten carbonate is present and enhances the adhesion of the Cr-based oxide to stabilize the protective film for a long time Has the effect of forming However, as the content increases, the workability and weldability decrease significantly, so the upper limit is 4%. Further, in order to further enhance the effect of Mo and provide stable corrosion resistance, the content is preferably 1% to 4%.

【0027】Mo:Moも本発明において重要な元素であ
る。Siを 0.8%以上含有する合金において、Mo を0.1%
以上含有させることにより溶融炭酸塩中での腐食を抑制
する効果がある。しかしながら過剰添加はSiとの複合添
加による効果がなくなり、Fe、Crの溶融炭酸塩中への溶
出が激しくなり、その結果耐溶融炭酸塩腐食性を劣化さ
せるものであり、上限を3%とする。Cu:Cuは0.1%以上添加することによりSiとMoの複合添
加による効果を促進し、溶融炭酸塩による腐食を抑制さ
せる効果がある。しかし、2 %を越えて添加しても一層
の効果は望めないばかりか製造性を低下させることか
ら、上限を2 %とする。
Mo: Mo is also an important element in the present invention. In alloys containing 0.8% or more of Si, 0.1% of Mo
The above content has the effect of suppressing corrosion in the molten carbonate. However, the excessive addition loses the effect of the complex addition with Si, and the elution of Fe and Cr into the molten carbonate becomes severe, thereby deteriorating the molten carbonate corrosion resistance. The upper limit is set to 3%. . Cu: Cu is added by 0.1% or more to add Si and Mo.
Promotes the effect of heat treatment and suppresses corrosion by molten carbonate.
Has the effect of causing However, adding more than 2%
The effect of not only can not be expected but also reduce the productivity
Therefore, the upper limit is set to 2%.

【0028】Si+2×Mo>2 %:SiとMoの含有量について
は、Si+2×Mo>2 %の関係を満足することにより、溶融
炭酸塩による腐食が抑制され、Fe、Cr等の合金成分の溶
融炭酸塩への溶出を低減する。
Si + 2 × Mo> 2%: As for the contents of Si and Mo, by satisfying the relationship of Si + 2 × Mo> 2%, corrosion by molten carbonate is suppressed, and Fe, Cr, etc. Dissolution of the alloy component in the molten carbonate.

【0029】以上のように化学成分を制限することで溶
融炭酸塩中で優れた耐食性を有するステレス鋼を得るこ
とができる。
By limiting the chemical components as described above, a stainless steel having excellent corrosion resistance in molten carbonate can be obtained.

【0030】[0030]

【0031】[0031]

【実施例】以下、本発明を実施例に基づき、さらに具体
的に説明する。
EXAMPLES The present invention will be described below more specifically based on examples.

【0032】表1、表2に示す化学組成(重量%、残部
はFe)の本発明鋼 (No.12〜14)及び比較鋼(No.15〜31)
を高周波電気炉(真空溶解)で25kg鋼塊を溶製した。こ
の鋼塊に鍛造、熱間圧延を施し、板厚5mmの熱延鋼板と
した。このようにして得られた熱延板を1150 ℃で溶体
化処理を行った後、腐食試験片を切り出した。試験片の
大きさは、厚さ2mm、幅20mm、長さ80mmである。
The steels of the present invention (Nos. 12 to 14) and comparative steels (Nos. 15 to 31) having the chemical compositions (% by weight, balance being Fe) shown in Tables 1 and 2
Was melted in a high-frequency electric furnace (vacuum melting) to produce a 25 kg steel ingot. This ingot was subjected to forging and hot rolling to obtain a hot-rolled steel sheet having a thickness of 5 mm. The hot-rolled sheet thus obtained was subjected to a solution treatment at 1150 ° C., and a corrosion test piece was cut out. The size of the test piece is 2 mm thick, 20 mm wide and 80 mm long.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】試験片にLi2CO3:K2CO3=62:38(モル比)の
混合塩を塗布し、650 ℃でガス組成CO2:空気=30:70(体
積比)の雰囲気ガス中にて200 時間保持して腐食試験を
行った。耐食性は試験片の加熱前重量から脱スケール後
の重量を差引き、重量減少量にて評価した。
A test salt was coated with a mixed salt of Li 2 CO 3 : K 2 CO 3 = 62: 38 (molar ratio), and an atmosphere gas having a gas composition of CO 2 : air = 30: 70 (volume ratio) at 650 ° C. The corrosion test was performed while keeping the inside for 200 hours. The corrosion resistance was evaluated by subtracting the weight after descaling from the weight of the test piece before heating and evaluating the weight loss.

