JPWO2009060900A1 - Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell - Google Patents

Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell Download PDF

Info

Publication number
JPWO2009060900A1
JPWO2009060900A1 JP2009540081A JP2009540081A JPWO2009060900A1 JP WO2009060900 A1 JPWO2009060900 A1 JP WO2009060900A1 JP 2009540081 A JP2009540081 A JP 2009540081A JP 2009540081 A JP2009540081 A JP 2009540081A JP WO2009060900 A1 JPWO2009060900 A1 JP WO2009060900A1
Authority
JP
Japan
Prior art keywords
fuel cell
stainless steel
steel material
less
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009540081A
Other languages
Japanese (ja)
Other versions
JP5152193B2 (en
Inventor
関 彰
彰 関
教史 土井
教史 土井
光治 米村
光治 米村
岡田 浩一
浩一 岡田
五十嵐 正晃
正晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009540081A priority Critical patent/JP5152193B2/en
Publication of JPWO2009060900A1 publication Critical patent/JPWO2009060900A1/en
Application granted granted Critical
Publication of JP5152193B2 publication Critical patent/JP5152193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

十分な低接触抵抗、及び長期の耐食性を実現する固体高分子型燃料電池セパレータ用ステンレス鋼材、及びそれを用いたステンレス鋼製セパレータを備える固体高分子型燃料電池を提供する。質量%でNiの含有量が50質量%以上であって導電性を有する析出物が一種類以上表面に露出し、該析出物の表面露出率が3面積%であるオーステナイト系ステンレス鋼材およびその鋼材からなるセパレータを備える固体高分子型燃料電池。析出物は、Ni3X型(XはAl、Ti、V、Nb、Ta、およびZrからなる群から選ばれる一種または二種以上である。)を含むことが好ましく、Ni3Nb相および/またはNi3Ti相を含むことが特に好ましい。A stainless steel material for a polymer electrolyte fuel cell separator that realizes sufficiently low contact resistance and long-term corrosion resistance, and a polymer electrolyte fuel cell including a stainless steel separator using the same. An austenitic stainless steel material having a Ni content of 50% by mass or more, a conductive precipitate exposed on the surface, and a surface exposure rate of the precipitate of 3% by area, and its steel material A polymer electrolyte fuel cell comprising a separator comprising: The precipitate preferably contains Ni3X type (X is one or more selected from the group consisting of Al, Ti, V, Nb, Ta, and Zr), and includes a Ni3Nb phase and / or a Ni3Ti phase. It is particularly preferable to include it.

Description

本発明は、固体高分子型燃料電池通電部品用材料として、接触電気抵抗が小さく、電池本体に組み込まれたときの耐食性に優れたステンレス鋼材およびそのステンレス鋼材により製造されたセパレータを用いた固体高分子型燃料電池に関する。   The present invention relates to a solid polymer fuel cell current-carrying component material that has a low contact electric resistance and excellent corrosion resistance when incorporated in a battery body, and a solid state using a separator manufactured from the stainless steel material. The present invention relates to a molecular fuel cell.

燃料電池は、水素および酸素を利用して直流電力を発電する電池であり、固体電解質型、溶融炭酸塩型、リン酸型および固体高分子型などの各種の燃料電池がある。これらの中で、現在、商用段階に達している燃料電池は、リン酸型燃料電池および溶融炭酸塩型燃料電池である。これらの燃料電池のおおよその運転温度は、固体電解質型燃料電池で1000℃、溶融炭酸塩型燃料電池で650℃ 、リン酸型燃料電池で200℃ であり、固体高分子型燃料電池では80℃ 前後である。   A fuel cell is a battery that generates direct-current power using hydrogen and oxygen, and includes various fuel cells such as a solid electrolyte type, a molten carbonate type, a phosphoric acid type, and a solid polymer type. Among these, the fuel cells that have reached the commercial stage are phosphoric acid fuel cells and molten carbonate fuel cells. The approximate operating temperatures of these fuel cells are 1000 ° C for solid oxide fuel cells, 650 ° C for molten carbonate fuel cells, 200 ° C for phosphoric acid fuel cells, and 80 ° C for solid polymer fuel cells. Before and after.

上記のように、固体高分子型燃料電池は運転温度が低く、しかも起動・停止が容易であり、またエネルギー効率も40% 程度が期待できる。従って、小規模事業所、電話局などの非常用分散電源、都市ガスを燃料とする家庭用小型分散電源、水素ガス、メタノールあるいはガソリンを燃料とする低公害電気自動車搭載用電源として、世界的に実用化が期待されている。   As described above, the polymer electrolyte fuel cell has a low operating temperature, can be easily started and stopped, and can be expected to have an energy efficiency of about 40%. Therefore, as an emergency distributed power source for small offices, telephone offices, etc., a small distributed power source for households that uses city gas as fuel, and a power source for low-pollution electric vehicles that uses hydrogen gas, methanol or gasoline as fuel, worldwide Practical use is expected.

図1は、固体高分子型燃料電池(以下、単に「燃料電池」ともいう。)の構造を示す図で、図1(a)は、燃料電池を構成する単セルの分解図、図1(b)は多数の単セルを組み合わせて作られた燃料電池全体の斜視図である。   FIG. 1 is a diagram showing the structure of a polymer electrolyte fuel cell (hereinafter also simply referred to as “fuel cell”). FIG. 1 (a) is an exploded view of a single cell constituting the fuel cell, and FIG. b) is a perspective view of the whole fuel cell made by combining a number of single cells.

図1に示すように、燃料電池1 は単セルの集合体(スタック)である。単セルは、図1(a)に示すように固体高分子電解質膜2の一面にアノードとして作用するガス拡散電極層(燃料電極膜とも呼ばれ、以下、「アノード」という。)3が、他面にはカソードとして作用するガス拡散電極層(酸化剤電極膜と呼ばれ、以下、「カソード」という。)4がそれぞれ積層されており、その両面にセパレータ(バイポーラプレート)5a、5bが重ねられた構造になっている。   As shown in FIG. 1, the fuel cell 1 is an assembly (stack) of single cells. In the single cell, as shown in FIG. 1A, a gas diffusion electrode layer (also referred to as a fuel electrode membrane, hereinafter referred to as “anode”) 3 acting as an anode on one surface of the solid polymer electrolyte membrane 2 is provided. A gas diffusion electrode layer (referred to as an oxidizer electrode film, hereinafter referred to as “cathode”) 4 acting as a cathode is laminated on each surface, and separators (bipolar plates) 5a and 5b are laminated on both surfaces. It has a structure.

なお、上記の単セルと単セルとの間、または数個の単セルごとに冷却水の流通路を持つ水セパレータを配した水冷型の燃料電池もある。本発明はそのような水冷型燃料電池をも対象とする。   In addition, there is a water-cooled fuel cell in which a water separator having a cooling water passage is disposed between the single cells or between several single cells. The present invention is also directed to such a water-cooled fuel cell.

固体高分子電解質膜(以下、単に「電解質膜」という。)2としては、水素イオン(プロトン)交換基を有するフッ素系プロトン伝導膜が使われている。アノード3およびカソード4には、粒子状の白金触媒と黒鉛粉、および必要に応じて水素イオン(プロトン)交換基を有するフッ素樹脂からなる触媒層が設けられている場合もあり、この場合には、燃料ガスまたは酸化性ガスとこの触媒層とが接触して反応が促進される。   As the solid polymer electrolyte membrane (hereinafter simply referred to as “electrolyte membrane”) 2, a fluorine-based proton conductive membrane having a hydrogen ion (proton) exchange group is used. In some cases, the anode 3 and the cathode 4 are provided with a catalyst layer made of a particulate platinum catalyst, graphite powder, and, if necessary, a fluororesin having a hydrogen ion (proton) exchange group. Then, the fuel gas or the oxidizing gas and the catalyst layer come into contact with each other to promote the reaction.

セパレータ5aに設けられている流路6aからは燃料ガス(水素または水素含有ガス)Aが流されて燃料電極膜3に水素が供給される。また、セパレータ5bに設けられている流路6bからは空気のような酸化性ガスB が流され、酸素が供給される。これらガスの供給により電気化学反応が生じて直流電力が発生する。   A fuel gas (hydrogen or hydrogen-containing gas) A is flowed from the flow path 6 a provided in the separator 5 a to supply hydrogen to the fuel electrode film 3. Also, an oxidizing gas B 2 such as air is flowed from the flow path 6b provided in the separator 5b, and oxygen is supplied. The supply of these gases causes an electrochemical reaction to generate DC power.

固体高分子型燃料電池のセパレータに求められる主な機能は次のようなものである。
(1)燃料ガス、酸化性ガスを電池面内に均一に供給する“流路”としての機能、
(2)カソード側で生成した水を、反応後の空気、酸素といったキャリアガスとともに燃料電池から効率的に系外に排出する“流路”としての機能、
(3)電極膜(アノード3、カソード4)と接触して電気の通り道となり、さらに単セル間の電気的“コネクタ”となる機能、
(4)隣り合うセル間で、一方のセルのアノード室と隣接するセルのカソード室との“隔壁”としての機能、および
(5)水冷型燃料電池では、冷却水流路と隣接するセルとの“隔壁”としての機能。
The main functions required for a separator of a polymer electrolyte fuel cell are as follows.
(1) Function as a “flow path” for uniformly supplying fuel gas and oxidizing gas into the battery surface,
(2) A function as a “flow path” for efficiently discharging water generated on the cathode side from the fuel cell together with a carrier gas such as air and oxygen after reaction,
(3) The function of becoming an electrical path in contact with the electrode films (anode 3 and cathode 4), and further serving as an electrical “connector” between single cells,
(4) A function as a “partition” between the anode chamber of one cell and the cathode chamber of the adjacent cell between adjacent cells, and (5) In the water-cooled fuel cell, the cooling water flow path and the adjacent cell Function as a “partition wall”.

このような機能を果たすことが求められる固体高分子型燃料電池セパレータ(以下、単に「セパレータ」という。)用材料としては、優れた加工性、低い電気抵抗率、低い表面接触抵抗、高い強度、優れた耐食性などが同時に要求され、量産性も大きな問題である。このセパレータ用材料として、従来、カーボン系の材料が使用されていたが、カーボン系材料は強度上の問題を有する。またセパレータへの加工コストが嵩むという難点がある。具体的には、カーボン板材の場合には、表面の平坦化や流路形成のための機械加工が容易でなく、熱膨張性黒鉛の場合には、ガス透過性を低下させるために樹脂含浸と焼成とを繰り返し行う必要がある。   As a material for a polymer electrolyte fuel cell separator (hereinafter simply referred to as “separator”) that is required to fulfill such a function, excellent workability, low electrical resistivity, low surface contact resistance, high strength, Excellent corrosion resistance is required at the same time, and mass productivity is a big problem. Conventionally, a carbon-based material has been used as the separator material, but the carbon-based material has a problem in strength. In addition, there is a drawback that the processing cost for the separator increases. Specifically, in the case of a carbon plate material, machining for flattening the surface and forming a flow path is not easy, and in the case of thermally expandable graphite, resin impregnation is performed to reduce gas permeability. It is necessary to repeat firing.

このような、従来のカーボン系材料に比較して、より軽量、コンパクトな燃料電池が設計可能となるプレス成形可能な金属系のセパレータ用材料開発が必要とされている。こうした要請に応えて、ステンレス鋼を使用することが検討されている。   There is a need for the development of press-moldable metal-based separator materials that enable the design of lighter and more compact fuel cells than conventional carbon-based materials. In response to these demands, the use of stainless steel has been studied.

ステンレス鋼はその表面に形成された酸化皮膜(不動態皮膜)により高い耐食性を実現しうる材料であり、固体高分子型燃料電池環境においても十分耐食性を維持することが期待される。しかしながら、その表面に形成された不動態皮膜により接触抵抗が上昇するため、セパレータのような通電部品としてステンレス鋼をそのまま適用すると、燃料電池としての実効的な発電効率がこの接触抵抗により低下してしまい、好ましくない。   Stainless steel is a material that can realize high corrosion resistance by an oxide film (passive film) formed on its surface, and is expected to maintain sufficient corrosion resistance even in a polymer electrolyte fuel cell environment. However, since the contact resistance is increased by the passive film formed on the surface, if the stainless steel is applied as it is as a current-carrying part such as a separator, the effective power generation efficiency as a fuel cell is reduced by this contact resistance. This is not preferable.

そこで、セパレータ材料として特別に開発されたステンレス鋼も幾つか提案されている。例えば、特許文献1には、セパレータ基材の表面に、金などの貴金属からなる導電性接点層を、めっきなどによって膜厚0.0005〜0.01μm未満で形成する技術が開示されている。また、特許文献2には、ステンレス鋼表面に導電性を有する炭化物や硼化物の金属介在物を、不動態皮膜を突き破るようにして分散、露出させ、かつ表面粗度を所定の範囲にする技術が開示されている。このとき、この炭化物や硼化物系金属介在物は、“電気の通り道”として機能するため、接触電気抵抗が大きく低下し、接触電気抵抗は継時的に低く維持される。同様の発想に基づく技術として、特許文献3には、Fe2Mo型ラーベス相を導電性の析出物として活用する方法が記載されている。これらはいずれもCr、FeおよびMoを主体とした析出物である。
特開2004−158437号公報 特開2001−32056号公報 特開2004−124197号公報
Therefore, some stainless steels specially developed as separator materials have been proposed. For example, Patent Document 1 discloses a technique in which a conductive contact layer made of a noble metal such as gold is formed on the surface of a separator substrate with a thickness of less than 0.0005 to 0.01 μm by plating or the like. Patent Document 2 discloses a technique for dispersing and exposing metal inclusions such as conductive carbides and borides having a conductive surface on a stainless steel surface so as to break through the passive film, and bringing the surface roughness into a predetermined range. Is disclosed. At this time, the carbide or boride-based metal inclusion functions as an “electric path”, so that the contact electrical resistance is greatly reduced, and the contact electrical resistance is maintained low over time. As a technique based on the same idea, Patent Document 3 describes a method of utilizing an Fe 2 Mo type Laves phase as a conductive precipitate. These are all precipitates mainly composed of Cr, Fe and Mo.
JP 2004-158437 A JP 2001-32056 A JP 2004-124197 A

しかしながら、特許文献1に開示されるような積層構造は、表面の導電層が薄く、かつ相対的に軟質であるため、燃料電池として組み立てる際に、セパレータが他の部品要素と接触して導電層が剥離することが懸念される。また、貴金属部分と基材との間で局部電池が形成され、基材側の耐食性が低下する可能性もある。   However, the laminated structure as disclosed in Patent Document 1 has a thin conductive layer on the surface and is relatively soft. Therefore, when assembling as a fuel cell, the separator comes into contact with other component elements to form a conductive layer. There is concern about peeling. Moreover, a local battery is formed between a noble metal part and a base material, and there exists a possibility that the corrosion resistance by the side of a base material may fall.

特許文献2や3に開示される技術は上記のような問題点が発生しない。しかしながら、耐食性を担う不動態皮膜を突き破るように所定の金属介在物を露出させるため、セパレータのうちでもカソードに対向する部分のように水分の多い雰囲気に曝されたときに、長期にわたって高い耐食性が維持されるかは不明である。   The techniques disclosed in Patent Documents 2 and 3 do not cause the above problems. However, in order to expose a predetermined metal inclusion so as to break through the passive film responsible for corrosion resistance, when the separator is exposed to a moisture-rich atmosphere such as a portion facing the cathode, it has high corrosion resistance over a long period of time. It is unclear whether it will be maintained.

そこで、本発明は、セパレータとして動作するに十分な低い接触抵抗を持ち、しかもカソード対向部分においても長期にわたって耐食性を維持しうる、固体高分子型燃料電池通電部品用ステンレス鋼材、およびそれを用いたステンレス鋼製セパレータを備える固体高分子型燃料電池を提供することを目的とする。   Therefore, the present invention uses a stainless steel material for a polymer electrolyte fuel cell current-carrying component, which has a contact resistance low enough to operate as a separator and can maintain corrosion resistance for a long time even at a cathode facing portion, and the same. An object of the present invention is to provide a polymer electrolyte fuel cell including a stainless steel separator.

上記課題を解決するために本発明者が鋭意研究した結果、Niの含有量が50質量%以上であって導電性を有する析出物であるNi系析出物を、緻密なCrの酸化皮膜から露出するように分散させた構造を有するステンレス鋼は、優れた通電特性を有しつつ、高い耐食性を有するとの知見を得た。係る知見に基づき完成された本発明は次のとおりである。   As a result of intensive studies by the inventor in order to solve the above problems, Ni-based precipitates, which are Ni precipitates having a Ni content of 50% by mass or more and having conductivity, are exposed from a dense Cr oxide film. Thus, it has been found that stainless steel having a structure dispersed in such a manner has excellent current resistance and high corrosion resistance. The present invention completed based on such knowledge is as follows.

(1)オーステナイト系ステンレス鋼材であって、Niの含有量が50質量%以上であって導電性を有する析出物が一種類以上表面に露出し、該析出物の表面露出率が3面積%以上であることを特徴とする固体高分子型燃料電池セパレータ用ステンレス鋼材。   (1) An austenitic stainless steel material, in which the Ni content is 50% by mass or more and one or more conductive precipitates are exposed on the surface, and the surface exposure rate of the precipitates is 3% by area or more. A stainless steel material for a polymer electrolyte fuel cell separator.

(2)前記析出物が、NiX型の析出物(XはAl、Ti、V、Nb、Ta、およびZrからなる群から選ばれる一種または二種以上である。)を含むことを特徴とする上記(1)に記載の固体高分子型燃料電池セパレータ用ステンレス鋼材。(2) The precipitate includes a Ni 3 X-type precipitate (X is one or more selected from the group consisting of Al, Ti, V, Nb, Ta, and Zr). The stainless steel material for a polymer electrolyte fuel cell separator according to (1) above.

(3)前記析出物がNiNb相を含むことを特徴とする上記(2)に記載の固体高分子型燃料電池セパレータ用ステンレス鋼材。
(4)前記析出物がNiTi相を含むことを特徴とする上記(2)に記載の固体高分子型燃料電池セパレータ用ステンレス鋼材。
(3) The stainless steel material for a polymer electrolyte fuel cell separator as described in (2) above, wherein the precipitate contains a Ni 3 Nb phase.
(4) The stainless steel material for a polymer electrolyte fuel cell separator as described in (2) above, wherein the precipitate contains a Ni 3 Ti phase.