【0036】結果を表1、表2に示す。表中◎は腐食減
量2.5mg/cm2 以下、○は2.5 〜5mg/cm2 、△は5 超え7.
5mg/cm2 、及び×は7.5mg/cm2 を超える量をそれぞれ示
す。
The results are shown in Tables 1 and 2. In the table, ◎ indicates a weight loss of 2.5 mg / cm 2 or less, ○ indicates 2.5 to 5 mg / cm 2 , and Δ indicates a value exceeding 5 7.
5 mg / cm 2 and × indicate an amount exceeding 7.5 mg / cm 2 , respectively.

【0037】図3は、表1、表2の腐食試験結果を図に
したもので、各試験材の腐食減量を、Si量とMo量との関
係で整理したものである。
FIG. 3 shows the results of the corrosion tests of Tables 1 and 2, in which the corrosion loss of each test material is arranged in relation to the Si content and the Mo content.

【0038】現状セパレータ材等に用いられているSUS3
16L(比較鋼No.31)は腐食減量が非常に大きい。また、Mo
が添加されていない比較鋼 No.15〜18ではSi含有量とも
に腐食減量は小さくなるもののSUS310S(比較鋼No.30)と
比べ、耐食性の向上は見られない。また、比較鋼 No.19
〜24ではMo含有量が高い場合でも、腐食減量の減少は見
られず、Si量が0.8 %以下であるためMoの耐食性改善効
果が見られない。また、さらに比較鋼No.25 、26ではSi
+2×Moの値が2 %以下でありSiとMoの複合添加による効
果が表れていないとが分かる。さらに、比較鋼No.27 〜
29ではMo含有量が3 %を越えているため逆に腐食減量が
大きくなっている。
SUS3 currently used for separator materials, etc.
16L (Comparative Steel No. 31) has a very large corrosion weight loss. Also, Mo
In Comparative Steels Nos. 15 to 18 to which No. was added, the corrosion loss was reduced with respect to both the Si content, but no improvement in corrosion resistance was observed compared to SUS310S (Comparative Steel No. 30). In addition, comparative steel No.19
Nos. 24 to 24, even when the Mo content was high, no reduction in corrosion weight loss was observed, and the effect of improving the corrosion resistance of Mo was not seen because the Si content was 0.8% or less. Further, in comparative steel Nos. 25 and 26, Si
It can be seen that the value of + 2 × Mo was 2% or less, and the effect of the combined addition of Si and Mo was not exhibited. Furthermore, comparative steel No. 27
In the case of 29, the Mo content exceeds 3%, and conversely, the corrosion weight loss is large.

【0039】 本発明鋼No.12〜14では腐食減量が2.5mg/c
m2未満となっており、より耐食性の向上が見られる。
[0039] In the present invention steel No. 12-14, the corrosion weight loss is 2.5 mg / c
mTwoAnd the corrosion resistance is more improved.

【0040】このようにSi及びMoを適正量添加すること
により溶融炭酸塩に対する耐食性が著しく向上すること
が分かる。
It can be seen that the addition of appropriate amounts of Si and Mo significantly improves the corrosion resistance against molten carbonate.

【0041】[0041]

【発明の効果】本発明のステンレス鋼は、600 ℃〜700
℃での耐溶融炭酸塩腐食性に優れた性質を有しており、
従って本発明鋼を溶融炭酸塩型燃料電池の集電板やセパ
レータ材などに使用した場合、溶融炭酸塩に接する激し
い部位の耐食性が飛躍的に改善されるとともに、電解質
である溶融炭酸塩の損失が抑えられ電池の寿命を大幅に
向上させることが可能となる。
The stainless steel of the present invention has a temperature of 600 ° C to 700 ° C.
It has excellent resistance to molten carbonate corrosion at ℃.
Therefore, when the steel of the present invention is used for a current collector plate or a separator material of a molten carbonate fuel cell, the corrosion resistance of a severe portion in contact with the molten carbonate is dramatically improved, and the loss of the molten carbonate as an electrolyte is improved. And the life of the battery can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶融炭酸塩中での腐食試験におけるSiの影響を
示す図である。
FIG. 1 is a diagram showing the influence of Si in a corrosion test in a molten carbonate.

【図2】溶融炭酸塩中での腐食試験におけるMoの影響を
示す図である。
FIG. 2 is a diagram showing the influence of Mo in a corrosion test in a molten carbonate.