(5)セパレータを構成するステンレス鋼材が、質量%で、C:0.001〜0.2%、Si:0.01〜1.5%、Mn:0.01〜2.5%、P:0.04%以下、S:0.01%以下、Cr:15〜30%、Ni:20〜60%、Cu:2%以下、Al:3.1%以下、N:0.4%以下を含有するとともに、Mo:7%以下、W:4%以下、Ti:5%以下、Nb:6%以下、V:5%以下、Ta:10%以下およびZr:6%以下からなる群から選ばれる一種または二種以上を含有し、残部Feおよび不純物からなり、かつ、Al、Ti、V、Nb、TaおよびZrが下記式を満足する化学組成を有するオーステナイト系ステンレス鋼材であることを特徴とする上記(1)から(4)のいずれかに記載の固体高分子型燃料電池セパレータ用ステンレス鋼材。   (5) The stainless steel material which comprises a separator is the mass%, C: 0.001-0.2%, Si: 0.01-1.5%, Mn: 0.01-2.5%, P: 0.04% or less, S: 0.01% or less, Cr: 15-30%, Ni: 20-60%, Cu: 2% or less, Al: 3.1% or less, N: 0.4% or less Mo: 7% or less, W: 4% or less, Ti: 5% or less, Nb: 6% or less, V: 5% or less, Ta: 10% or less, and Zr: 6% or less Characterized in that it is an austenitic stainless steel material containing one or more of the above, the balance being Fe and impurities, and having a chemical composition in which Al, Ti, V, Nb, Ta and Zr satisfy the following formula: The polymer electrolyte fuel cell separator according to any one of (1) to (4) above Over data for stainless steel.

2%<8×Al+4×Ti+4×V+2×Nb+2×Zr+Ta<25%
ただし、式中の元素記号は各元素の含有量(単位:質量%)を示す。
(6)固体高分子膜、電極およびセパレータを備える固体高分子型燃料電池であって、前記セパレータの素材として上記(1)から(5)のいずれかに記載される固体高分子型燃料電池セパレータ用ステンレス鋼を用いることを特徴とする固体高分子型燃料電池。
2% <8 × Al + 4 × Ti + 4 × V + 2 × Nb + 2 × Zr + Ta <25%
However, the element symbol in a formula shows content (unit: mass%) of each element.
(6) A polymer electrolyte fuel cell comprising a polymer electrolyte membrane, an electrode and a separator, wherein the polymer electrolyte fuel cell separator described in any one of (1) to (5) above is used as a material for the separator A solid polymer type fuel cell characterized by using stainless steel for the battery.

本発明によれば、接触抵抗が低く、かつ耐食性に優れた固体高分子型燃料電池通電部品用ステンレス鋼材、およびそれを用いたステンレス製セパレータを備える固体高分子型燃料電池が得られる。   ADVANTAGE OF THE INVENTION According to this invention, a solid polymer fuel cell provided with the stainless steel material for a polymer electrolyte fuel cell electricity supply component with low contact resistance and excellent corrosion resistance, and a stainless steel separator using the same.

固体高分子型燃料電池の構造を概念的に示す図である。It is a figure which shows notionally the structure of a polymer electrolyte fuel cell. 析出物が露出したステンレス鋼材の表面と他の通電体面とを接触させた状態を概念的に示す図である。It is a figure which shows notionally the state which contacted the surface of the stainless steel material which the deposit exposed, and the other electrically-conductive body surface. 本発明に係るステンレス鋼材の表面のSEMによる観察画像である。It is an observation image by SEM of the surface of the stainless steel material which concerns on this invention.

本発明に係る固体高分子型燃料電池通電部品用ステンレス鋼材、その製造方法、およびそれを用いたステンレス製セパレータを備える固体高分子型燃料電池について、具体例をもって詳細に説明する。なお、本明細書において、鋼成分の含有量に関する「%」は「質量%」を意味する。   A solid polymer fuel cell including a stainless steel material for a polymer electrolyte fuel cell energizing component according to the present invention, a method for producing the same, and a stainless steel separator using the material will be described in detail with specific examples. In the present specification, “%” relating to the content of steel components means “mass%”.

1.ステンレス鋼材の表面の構造
(1)Ni系析出物
本発明に係るステンレス鋼材は、Ni系析出物が一種類以上、鋼材表面に形成された緻密なCrの酸化皮膜(不動態皮膜)上に露出する構造を有する。
1. Surface structure of stainless steel material (1) Ni-based precipitate The stainless steel material according to the present invention is exposed on a dense Cr oxide film (passive film) formed on the surface of the steel material. It has the structure to do.

ここで、「Ni系析出物」とは、Niの含有量が50質量%以上であって導電性を有する析出物である。
このNi系析出物の化学組成は導電性を有する限り特に限定されない。金属間化合物であってもよいし、炭化物であってもよい。金属間化合物としては、NiX型、NiX型、NiX型など複数の構造(ここで、Xは、Al、Ti、V、Nb、Ta、Zrなどの元素の一種または二種以上である。)が例示される。
Here, the “Ni-based precipitate” is a precipitate having a Ni content of 50% by mass or more and having conductivity.
The chemical composition of the Ni-based precipitate is not particularly limited as long as it has conductivity. It may be an intermetallic compound or a carbide. The intermetallic compound has a plurality of structures such as NiX type, Ni 2 X type, Ni 3 X type (where X is one or more of elements such as Al, Ti, V, Nb, Ta, Zr, etc.) Is).

一般にステンレス鋼材は化学組成にCrを含有するため、Ni系析出物以外にCr系の析出物(Crの含有量が50質量%以上の析出物)が析出する場合もある。本発明に係るNi系析出物は、その表面に形成された酸化皮膜の厚さがCr系析出物の表面に形成された酸化皮膜より薄いため、Cr系析出物よりも低い接触抵抗を示す。しかも、相対的にCr系析出物の酸化皮膜よりは薄いものの、Ni系析出物の酸化皮膜は緻密であるから、固体高分子型燃料電池環境において十分な程度の耐食性を示す。したがって、この鋼材からなるセパレータがカーボンペーパなどからなる電極部材と接触するとその表面に露出したNi系析出物がこの電極部材に接触するため、このセパレータは良好な導電性を有する。また、このセパレータは、カソード側の水分を多く含む雰囲気に曝されても、高い耐食性を維持する。   Since stainless steel generally contains Cr in its chemical composition, Cr-based precipitates (precipitates with a Cr content of 50% by mass or more) may be deposited in addition to Ni-based precipitates. Since the thickness of the oxide film formed on the surface of the Ni-based precipitate according to the present invention is thinner than that of the oxide film formed on the surface of the Cr-based precipitate, the Ni-based precipitate exhibits a lower contact resistance than the Cr-based precipitate. Moreover, although it is relatively thinner than the Cr-based precipitate oxide film, the Ni-based precipitate oxide film is dense, and therefore exhibits a sufficient degree of corrosion resistance in a polymer electrolyte fuel cell environment. Therefore, when the separator made of the steel material comes into contact with the electrode member made of carbon paper or the like, the Ni-based precipitate exposed on the surface comes into contact with the electrode member. Therefore, the separator has good conductivity. In addition, this separator maintains high corrosion resistance even when exposed to an atmosphere containing a large amount of moisture on the cathode side.

図2は、Ni系析出物が表面に露出したステンレス鋼材の表面と他の通電体面とを接触させた状態を概念的に示す図である。本発明に係るステンレス鋼材10はその表面に酸化皮膜12を有するとともに上記のNi系析出物を有し、このNi系析出物の一部13はその内部に、別の一部14は酸化皮膜11を突き破るように表面に一部露出し、さらに別の一部15は酸化皮膜の直下に存在する。使用状態においてステンレス鋼材にはガス拡散機能も有する電極部材11が当接し、このとき、ステンレス鋼材10の表面に露出するNi系析出物14とこの電極部材11とが接触することで低接触抵抗での電気的接続が実現される。   FIG. 2 is a diagram conceptually showing a state in which the surface of the stainless steel material with the Ni-based precipitate exposed on the surface is brought into contact with another current-carrying member surface. The stainless steel material 10 according to the present invention has an oxide film 12 on its surface and the above-mentioned Ni-based precipitates. A part 13 of this Ni-based precipitate is inside thereof, and another part 14 is an oxide film 11. Is partially exposed on the surface so as to break through, and another portion 15 exists directly under the oxide film. In use, the electrode member 11 having a gas diffusion function is brought into contact with the stainless steel material. At this time, the Ni-based precipitate 14 exposed on the surface of the stainless steel material 10 and the electrode member 11 come into contact with each other, thereby reducing the contact resistance. The electrical connection is realized.

Ni系析出物の形状は特に限定されないが、過剰に大きい場合には表面に露出したNi系析出物が脱落しやすくなり、過剰に小さい場合には表面に露出してもステンレス鋼材の母材の表面に形成された酸化皮膜(不動態皮膜)からNi系析出物が突出することができず、「電気の通り道」として機能することが困難となる。したがって、粒径が10nm〜1μm程度の大きさであることが好ましく、20〜100nmであれば特に好ましい。   The shape of the Ni-based precipitate is not particularly limited, but if it is excessively large, the Ni-based precipitate exposed on the surface tends to fall off, and if it is excessively small, the base material of the stainless steel material is exposed even if it is exposed on the surface. Ni-based precipitates cannot protrude from the oxide film (passive film) formed on the surface, making it difficult to function as an “electric path”. Therefore, the particle size is preferably about 10 nm to 1 μm, and more preferably 20 to 100 nm.

Ni系析出物の形成方法も限定されない。溶製されたステンレス鋼が凝固するときに形成されたもの、鍛造や圧延などの一次加工の過程で形成されたもの、および一次加工品または二次加工品に対して熱処理することによって形成されたもののいずれであってもよい。析出物の化学組成および形状の制御しやすさの観点から、熱処理によって析出させることが好ましい。   The formation method of the Ni-based precipitate is not limited. Formed when the molten stainless steel solidifies, formed during the primary processing such as forging or rolling, and formed by heat treating the primary processed product or the secondary processed product Any of those may be used. From the viewpoint of easy control of the chemical composition and shape of the precipitate, it is preferable to deposit by precipitation.

(2)NiX型析出物
本発明に係るステンレス鋼材の表面に露出するNi系析出物は、Ni基合金の析出相であって、NiX型の構造を有するものを含むことが、導電性および耐食性の両立の観点から好ましい。ここで、Xとは、前述のように、Al、Ti、V、Nb、Ta、Zrなどの元素の一種または二種以上である。具体的には、NiX型析出物としてNi3Nb相、Ni3Ti相が例示される。また、この析出物は、NiX型構造におけるNiサイトの一部がNi以外の金属、例えばFeによって置換されていてもよい。このようなNiサイトの置換は、Xが複数の元素からなる場合に起りやすい。
(2) Ni 3 X-type precipitate The Ni-based precipitate exposed on the surface of the stainless steel material according to the present invention includes a precipitation phase of a Ni-based alloy and having a Ni 3 X-type structure. It is preferable from the viewpoint of achieving both conductivity and corrosion resistance. Here, X is one or more of elements such as Al, Ti, V, Nb, Ta, and Zr as described above. Specifically, Ni 3 Nb phase and Ni 3 Ti phase are exemplified as Ni 3 X type precipitates. In this precipitate, a part of the Ni site in the Ni 3 X-type structure may be substituted with a metal other than Ni, for example, Fe. Such substitution of Ni sites is likely to occur when X consists of a plurality of elements.

(3)析出物の体積分布
本発明に係るステンレス鋼材におけるNi系析出物の組成がNiX(X:Al、Ti、V、Nb、TaおよびZrからなる群から選ばれる一種または二種以上)であって、鋼中のXの要素となる元素が全て析出物に取り込まれるとすると、この析出物のステンレス鋼材に占める体積%(以下「A」とする。)はおおよそ次式で表すことができる。
(3) Volume distribution of precipitates The composition of the Ni-based precipitates in the stainless steel material according to the present invention is Ni 3 X (X: one or more selected from the group consisting of Al, Ti, V, Nb, Ta and Zr) ), And if all the elements that are elements of X in the steel are taken into the precipitate, the volume% (hereinafter referred to as “A”) of the precipitate in the stainless steel material is approximately expressed by the following equation: Can do.

A(体積%)=8×Al+4×Ti+4×V+2×Nb+2×Zr+Ta
ただし、式中の元素記号は各元素の鋼中の含有量(質量%)を示す。
このAの範囲について、鋼材の表面を酸により溶削して、析出物を表面に分散露出させて電気の通り道として機能させるためには、Ni系析出物はある程度の析出量が必要である。このため、Ni系析出物の析出量の下限が規定され、詳細な検討の結果によると、下限Aminは2体積%であり、Aを10体積%以上とすることが好ましい。一方、上限は材料の加工性等の製造性により決定されるものであって、上限Amaxを25体積%とすることが好ましい。
A (volume%) = 8 x Al + 4 x Ti + 4 x V + 2 x Nb + 2 x Zr + Ta
However, the element symbol in a formula shows content (mass%) in steel of each element.
In the range of A, Ni-based precipitates require a certain amount of precipitation in order to cause the surface of the steel material to be cut by an acid so that the precipitates are dispersedly exposed on the surface and function as electric paths. For this reason, the lower limit of the precipitation amount of the Ni-based precipitate is defined, and according to the result of detailed examination, the lower limit Amin is 2% by volume, and A is preferably 10% by volume or more. On the other hand, the upper limit is determined by manufacturability such as workability of the material, and the upper limit Amax is preferably 25% by volume.

(4)析出物の表面分布
上記のように、本発明に係るステンレス鋼材のNi系析出物は、表面に露出することで鋼材の表面抵抗を低下させる。この露出したNi系析出物の表面における存在比率(単位:面積%、本発明においてこの比率を「表面露出率」という。)は3%以上であればよく、概ね5%以上にすることが望ましい。電流は表面に露出した析出物を通って接触する部材(カーボンペーパー)に流れるので、表面露出率が高いほど、接触抵抗は低くなり、好ましい。表面の露出率が5%以上であれば十分である。5%より低くても、析出部分を経由して電流が流れる限りにおいて効果はあり、3%以上あれば一般的には最小限の導電性が確保される。従って、表面露出率は3%以上とする。特に好ましい表面露出率は12%以上である。一方、面積率の上限は接触抵抗の観点から規定されないが、加工性の観点から上限が規定される場合がある。この上限は組成や加工法に依存するため、これらの制約なく上限として特定の数値を設定することは困難である。一例として数値を挙げれば、好ましい表面露出率の上限は20面積%である。
(4) Surface distribution of precipitate As described above, the Ni-based precipitate of the stainless steel material according to the present invention reduces the surface resistance of the steel material by being exposed to the surface. The ratio of the exposed Ni-based precipitates on the surface (unit: area%, in the present invention, this ratio is referred to as “surface exposure rate”) may be 3% or more, and is preferably approximately 5% or more. . Since an electric current flows into the member (carbon paper) which contacts through the deposit exposed on the surface, the higher the surface exposure rate, the lower the contact resistance, which is preferable. A surface exposure rate of 5% or more is sufficient. Even if it is lower than 5%, it is effective as long as a current flows through the deposited portion, and if it is 3% or more, generally minimum conductivity is ensured. Therefore, the surface exposure rate is 3% or more. A particularly preferable surface exposure rate is 12% or more. On the other hand, the upper limit of the area ratio is not defined from the viewpoint of contact resistance, but the upper limit may be defined from the viewpoint of workability. Since this upper limit depends on the composition and processing method, it is difficult to set a specific numerical value as the upper limit without these restrictions. If a numerical value is mentioned as an example, the upper limit of a preferable surface exposure rate is 20 area%.

表面露出率の計測方法は特に限定されないが、一例を挙げれば次のとおりである。すなわち、Ni系析出物の直径が一般的には数十〜数百nmの大きさであることを考慮すると、SEM、TEMなどの電子顕微鏡を用い、視野を500nm×500nm〜5μm×5μm、好ましくは500nm×500nm〜2μm×2μmとしてステンレス鋼材表面の析出物を観察する。EPMA,AESなどの元素分析手段によって観察視野内の析出物の化学組成を測定し、これらの中からNi系析出物を特定する。こうして特定された観察視野におけるNi系析出物の面積比率を画像処理手段を用いることによって算出する。   The method for measuring the surface exposure rate is not particularly limited, but an example is as follows. That is, considering that the diameter of the Ni-based precipitate is generally several tens to several hundreds of nanometers, using an electron microscope such as SEM or TEM, the field of view is 500 nm × 500 nm to 5 μm × 5 μm, preferably Observe the precipitates on the surface of the stainless steel material as 500 nm × 500 nm to 2 μm × 2 μm. The chemical composition of the precipitate in the observation field is measured by an elemental analysis means such as EPMA or AES, and the Ni-based precipitate is specified from these. The area ratio of the Ni-based precipitate in the observation visual field thus specified is calculated by using an image processing means.

2.ステンレス鋼材の化学組成
上記の析出物を安定的に得ることが可能な本発明に係るステンレス鋼材はオーステナイト系ステンレス鋼からなる鋼材であり、その好ましい化学組成は次のとおりである。
2. Chemical composition of stainless steel material The stainless steel material according to the present invention capable of stably obtaining the above precipitate is a steel material made of austenitic stainless steel, and a preferred chemical composition thereof is as follows.

C:0.001〜0.2%
加工性および耐食性に影響を及ぼす各種炭化物の析出を抑制するために、Cの含有量を0.001〜0.2%とすることが好ましい。
C: 0.001 to 0.2%
In order to suppress precipitation of various carbides that affect workability and corrosion resistance, the C content is preferably 0.001 to 0.2%.

Si:0.01〜1.5%
鋼中のSiは、0.01〜1.5%の範囲で含有させることが好ましい。Siは、量産鋼においてはAlと同様に有効な脱酸元素である。0.01%未満では脱酸が不十分となることが懸念され、一方1.5%を超えると成形性が低下する傾向を示す。
Si: 0.01 to 1.5%
It is preferable to contain Si in steel in the range of 0.01 to 1.5%. Si is a deoxidizing element as effective as Al in mass-produced steel. If it is less than 0.01%, there is a concern that deoxidation will be insufficient. On the other hand, if it exceeds 1.5%, the moldability tends to decrease.

Mn:0.01〜2.5%
Mnは0.01〜2.5%の範囲で含有させることが好ましい。Mnは有効なオーステナイト相安定化元素である。ただし2.5%以上含有させる必要はない。
Mn: 0.01 to 2.5%
Mn is preferably contained in the range of 0.01 to 2.5%. Mn is an effective austenite phase stabilizing element. However, it is not necessary to contain 2.5% or more.

P:0.04%以下
鋼中のP含有量は、0.04%以下とするのが好ましい。本発明に係る鋼材においては、PはSと並んで最も有害な不純物である。低ければ低い程望ましい。
P: 0.04% or less The P content in the steel is preferably 0.04% or less. In the steel material according to the present invention, P is the most harmful impurity along with S. The lower the better.

S:0.01%以下
鋼中のS含有量は、0.01%以下とするのが好ましい。本発明に係る鋼材においてSはPと並んで最も有害な不純物であるから、S含有量は低ければ低いほど望ましい。鋼中共存元素および鋼中のS量に応じて、Mn系硫化物、Cr系硫化物、Fe系硫化物、あるいは、これらの複合硫化物および酸化物との複合非金属介在物としてほとんどが析出する。しかしながら、固体高分子型燃料電池のセパレータが置かれる環境においては、いずれの組成の非金属介在物も、程度の差はあるものの腐食の起点として作用し、不動態皮膜の維持、腐食溶出抑制に有害である。通常の量産鋼の鋼中S含有量は、0.005%超え0.008%以下であるが、上記の有害な影響を防止するためには0.004%以下に低減することが望ましい。より望ましい鋼中S含有量は0.002%以下であり、最も望ましい鋼中S含有量レベルは、0.001%未満であり、低ければ低い程よい。工業的量産レベルで0.001%未満とすることは、現状の精錬技術をもってすれば製造コストの上昇もわずかであり、全く問題ない。
S: 0.01% or less The S content in steel is preferably 0.01% or less. In the steel material according to the present invention, since S is the most harmful impurity along with P, the lower the S content, the better. Depending on the coexisting elements in steel and the amount of S in steel, Mn-based sulfides, Cr-based sulfides, Fe-based sulfides, or composite non-metallic inclusions with these composite sulfides and oxides are mostly precipitated. To do. However, in the environment where the separator of a polymer electrolyte fuel cell is placed, non-metallic inclusions of any composition can act as a starting point for corrosion to a certain extent, maintaining a passive film and suppressing corrosion elution. It is harmful. In general mass-produced steel, the S content in steel is more than 0.005% and not more than 0.008%, but it is desirable to reduce it to 0.004% or less in order to prevent the harmful effects described above. The more desirable S content in steel is 0.002% or less, and the most desirable S content level in steel is less than 0.001%, and the lower the better. If it is less than 0.001% at the industrial mass production level, if the current refining technology is used, the increase in production cost is slight, and there is no problem at all.

Cr:15〜30%
Crは、母材の耐食性を確保する上で極めて重要な基本合金元素である。基本傾向としては、含有量が高いほど高い耐食性が得られる。15%未満のCr含有量では、その他の元素を変化させてもセパレータとして必要な耐食性の確保が困難になる場合がある。一方、30%を超えると、オーステナイト相がその他合金成分の調整によっても不安定性になる。したがって、Cr含有量は15〜30%とすることが好ましく、15〜20%とすることが特に好ましい。
Cr: 15-30%
Cr is a basic alloy element that is extremely important in securing the corrosion resistance of the base material. As a basic tendency, the higher the content, the higher the corrosion resistance. If the Cr content is less than 15%, it may be difficult to ensure the corrosion resistance necessary for the separator even if other elements are changed. On the other hand, if it exceeds 30%, the austenite phase becomes unstable due to adjustment of other alloy components. Therefore, the Cr content is preferably 15 to 30%, particularly preferably 15 to 20%.

Ni:20〜60%
Niは導電性を有するNi系介在物を形成するために必須の元素であるとともに、オーステナイト相を安定化させる機能を有する重要な元素である。特に、本発明に係る鋼材のようにNbやTiを多く含有する鋼においては、オーステナイト相の安定化のためにNiを20%以上含有させることが好ましい。一方、過剰に含有させると製造が困難となるため、含有量の上限は60%とすることが好ましい。特に好ましい範囲は25〜50%である。
Ni: 20 to 60%
Ni is an essential element for forming Ni inclusions having conductivity, and is an important element having a function of stabilizing the austenite phase. In particular, in a steel containing a large amount of Nb or Ti as in the steel material according to the present invention, it is preferable to contain 20% or more of Ni in order to stabilize the austenite phase. On the other hand, since manufacture will become difficult when it contains excessively, it is preferable that the upper limit of content shall be 60%. A particularly preferred range is 25 to 50%.

Al:3.1%以下
Alは、一般には脱酸元素として溶鋼段階で添加する。一方、本発明に係る鋼材においてAlは電気の通り道となる導電性析出物の構成元素としても作用する。ただし、3.1%を超えて含有させると、加工性の低下による影響が顕著になる。したがって、Alの含有量は3.1%以下とすることが好ましい。特に好ましいAl含有量は1%以下である。
Al: 3.1% or less Al is generally added as a deoxidizing element at the molten steel stage. On the other hand, in the steel material according to the present invention, Al also acts as a constituent element of a conductive precipitate that becomes a path of electricity. However, if the content exceeds 3.1%, the influence due to the decrease in workability becomes significant. Therefore, the Al content is preferably 3.1% or less. A particularly preferable Al content is 1% or less.

Cu:2%以下
Cuは、有効なオーステナイト相安定化元素であり、不動態保持に際して有効な働きをする。ただし、2%を超えて含有させると、熱間での加工性を減ずることとなり、量産性の確保が難しくなる。したがって、Cuの含有量を2%以下とすることが好ましい。
Cu: 2% or less Cu is an effective austenite phase stabilizing element, and works effectively in maintaining the passive state. However, if it exceeds 2%, hot workability will be reduced, and it will be difficult to ensure mass productivity. Therefore, the Cu content is preferably 2% or less.

N:0.4%以下
Nはオ−ステナイト形成元素として、オーステナイト相バランス調整に有効な元素である。しかし、過剰に含有すると加工性を劣化させることが懸念される。したがって、N含有量の上限を0.4%とすることが好ましい。
N: 0.4% or less N is an element effective for adjusting the austenite phase balance as an austenite forming element. However, there is concern about deterioration of workability if contained excessively. Therefore, it is preferable that the upper limit of the N content is 0.4%.

Mo:7%以下、W:4%以下、Ti:5%以下、Nb:6%以下、V:5%以下、Ta:10%以下およびZr:6%以下からなる群から選ばれる一種または二種以上
MoはCrに比べ、少量で耐食性を改善する効果がある。7%以下の量で必要により含有させることが好ましい。7%を超えて含有させると、シグマ相等の金属間化合物の析出回避が困難となり、鋼の脆化の問題が顕在化し、生産が困難となる場合もある。したがって、Mo含有量の上限を7%とすることが好ましい。
One or two selected from the group consisting of Mo: 7% or less, W: 4% or less, Ti: 5% or less, Nb: 6% or less, V: 5% or less, Ta: 10% or less, and Zr: 6% or less More than seeds Mo has the effect of improving corrosion resistance in a small amount compared to Cr. It is preferably contained in an amount of 7% or less if necessary. If the content exceeds 7%, it is difficult to avoid precipitation of intermetallic compounds such as sigma phase, and the problem of embrittlement of steel becomes obvious, which may make production difficult. Therefore, the upper limit of the Mo content is preferably 7%.

Wは、Moと同様に耐食性を改善する効果があり、必要により含有させることができる。しかしながら、多量に含有させると加工性が劣化するので上限を4%とすることが好ましい。   W has an effect of improving the corrosion resistance like Mo and can be contained if necessary. However, since the workability deteriorates when contained in a large amount, the upper limit is preferably made 4%.

上記の群におけるその他の元素は、Alと同様、電気の通り道となる導電性析出物の構成元素である。加工性を確保するため、Ti:5%以下、Nb:6%以下、V:5%以下、Ta:10%以下、およびZr:6%以下からなる群から選ばれる一種または二種以上を満たすように含有させることができる。   The other elements in the above group are constituent elements of conductive precipitates that serve as a path for electricity, like Al. In order to ensure workability, one or more selected from the group consisting of Ti: 5% or less, Nb: 6% or less, V: 5% or less, Ta: 10% or less, and Zr: 6% or less are satisfied. It can be made to contain.

上記の元素以外は、Feおよび不純物である。
なお、上記のように、鋼に含まれるAl、Ti、V、Nb、TaおよびZrについては、析出物の体積の好適範囲の観点から、下記式を満たすことが好ましい。
Other than the above elements, Fe and impurities.
In addition, as mentioned above, about Al, Ti, V, Nb, Ta, and Zr contained in steel, it is preferable to satisfy | fill the following formula from a viewpoint of the suitable range of the volume of a precipitate.

2%<8×Al+4×Ti+4×V+2×Nb+2×Zr+Ta<25%
ただし、式中の元素記号は各元素の含有量(質量%)を示す。
3.ステンレス鋼材の製造方法
本発明に係るステンレス鋼材は、上記のようにNi系析出物の表面露出率が本発明に規定される範囲であって、好ましくは上記のような化学組成を有していれば、製造方法には特に限定されない。ただし、次のような製造方法を採用すれば、本発明に係るステンレス鋼材を、効率的にかつ安定的に得ることが実現される。
2% <8 × Al + 4 × Ti + 4 × V + 2 × Nb + 2 × Zr + Ta <25%
However, the element symbol in a formula shows content (mass%) of each element.
3. Manufacturing method of stainless steel material The stainless steel material according to the present invention is within the range in which the surface exposure rate of Ni-based precipitates is defined in the present invention as described above, and preferably has the chemical composition as described above. For example, the manufacturing method is not particularly limited. However, if the following manufacturing method is employed, it is possible to efficiently and stably obtain the stainless steel material according to the present invention.

(1)鋼材の製造方法
本発明に係るステンレス鋼材は、Ni系析出物を析出させる前までは、通常のオーステナイト系ステンレス鋼材の製造方法にしたがって製造すればよい。一例を挙げれば次のとおりである。まず、金属原料を炉内で加熱溶解し、得られた溶鋼を連続鋳造によりスラブとし、これを熱間圧延し、焼鈍する。焼鈍により得られた鋼材を酸洗後、冷間圧延し、焼鈍することでステンレス鋼材が得られる。なお、連続鋳造を行わずに、溶鋼から造塊してインゴット得て、これを鍛造して熱間圧延に供してもよい。
(1) Manufacturing method of steel material The stainless steel material according to the present invention may be manufactured in accordance with a normal manufacturing method of austenitic stainless steel material before depositing Ni-based precipitates. An example is as follows. First, a metal raw material is heated and melted in a furnace, and the obtained molten steel is made into a slab by continuous casting, which is hot-rolled and annealed. A steel material obtained by annealing is pickled, cold-rolled, and annealed to obtain a stainless steel material. In addition, without performing continuous casting, ingots may be obtained from molten steel to obtain ingots, which may be forged and subjected to hot rolling.

(2)熱処理による析出物形成
本発明に係るステンレス鋼材はNiを主体(具体的には50質量%以上)とする導電性析出物、すなわちNi系析出物を有する。この析出方法は特には制限されないが、上記のような製造方法で得られたステンレス鋼材に対して熱処理を行うことによって析出物を析出させることが好ましい。なお、Ni系析出物の化学組成、形状および析出量はステンレス鋼材の化学組成のみならず熱処理条件にも依存するため、Ni系析出物が目的の表面露出率となるように熱処理条件は適宜設定される。一例を挙げれば、700℃〜800℃程度、数時間〜数十時間である。
(2) Precipitate formation by heat treatment The stainless steel material according to the present invention has conductive precipitates mainly composed of Ni (specifically, 50% by mass or more), that is, Ni-based precipitates. Although this precipitation method is not particularly limited, it is preferable to deposit the precipitate by performing a heat treatment on the stainless steel material obtained by the above production method. The chemical composition, shape, and precipitation amount of Ni-based precipitates depend not only on the chemical composition of the stainless steel material but also on the heat treatment conditions, so the heat treatment conditions are set appropriately so that the Ni-based precipitates have the desired surface exposure rate. Is done. For example, it is about 700 ° C. to 800 ° C., several hours to several tens of hours.

この熱処理のタイミングは、セパレータ形状への成形加工(プレス成形、切削加工など)の前でも後でもよい。鋼材内に析出した析出物が加工性を損なう要因にはならないため、成形加工を行ってから析出熱処理を施すことが特に好ましい。   The timing of this heat treatment may be before or after the molding process (press molding, cutting process, etc.) into the separator shape. Since precipitates precipitated in the steel material do not cause deterioration of workability, it is particularly preferable to perform precipitation heat treatment after forming.

(3)溶削
こうして析出物を鋼材内に析出させたら、電気の通り道を表面に確保するために、鋼材の内部に一様に析出した析出物を表面に露出させる。そのために、一般的には、析出熱処理後に表面を酸洗する。母材は析出物よりも酸に対する溶解速度が大きいため、酸洗すると析出物よりも優先的に母材が溶解し、その結果、鋼材の表面に析出物の一部が露出する(頭出し)。
(3) Hot-cutting Once the precipitates are deposited in the steel material, the precipitates uniformly deposited inside the steel material are exposed on the surface in order to secure the passage of electricity on the surface. Therefore, in general, the surface is pickled after the precipitation heat treatment. Since the base material has a higher dissolution rate with respect to the acid than the precipitate, pickling preferentially dissolves the base material over the precipitate, and as a result, a part of the precipitate is exposed on the surface of the steel (indexing). .

この頭出しのための酸洗に用いる処理液は、特には限定されないが、例えば硝酸を8〜15体積%およびフッ酸を3〜8体積%含む水系処理液が例示される。
処理液による処理条件は処理液組成によっても変動するため、Ni系析出物が目的の表面露出率となるように適宜設定すればよい。例えば、硝酸を8体積%およびフッ酸を3体積%有する水系処理液の場合には、液温60℃であれば処理時間は1〜5分程度でよい。
The treatment liquid used for pickling for cueing is not particularly limited, and examples thereof include an aqueous treatment liquid containing 8 to 15% by volume of nitric acid and 3 to 8% by volume of hydrofluoric acid.
Since the treatment conditions with the treatment liquid vary depending on the composition of the treatment liquid, it may be set as appropriate so that the Ni-based precipitate has the target surface exposure rate. For example, in the case of an aqueous processing solution having 8% by volume of nitric acid and 3% by volume of hydrofluoric acid, the processing time may be about 1 to 5 minutes at a liquid temperature of 60 ° C.

4.ステンレス鋼製セパレータおよび固体高分子型燃料電池
上記のような析出物を有する本発明に係るステンレス鋼材をセパレータの構造、およびその加工方法、ならびに得られたセパレータを用いる固体高分子型燃料電池の構造および組立方法については特に制限されない。
4). Stainless steel separator and polymer electrolyte fuel cell The structure of the stainless steel material according to the present invention having the deposit as described above, the processing method thereof, and the structure of the polymer electrolyte fuel cell using the obtained separator The assembly method is not particularly limited.

セパレータの構造の一例としては図1に示されるセパレータ5a,5bが挙げられ、固体高分子型燃料電池の構造としては図1に示される燃料電池1が挙げられる。
セパレータの製造方法は、ステンレス鋼材を切削加工などによって溝を形成する方法であっても、ステンレス鋼板をプレス加工によって凹凸を形成する方法であってもよい。
As an example of the structure of the separator, there are separators 5a and 5b shown in FIG. 1, and as the structure of the polymer electrolyte fuel cell, there is the fuel cell 1 shown in FIG.
The manufacturing method of the separator may be a method of forming a groove by cutting a stainless steel material or a method of forming irregularities by pressing a stainless steel plate.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

表1に示す化学組成を有する10種の合金を、高周波誘導加熱方式20kg真空溶解炉で、市販の金属原料を使用し鋼中の不純物を調整して溶解し、造塊してインゴットを得た。なお、表1に示される化学組成における残部はFeおよび不純物である。各インゴットから下記の工程により冷間圧延鋼板を製造した。   Ten kinds of alloys having the chemical composition shown in Table 1 were melted by adjusting impurities in steel using a commercially available metal raw material in a high-frequency induction heating method 20 kg vacuum melting furnace, and ingot was obtained. . The balance in the chemical composition shown in Table 1 is Fe and impurities. A cold-rolled steel sheet was produced from each ingot by the following process.

インゴット→鍛造→熱間圧延→焼鈍→酸洗→冷間圧延(中間焼鈍)→焼鈍→冷延鋼板
なお、一部の合金については、上記の工程における熱間圧延終了時の鋼板、すなわち熱間圧延鋼板を機械加工し、加工された部材を熱処理して評価対象とした。
Ingot->forging-> hot rolling->annealing->pickling-> cold rolling (intermediate annealing)->annealing-> cold-rolled steel sheet For some alloys, the steel sheet at the end of hot rolling in the above process, that is, hot The rolled steel plate was machined, and the processed member was subjected to heat treatment to be evaluated.

各製造工程における詳細は以下のとおりである。
鍛造は、大気中加熱によって1100℃までインゴットを加熱してプレス方式にて行い、25〜30mm厚×110mm幅の鍛造後鋼材を得た。鍛造後の鋼材を大気中加熱によって1100℃まで加熱し、25〜30mm厚であったものを6mm厚まで熱間圧延した。熱間圧延後の鋼板に対する焼鈍は大気中加熱によって1050℃に加熱することで行った。引き続いて、焼鈍後の鋼材を酸洗後、6mm厚から0.5〜0.2mm厚まで冷間圧延した。冷間圧延後の鋼板を上記の条件と同じ条件で焼鈍して冷延鋼板を得た。
The details in each manufacturing process are as follows.
Forging was performed in the press method by heating the ingot to 1100 ° C. by heating in the atmosphere, and a steel material after forging having a thickness of 25 to 30 mm × 110 mm was obtained. The steel material after forging was heated to 1100 ° C. by heating in the atmosphere, and what was 25-30 mm thick was hot-rolled to 6 mm thick. The steel sheet after hot rolling was annealed by heating to 1050 ° C. by heating in the air. Subsequently, the steel material after annealing was pickled and then cold-rolled from a thickness of 6 mm to a thickness of 0.5 to 0.2 mm. The cold-rolled steel sheet was obtained by annealing the steel sheet after cold rolling under the same conditions as described above.

Figure 2009060900
Figure 2009060900

上記の工程で仕上がった冷延鋼板について、析出物がNiX型であるとしたときの体積比率(体積%)の計算結果を表1に示した。
この冷延鋼板表面への析出物の分散・頭出しは、表2に示される条件での熱処理によって材料中に一様に析出物を分散析出させた後、表面を酸洗することにより実施した。酸洗に用いた処理液の組成は5%HCl溶液であり、60℃、10分の浸漬によって頭出しを行った。
Table 1 shows the calculation results of the volume ratio (volume%) of the cold-rolled steel sheet finished in the above process when the precipitate is Ni 3 X type.
The dispersion and cueing of the precipitate on the surface of the cold-rolled steel sheet was carried out by uniformly depositing the precipitate in the material by heat treatment under the conditions shown in Table 2 and then pickling the surface. . The composition of the treatment solution used for pickling was a 5% HCl solution, and cueing was performed by immersion at 60 ° C. for 10 minutes.

表面への析出物の分散・頭出しを行った冷延鋼板について、任意の測定場所を複数選び、SEM観察によって得られた580nm×580nmの視野の観察画像における析出物の占める面積割合を算出した。なお、析出物の同定はSEM観察、X線観察、TEM観察(および付属のEDX)により行った。得られたSEM画像の一例を図3に示す。図3における円形または楕円形の白色〜灰色部分が析出物である(図3(a)で観察される析出物はNiTiであり、図3(a)の析出物はNiNbである。)。For the cold-rolled steel sheet on which the precipitates were dispersed / cueed on the surface, a plurality of arbitrary measurement locations were selected, and the area ratio of the precipitates in the observation image of the field of view of 580 nm × 580 nm obtained by SEM observation was calculated. . In addition, the identification of the deposit was performed by SEM observation, X-ray observation, and TEM observation (and attached EDX). An example of the obtained SEM image is shown in FIG. The white or gray portion of the circle or ellipse in FIG. 3 is a precipitate (the precipitate observed in FIG. 3A is Ni 3 Ti, and the precipitate in FIG. 3A is Ni 3 Nb. .)

また、表面への析出物の分散・頭出しを行った冷延鋼板について、カーボン部材との接触抵抗の測定を実施した。所定の処理を施した冷延鋼板から20mm×20mmの試験片を切り出した。2枚の試験片でカーボンペーパ(東レ製TGP-H120)を荷重5kg/cmで挟み、抵抗を測定した。測定値は試験片2面分の接触抵抗に由来するため、測定値の1/2の値に基づいて、試験片とカーボンペーパの接触面1面分の接触抵抗(単位:mΩcm)を算出した。また、こうして得られた接触抵抗初期値に加えて、試験片を75℃相対湿度95%の環境で200時間保持した後の接触抵抗を測定した。Moreover, the contact resistance with a carbon member was measured about the cold-rolled steel plate which performed dispersion | distribution / cueing of the precipitate to the surface. A test piece of 20 mm × 20 mm was cut out from the cold-rolled steel sheet subjected to the predetermined treatment. A carbon paper (TGP-H120 manufactured by Toray Industries Inc.) was sandwiched between two test pieces with a load of 5 kg / cm 2 , and the resistance was measured. Since the measured value is derived from the contact resistance of two test pieces, the contact resistance (unit: mΩcm 2 ) of one contact surface of the test piece and the carbon paper is calculated based on the half of the measured value. did. In addition to the contact resistance initial value thus obtained, the contact resistance after the test piece was held in an environment of 75 ° C. and 95% relative humidity for 200 hours was measured.

析出物の頭出しを行った後の冷延鋼板の結果を表2に示す。   Table 2 shows the results of the cold-rolled steel sheet after cueing the precipitate.

Figure 2009060900
Figure 2009060900

No.3は、表1に示す合金aを、720℃×16hの熱処理の後、溶削により析出物を頭出しした材料(表面露出率16%)の評価結果である。初期の抵抗は8.8mΩcmと低い値を示した。一方、同じ合金aでもNo.1は、析出処理(熱処理)をしておらず、頭出しに相当する酸洗を行っても抵抗は低くはならなかった。No.2は析出処理(熱処理)により析出物は析出しているが、表面頭出しレベルの酸洗処理を施していないので、接触抵抗は高い結果となった。No. 3 is an evaluation result of a material (surface exposure rate 16%) obtained by cueing precipitates by hot-melting the alloy a shown in Table 1 after heat treatment at 720 ° C. × 16 h. The initial resistance was a low value of 8.8 mΩcm 2 . On the other hand, no. No. 1 was not subjected to precipitation treatment (heat treatment), and resistance did not decrease even when pickling corresponding to cueing was performed. No. In No. 2, precipitates were deposited by precipitation treatment (heat treatment), but the surface pickling treatment at the surface cueing level was not performed, so that the contact resistance was high.

以下、No.5、およびNo.7〜14は析出物の露出率がいずれも十数%以上であり、10mΩcm前後の低い接触抵抗値を示した。No.4、および6は析出処理(熱処理)を行っていないため析出物が析出しておらず、接触抵抗は高かった。No.15は比較としてSUS316Lに表面溶削と同等な処理を施した結果であり、接触抵抗が高いことがあらためて確認された。Hereinafter, no. 5 and no. In Nos. 7 to 14, the exposure rate of the precipitates was 10% or more, and low contact resistance values of about 10 mΩcm 2 were exhibited. No. In Nos. 4 and 6, since no precipitation treatment (heat treatment) was performed, no precipitate was deposited, and the contact resistance was high. No. For comparison, 15 is a result obtained by subjecting SUS316L to a treatment equivalent to surface cutting, and it was confirmed again that the contact resistance was high.

表2に示すサンプルを75℃で相対湿度95%の雰囲気中に200時間放置した後、接触抵抗の測定を行ったところ、析出物が露出しているNo.3、5、およびNo.7〜14はほとんど抵抗の増加は見られなかった。これに対して、比較例は全て抵抗が2倍ほど増加した。   When the sample shown in Table 2 was left in an atmosphere of 75 ° C. and a relative humidity of 95% for 200 hours and then contact resistance was measured, no. 3, 5, and no. 7 to 14 showed almost no increase in resistance. On the other hand, the resistances of all the comparative examples increased about twice.

以上の結果は、本発明に係るステンレス鋼板が表面に有する析出物が電気の通り道として有効に作用するとともに、高温高湿環境下における劣化も小さいことを示している。   The above results show that the precipitates on the surface of the stainless steel plate according to the present invention effectively act as a path for electricity, and the deterioration under a high temperature and high humidity environment is small.

表1に示される合金a、b、gの熱延鋼板から切り出した板に切削加工により流路を施し、セパレータに加工した。ガス流路となる溝の幅は1.5mm、深さは1.0mmとした。このセパレータに720℃、16時間の熱処理を行い、さらに実施例1に示される処理と同様の酸洗処理を施し、析出物の表面頭出しを行った。高分子膜、電極、ガス拡散層が一体化した電極有効面積25cmの膜電極集合体(MEA)を上記セパレータではさみ、単セル燃料電池を作製した。カソード側に空気(利用率50%)、アノード側に純水素(利用率70%)を流し、電流密度0.5A/cmで、出力電圧をモニターし電池性
能を評価した。結果を表3に示す。100時間運転後の電圧降下率は3%未満であり、本発明鋼によるセパレータは電池に組み込んで十分機能することが確認された。
A plate cut out from the hot rolled steel sheets of alloys a, b, and g shown in Table 1 was subjected to a flow path by cutting and processed into a separator. The width of the groove serving as the gas flow path was 1.5 mm and the depth was 1.0 mm. The separator was subjected to heat treatment at 720 ° C. for 16 hours, and further subjected to a pickling treatment similar to the treatment shown in Example 1, thereby performing surface cueing of the precipitate. A membrane electrode assembly (MEA) having an electrode effective area of 25 cm 2 in which a polymer membrane, an electrode, and a gas diffusion layer were integrated was sandwiched between the separators to produce a single cell fuel cell. Air (utilization rate 50%) was passed to the cathode side, pure hydrogen (utilization rate 70%) was passed to the anode side, the output voltage was monitored at a current density of 0.5 A / cm 2 , and the battery performance was evaluated. The results are shown in Table 3. The voltage drop rate after 100 hours of operation was less than 3%, and it was confirmed that the separator made of the steel of the present invention functioned well when incorporated in a battery.

Figure 2009060900
Figure 2009060900

表1に示される合金b、gの熱延鋼板を用いて、実施例2に係る燃料電池と同様な燃料電池を作製した。セパレータは機械加工の後、実施例2の場合と同様の熱処理・頭出し酸洗処理を行った。燃料はメタノール水溶液を使用し、電極有効面積は16cmであった。カソード側は大気に暴露し、アノード側には3%メタノール溶液を流した。電流密度を5mA/cmに保持し、出力電圧をモニターして電池性能を評価した。結果を表4に示す。A fuel cell similar to the fuel cell according to Example 2 was manufactured using hot-rolled steel sheets of alloys b and g shown in Table 1. The separator was subjected to the same heat treatment and cue pickling treatment as in Example 2 after machining. The fuel used methanol aqueous solution, and the electrode effective area was 16 cm < 2 >. The cathode side was exposed to the atmosphere, and a 3% methanol solution was flowed to the anode side. The battery performance was evaluated by maintaining the current density at 5 mA / cm 2 and monitoring the output voltage. The results are shown in Table 4.

Figure 2009060900
Figure 2009060900

100時間運転後の電圧降下率はやはり3%未満であり、本発明に係るステンレス鋼材によるセパレータはメタノールを燃料とする電池に組み込んでも十分機能することが確認された。   The voltage drop rate after 100 hours of operation is still less than 3%, and it has been confirmed that the stainless steel separator according to the present invention functions sufficiently even when incorporated in a battery using methanol as a fuel.

Claims (6)

オーステナイト系ステンレス鋼材であって、Niの含有量が50質量%以上であって導電性を有する析出物が一種類以上表面に露出し、該析出物の表面露出率が3面積%以上であることを特徴とする固体高分子型燃料電池セパレータ用ステンレス鋼材。   It is an austenitic stainless steel material, the Ni content is 50% by mass or more, and one or more types of conductive precipitates are exposed on the surface, and the surface exposure rate of the precipitates is 3% by area or more. A stainless steel material for solid polymer fuel cell separators. 前記析出物が、NiX型の析出物(XはAl、Ti、V、Nb、Ta、およびZrからなる群から選ばれる一種または二種以上である。)を含むことを特徴とする請求項1記載の固体高分子型燃料電池セパレータ用ステンレス鋼材。The precipitates include Ni 3 X-type precipitates (X is one or more selected from the group consisting of Al, Ti, V, Nb, Ta, and Zr). Item 2. A stainless steel material for a polymer electrolyte fuel cell separator according to Item 1. 前記析出物がNiNb相を含むことを特徴とする請求項2に記載の固体高分子型燃料電池
セパレータ用ステンレス鋼材。
The stainless steel material for a polymer electrolyte fuel cell separator according to claim 2, wherein the precipitate contains a Ni 3 Nb phase.
前記析出物がNiTi相を含むことを特徴とする請求項2に記載の固体高分子型燃料電池
セパレータ用ステンレス鋼材。
The stainless steel material for a polymer electrolyte fuel cell separator according to claim 2, wherein the precipitate contains a Ni 3 Ti phase.
セパレータを構成するステンレス鋼材が、質量%で、C:0.001〜0.2%、Si:0.01〜1.5%、Mn:0.01〜2.5%、P:0.04%以下、S:0.01%以下、Cr:15〜30%、Ni:20〜60%、Cu:2%以下、Al:3.1%以下、N:0.4%以下を含有するとともに、Mo:7%以下、W:4%以下、Ti:5%以下、Nb:6%以下、V:5%以下、Ta:10%以下およびZr:6%以下からなる群から選ばれる一種または二種以上を含有し、残部Feおよび不純物からなり、かつ、Al、Ti、V、Nb、TaおよびZrが下記式を満足する化学組成を有するオーステナイト系ステンレス鋼材であることを特徴とする請求項1から4のいずれかに記載の固体高分子型燃料電池セパレータ用ステンレス鋼材。
2%<8×Al+4×Ti+4×V+2×Nb+2×Zr+Ta<25%
ただし、式中の元素記号は各元素の含有量(単位:質量%)を示す。
The stainless steel material constituting the separator is mass%, C: 0.001 to 0.2%, Si: 0.01 to 1.5%, Mn: 0.01 to 2.5%, P: 0.04. %: S: 0.01% or less, Cr: 15-30%, Ni: 20-60%, Cu: 2% or less, Al: 3.1% or less, N: 0.4% or less Mo: 7% or less, W: 4% or less, Ti: 5% or less, Nb: 6% or less, V: 5% or less, Ta: 10% or less, and Zr: 6% or less An austenitic stainless steel material containing two or more, comprising the balance Fe and impurities, and Al, Ti, V, Nb, Ta and Zr having a chemical composition satisfying the following formula: The solid polymer fuel cell separator step according to any one of 1 to 4 Less steel.
2% <8 × Al + 4 × Ti + 4 × V + 2 × Nb + 2 × Zr + Ta <25%
However, the element symbol in a formula shows content (unit: mass%) of each element.
固体高分子膜、電極およびセパレータを備える固体高分子型燃料電池であって、前記セパレータの素材として請求項1から5のいずれかに記載される固体高分子型燃料電池セパレータ用ステンレス鋼を用いることを特徴とする固体高分子型燃料電池。   A solid polymer fuel cell comprising a solid polymer membrane, an electrode, and a separator, wherein the separator is made of stainless steel for a polymer electrolyte fuel cell separator according to any one of claims 1 to 5. A polymer electrolyte fuel cell characterized by the above.
JP2009540081A 2007-11-07 2008-11-06 Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell Active JP5152193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009540081A JP5152193B2 (en) 2007-11-07 2008-11-06 Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007289780 2007-11-07
JP2007289780 2007-11-07
PCT/JP2008/070213 WO2009060900A1 (en) 2007-11-07 2008-11-06 Stainless steel product for polymer electrolyte fuel cell separators and polymer electrolyte fuel cells
JP2009540081A JP5152193B2 (en) 2007-11-07 2008-11-06 Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPWO2009060900A1 true JPWO2009060900A1 (en) 2011-03-24
JP5152193B2 JP5152193B2 (en) 2013-02-27

Family

ID=40625787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009540081A Active JP5152193B2 (en) 2007-11-07 2008-11-06 Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell

Country Status (2)

Country Link
JP (1) JP5152193B2 (en)
WO (1) WO2009060900A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578324B2 (en) * 2010-11-16 2014-08-27 住友電気工業株式会社 Magnesium alloy parts
JP6337514B2 (en) * 2013-05-21 2018-06-06 大同特殊鋼株式会社 Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
CN103710644B (en) * 2014-01-23 2015-09-09 江苏银环精密钢管有限公司 A kind of sulfuric acid waste heat recovery device stainless-steel seamless pipe
WO2016043199A1 (en) * 2014-09-19 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel sheet
JP6575266B2 (en) * 2015-09-25 2019-09-18 日本製鉄株式会社 Austenitic stainless steel
JP6575265B2 (en) * 2015-09-25 2019-09-18 日本製鉄株式会社 Austenitic stainless steel
US11692232B2 (en) * 2018-09-05 2023-07-04 Gregory Vartanov High strength precipitation hardening stainless steel alloy and article made therefrom
CN110066957A (en) * 2019-05-17 2019-07-30 国家电投集团科学技术研究院有限公司 Corrosion-resistant super austenitic stainless steel of modified and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002960A (en) * 2002-03-13 2004-01-08 Nisshin Steel Co Ltd Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor
JP4040008B2 (en) * 2003-09-29 2008-01-30 本田技研工業株式会社 Metal separator for fuel cell and manufacturing method thereof
JP2006233282A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Stainless steel for energizing electric parts with superior electric conductivity and corrosion resistance, and manufacturing method therefor
JP4967398B2 (en) * 2006-03-22 2012-07-04 Jfeスチール株式会社 Stainless steel suitable for polymer electrolyte fuel cell and its separator

Also Published As

Publication number Publication date
WO2009060900A1 (en) 2009-05-14
JP5152193B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP4078966B2 (en) Stainless steel for separator of polymer electrolyte fuel cell and polymer electrolyte fuel cell
KR101597721B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
JP4798298B2 (en) Stainless steel for fuel cell separator with excellent conductivity and ductility and method for producing the same
JP2001032056A (en) Stainless steel for conductive parts and solid high polymer type fuel battery
JP5971446B1 (en) Ferritic stainless steel material, polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
US20170298488A1 (en) Ferritic stainless steel material, and, separator for solid polymer fuel cell and solid polymer fuel cell which uses the same
JP2008285731A (en) Stainless steel sheet having excellent surface electrical conductivity, and method for producing the same
JP2006233282A (en) Stainless steel for energizing electric parts with superior electric conductivity and corrosion resistance, and manufacturing method therefor
JP5972877B2 (en) Method for producing stainless steel for fuel cell separator
EP2031687A1 (en) Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same
JP4967398B2 (en) Stainless steel suitable for polymer electrolyte fuel cell and its separator
JP4967397B2 (en) Stainless steel suitable for polymer electrolyte fuel cell and its separator
JP4919107B2 (en) Corrosion-resistant conductive material, polymer electrolyte fuel cell and separator thereof, and method for producing corrosion-resistant conductive material
JP2004124197A (en) Stainless steel for solid high polymer type fuel cell separator, its production method, and solid high polymer type fuel cell
JP4967831B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP4930222B2 (en) Austenitic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP2011026670A (en) Stainless steel for solid-state polymer type fuel cell separator and method of manufacturing the same
JP5560533B2 (en) Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP3397168B2 (en) Ferritic stainless steel and polymer electrolyte fuel cell for polymer electrolyte fuel cell separator
JP2004269969A (en) Separator for solid polymer type fuel cell and manufacturing method therefor
JP5703560B2 (en) Stainless steel plate for fuel cell separator with excellent conductivity
JP4214921B2 (en) Fe-Cr alloy for fuel cell
KR101938500B1 (en) Metal material and current-carrying component using said metal material
JP2000265248A (en) Ferritic stainless steel for solid high polymer type fuel battery separator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5152193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350