【図3】溶融炭酸塩中での腐食試験におけるSiとMoの影
響を示す図である。
FIG. 3 is a diagram showing the influence of Si and Mo in a corrosion test in a molten carbonate.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−188870(JP,A) 特開 平1−252757(JP,A) 特開 平2−54741(JP,A) 特開 平4−247852(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 H01M 8/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-188870 (JP, A) JP-A-1-252575 (JP, A) JP-A-2-54741 (JP, A) JP-A-4- 247852 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60 H01M 8/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.15%以下、Mn:2%以下、
Cr:10〜25%、Ni:7〜30%、Si:0.8〜4%、Mo:0.1〜
3%以下、Cu:0.1〜2%、を含み、かつSi+2×Mo>2%を
満足し、残部実質的にFeおよび不可避的不純物からなる
ことを特徴とする耐溶融炭酸塩腐食性に優れたステンレ
ス鋼
(1) In weight%, C: 0.15% or less, Mn: 2% or less,
Cr: 10 to 25%, Ni: 7 to 30%, Si: 0.8 to 4%, Mo: 0.1 to
3% or less, Cu: 0.1 to 2%, and satisfy Si + 2 × Mo> 2%, with the balance substantially consisting of Fe and unavoidable impurities. Excellent stainless steel
JP03037495A 1995-02-20 1995-02-20 Stainless steel with excellent resistance to molten carbonate corrosion Expired - Fee Related JP3161269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03037495A JP3161269B2 (en) 1995-02-20 1995-02-20 Stainless steel with excellent resistance to molten carbonate corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03037495A JP3161269B2 (en) 1995-02-20 1995-02-20 Stainless steel with excellent resistance to molten carbonate corrosion

Publications (2)

Publication Number Publication Date
JPH08225892A JPH08225892A (en) 1996-09-03
JP3161269B2 true JP3161269B2 (en) 2001-04-25

Family

ID=12302111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03037495A Expired - Fee Related JP3161269B2 (en) 1995-02-20 1995-02-20 Stainless steel with excellent resistance to molten carbonate corrosion

Country Status (1)

Country Link
JP (1) JP3161269B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738405C2 (en) * 1997-09-03 2000-08-17 Mtu Friedrichshafen Gmbh Process for reducing corrosion-related oxide resistances on chrome steel components
CA2352443C (en) 2000-07-07 2005-12-27 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells

Also Published As

Publication number Publication date
JPH08225892A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
JP3574806B2 (en) Cold rolled steel sheet with excellent corrosion resistance to sulfuric acid
KR100858572B1 (en) Metal material for fuel cell, fuel cell using the same and method for producing the material
KR100615126B1 (en) Ferritic stainless steel having high temperature creep resistance
JP3321888B2 (en) Metal materials for solid oxide fuel cells
JP3097689B1 (en) Polymer electrolyte fuel cell
JP3269479B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator
JP2020164934A (en) Ferritic stainless steel sheet and manufacturing method therefor
JP2003187828A (en) Ferritic stainless steel for solid oxide type fuel cell member
JPH10280103A (en) Steel for solid electrolytic type fuel battery separator
JP3161269B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
US20220243309A1 (en) Ferritic stainless steel sheet for collectors of sulfide-based solid-state batteries
JP3433435B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
JP4299506B2 (en) Austenitic stainless steel for equipment that exchanges heat at 500-1000 ° C
JP3008798B2 (en) Ferritic stainless steel for molten carbonate fuel cells
JP4214921B2 (en) Fe-Cr alloy for fuel cell
JP2932211B2 (en) Corrosion resistant stainless steel for molten carbonate fuel cells
JP4524760B2 (en) Oxidation resistant steel and solid oxide fuel cell parts using the same
JP7151892B2 (en) Ferritic stainless steel for solid oxide fuel cells
JPS63236267A (en) Constituent material of fused carbonate type fuel cell
JPH05320701A (en) Corrosion-resistant material
JPH1025531A (en) Positive electrode vessel material made of cobalt-base alloy for sodium-sulfur battery
JP2007270226A (en) Ferritic stainless steel superior in workability, weldability and crevice corrosion resistance for hot-water tank
JP2005264298A (en) Metallic material for fuel cell and solid oxide type fuel cell
JP2004091923A (en) Metallic material for fuel cell, and solid oxide type fuel cell
JPH0534419B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees