JP2004002960A - Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor - Google Patents

Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor Download PDF

Info

Publication number
JP2004002960A
JP2004002960A JP2002354689A JP2002354689A JP2004002960A JP 2004002960 A JP2004002960 A JP 2004002960A JP 2002354689 A JP2002354689 A JP 2002354689A JP 2002354689 A JP2002354689 A JP 2002354689A JP 2004002960 A JP2004002960 A JP 2004002960A
Authority
JP
Japan
Prior art keywords
mass
stainless steel
fuel cell
austenitic stainless
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002354689A
Other languages
Japanese (ja)
Inventor
Kazu Shiroyama
白山 和
Takeshi Utsunomiya
宇都宮 武志
Sadayuki Nakamura
中村 定幸
Akira Hironaka
弘中 明
Naoto Hiramatsu
平松 直人
Wakahiro Harada
原田 和加大
Akihiro Nonomura
野々村 明廣
Toshiro Nagoshi
名越 敏郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002354689A priority Critical patent/JP2004002960A/en
Publication of JP2004002960A publication Critical patent/JP2004002960A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an austenitic stainless steel which keeps low surface contact resistance and superior corrosion resistance for a long period of time, and is suitable for a separator of a fuel cell such as a solid polymer type. <P>SOLUTION: This austenitic stainless steel used for a substrate of the separator of the fuel cell has a composition comprising 16.0-40.0% Cr, 5.0-26.0% Ni, 0.2-6.0% Cu, and the balance substantially Fe, one or more elements of 0.01-0.5% N, 0.2-6.0% Mo, 0.01-1.0% Co, 0.05-1.0% Nb, 0.05-1.0% Ti, 0.01-3.0% Al, 0.01-1.0% V, 0.001-0.5% rare earth metal, and 0.001-1.0% B, as needed. The austenitic stainless steel has a Cu rich phase precipitated and dispersed in an amount of 0.2 vol.% or more, and Cu concentrated in the surface layer so as to make Cu/(Si+Mn) to be 0.5 or more, to improve the electrical conductivity of the stainless steel sheet of the substrate. The manufacturing method comprises bright annealing the steel sheet in an atmosphere at a dew point of -30°C or lower or pickling it in a mixed acid after annealing it in the air, to precipitate and disperse the Cu rich phase or concentrate Cu in the surface layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、固体高分子型等の燃料電池に適し、表面接触抵抗が低く耐食性に優れた燃料電池セパレータ用オーステナイト系ステンレス鋼及びその製造方法に関する。
【0002】
【従来の技術】
燃料電池には、リン酸型燃料電池,溶融炭酸塩型燃料電池,固体電解質型燃料電池,固体高分子型燃料電池等がある。なかでも、固体高分子型燃料電池は、100℃以下の温度で動作可能であり、短時間で起動する長所を備えている。また、各部材が固体であるため、構造が簡単でメンテナンスが容易であり、振動や衝撃に曝される用途にも適用できる。更に、出力密度が高いため小型化に適し、燃料効率が高く、騒音が小さい等の長所を備えている。これらの長所から、車両搭載用動力源としての用途が検討されている。ガソリン自動車と同等の走行距離を出せる燃料電池を自動車に搭載できると、NO,SOの発生がほとんどなく、COの発生が半減する等、環境に対して非常にクリーンな動力源になる。
【0003】
固体高分子型燃料電池は、分子中にプロトン交換基をもつ固体高分子樹脂膜がプロトン導電性電解質として機能することを利用しており、他の形式の燃料電池と同様に固体高分子膜の一側に水素等の燃料ガスを流し、他側に空気等の酸化性ガスを流す構造になっている。
具体的には、固体高分子膜1は、両側に酸化極2及び燃料極3が接合され、それぞれガスケット4を介してセパレータ5を対向させている(図1a)。酸化極2側のセパレータ5には空気供給口6,空気排出口7が形成され、燃料極3側のセパレータ5には水素供給口8,水素排出口9が形成されている。
【0004】
水素g及び酸素又は空気oの導通,均一分配のため、水素g及び酸素又は空気oの流動方向に延びる複数の溝10がセパレータ5に形成されている。また、発電時に発熱があるため、給水口11から送り込んだ冷却水wをセパレータ5の内部に循環させた後、排水口12から排出させる水冷機構をセパレータ5に内蔵させている。水素供給口8から燃料極3とセパレータ5との間隙に送り込まれた水素gは、電子を放出したプロトンとなって固体高分子膜1を透過し、酸化極2側で電子を受け、酸化極2とセパレータ5との間隙を通過する酸素又は空気oによって燃焼する。そこで、酸化極2と燃料極3との間に負荷をかけるとき、電力を取り出すことができる。
【0005】
燃料電池は、1セル当りの発電量が極く僅かである。そこで、セパレータ5,5で挟まれた固体高分子膜を1単位とし、複数のセルをスタックすることによって取出し可能な電力量を大きくしている(図1b)。多数のセルをスタックした構造では、セパレータ5の抵抗が発電効率に大きな影響を及ぼす。発電効率を向上させるためには、導電性が良好で接触抵抗の低いセパレータが要求され、リン酸塩型燃料電池と同様に黒鉛質のセパレータが使用されている。黒鉛質のセパレータは、黒鉛ブロックを所定形状に切り出し、切削加工によって各種の孔や溝を形成している。そのため、材料費や加工費が高く、全体として燃料電池の価格を高騰させると共に、生産性を低下させる原因になっている。しかも、材質的に脆い黒鉛でできたセパレータでは、振動や衝撃が加えられると破損するおそれが大きい。そこで、プレス加工,パンチング加工等で作製した金属板製セパレータが期待されている(特開平2000−239806号公報,特開平2000−265248号公報等参照)。
【0006】
【発明が解決しようとする課題】
酸素又は空気oが通過する酸化極2側は、酸性度がpH2〜3の酸性雰囲気にある。このような強酸性雰囲気に耐え、しかもセパレータに要求される特性を満足する金属材料は、これまでのところ実用化されていない。たとえば、強酸に耐える金属材料としてステンレス鋼等の耐酸性材料が考えられる。ステンレス鋼は表面の不動態皮膜によって優れた耐食性を呈するが、不動態皮膜はCrを主体としFe,Si,Mnを含む比電気抵抗の高い複合皮膜であるため、電気伝導性に劣っている。比電気抵抗、換言すれば接触抵抗が高くなると、接触部分で多量のジュール熱が発生して大きな熱損失となり、燃料電池の発電効率を低下させる。他の金属板でも、接触抵抗を高くする酸化膜が表面に存在するものがほとんどである。
【0007】
表面に酸化皮膜や不動態皮膜を形成しない金属材料としてはAuが知られている。Auは酸性雰囲気にも耐えうるが、非常に高価な材料であるため燃料電池のセパレータ材としては実用的でない。Ptは酸化皮膜や不動態皮膜が形成されにくい金属材料であり、酸性雰囲気にも耐えうるが、Auと同様に非常に高価な材料であるため燃料電池のセパレータ材としては実用的でない。汎用のステンレス鋼に導電性塗料を塗布したものも用いられているが、コスト高になること,塗料の劣化による接触抵抗の増加等が懸念される。
以上のことから、燃料電池のセパレータに対してはステンレス鋼板を無垢で適用することが好ましい。
【0008】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、比較的多量のCuを含むオーステナイト系ステンレス鋼板を基材に用い、基材表面の不動態皮膜又は表層を改質することにより、低い表面接触抵抗及び優れた耐食性を長期にわたって維持でき、固体高分子型等の燃料電池に好適なステンレス鋼製燃料電池セパレータを提供することを目的とする。
【0009】
本発明は、Cr:16.0〜40.0質量%,Ni:5.0〜26.0質量%,Cu:0.2〜6.0質量%,残部が実質的にFeの組成をもつオーステナイト系ステンレス鋼板を燃料電池セパレータの基材に使用している。基材・ステンレス鋼板は、N:0.01〜0.5質量%を含むことが好ましく、更にMo:0.2〜6.0質量%,Co:0.01〜1.0質量%,Nb:0.05〜1.0質量%,Ti:0.05〜1.0質量%,Al:0.01〜3.0質量%,V:0.01〜1.0質量%,希土類金属(REM):0.001〜0.5質量%,B:0.001〜1.0質量の1種又は2種以上を含むことができる。
【0010】
基材・ステンレス鋼板の電気伝導性はCuリッチ相の分散析出や表層へのCu濃化によって改善され、接触抵抗が低減する。燃料電池用セパレータとして有効な低接触抵抗は、マトリックスにCuリッチ相が0.2体積%以上の割合で分散析出した金属組織や原子比Cu/(Si+Mn)≧0.5にCu濃化した表層で達成される。Cuリッチ相の分散析出及び表層へのCu濃化を併用すると、接触抵抗が一層低下する。
【0011】
Cuリッチ相は、最終焼鈍までの鋼板製造過程でたとえば800℃前後の温度で1時間以上加熱する時効処理によってマトリックスに分散析出する。時効処理条件に応じてCuリッチ相の析出量を0.2体積%以上に調整できる。表層にCuを濃化させる手段には、最終焼鈍として露点−30℃以下の雰囲気で光輝焼鈍する方法,大気焼鈍後にフッ酸−硝酸又は硫酸−硝酸の混酸を用いて酸洗仕上げする方法等が採用される。
【0012】
【作用】
本発明者等は、燃料電池用セパレータの要求特性を満足させるため、オーステナイト系ステンレス鋼の材質,表面状態について種々予備実験した。その結果、0.2質量%以上のCuを含むステンレス鋼板を基材に使用し、Cuを主体とする第2相(以後、Cuリッチ相と称する)を0.2体積%以上の割合でマトリックスに分散析出させるとき、表面接触抵抗が低下することを見出した。
Cuリッチ相が分散析出しているオーステナイト系ステンレス鋼板でも他のステンレス鋼板と同様に不動態皮膜が鋼板表面に形成されるが、Cuリッチ相が表面に露出した部分では、その上下にCr,Si,Mn等を含む不動態皮膜が形成されないため、表面接触抵抗が著しく低下したものと推定される。
【0013】
オーステナイト系ステンレス鋼板の表面にCuリッチ相が露出していない場合でも、最表層又は不動態皮膜中のCu濃度がSi,Mn濃度に対して高いと、同様に表面接触抵抗が低くなる。比電気抵抗が低いCuの酸化物を多く含む不動態皮膜は、比電気抵抗の高いMnやSiの酸化物を多く含む不動態皮膜に比較して低い表面接触抵抗を示し、後述の実施例からも明らかなように原子比Cu/(Si+Mn)≧0.5で燃料電池セパレータに要求される低表面接触抵抗を満足する。
【0014】
最終焼鈍で表層にCuを濃化させる場合、露点−30℃以下の焼鈍雰囲気における光輝焼鈍が有効である。比電気抵抗の高いMn等の酸化物は、焼鈍雰囲気の露点が高くなると増量し、露点が−30℃を超える焼鈍雰囲気ではSi,Mn等の酸化進行に応じて母材内部から表層へのSi,Mn等の拡散が促進され、Cu濃度が低い最表層又は不動態皮膜が形成される。これに対し、露点−30℃以下の焼鈍雰囲気では、Mn等の金属酸化物の増量を抑えられ、結果として金属CuやCuの酸化物が最表層又は不動態皮膜に濃化される。
【0015】
光輝焼鈍に替え大気焼鈍後の酸洗仕上げによってもCuリッチ相の分散析出又は表層へのCu濃化が図られる。ステンレス鋼板を大気焼鈍するとCr,Fe,Mn,Si,Cu等の酸化物を含むスケールが鋼板表面に形成されるが、スケールは酸洗によって除去され、その後に不動態皮膜が生成する。このとき、焼鈍後のステンレス鋼板を電解酸洗すると、スケール剥離後の鋼板表面に存在するCu又はCuリッチ相が電解反応で母材よりも優先的に溶出する。そのため、電解酸洗後の鋼板表面には、Cu濃度の低い不動態皮膜が形成される。これに対し、フッ酸−硝酸,硫酸−硝酸等の混酸を用いた酸洗では、Cu又はCuリッチ相の優先的な溶出がなく、酸洗後に生成する不動態皮膜にCu濃度の低下がない。
【0016】
Cuリッチ相の分散析出,表層へのCu濃化により基材・ステンレス鋼板の表面接触抵抗を低下させる条件下で、燃料電池セパレータの腐食環境に耐え得る耐食性を有するステンレス鋼の成分を検討した。
燃料電池用セパレータは、pH2〜3の酸性雰囲気に曝され、起動時に約70℃に昇温することもある。しかも、セパレータ間に電位差がかかるので、酸性液に対する自然浸漬時の耐食性に加えて電位が貴化した場合の酸性高電位環境における耐食性も要求される。
【0017】
自然電位環境及び酸性高電位環境における耐食性は、16.0〜40.0質量%に範囲にCr含有量を調整することにより改善され、更に0.01〜0.5質量%のN添加で向上する。自然電位環境下で耐酸性の向上に必須の合金成分であるCr添加にN添加を併用すると、不動態皮膜表面でNH が生成されて電解液の腐食環境が緩和されるために耐食性が向上すると推察される。Nは、接触抵抗に悪影響を及ぼすことなく、Crが全面溶解を生じるほど貴な電位の過不動態域でも有効な耐食性向上作用を呈する。
【0018】
次いで、本発明で使用するオーステナイト系ステンレス鋼の成分,含有量等を説明する。
Cr:16.0〜40.0質量%
一般にステンレス鋼板の耐食性を得るために必要な合金成分であるが、燃料電池セル内の環境を考慮した含有量に設定される。具体的には、酸性,70℃の雰囲気における電気化学特性から適正Cr含有量を検討した。自然電位の酸性雰囲気における不動態化限界電流密度からするとCr濃度が高いほど電流値が低く耐食性に有利である。しかし、高電位の酸性雰囲気では、過不動態域に曝されCr濃度が高いほどCrの溶解電流が流れやすくなる。したがって、Cr濃度が高いほど、セパレータに電位差がかかった場合の耐食性に不利となる。そこで、Cr含有量を16.0〜40.0質量%の範囲に設定した。16.0質量%未満のCr含有量では十分な耐酸性が得られず、40.0質量%を超える過剰量のCrが含まれると高電位がかかった酸性雰囲気における耐食性が低下する。Crの過剰添加は、鋼材を硬質化しセパレータへの加工性を低下させる原因ともなる。
【0019】
Ni:5.0〜26.0質量%
オーステナイト相の形成及び酸性雰囲気における耐食性の確保のため、5.0質量%以上のNiが必要である。しかし、Niの過剰添加は溶接性や加工性に悪影響を及ぼし、コスト的にも不利となるので、Ni含有量の上限を26.0質量%に設定した。Ni添加によってオーステナイト組織とするとき、酸性雰囲気における耐食性の向上に有効なNの固溶も促進され、セパレータ形状への成形加工も容易になる。
【0020】
N:0.01〜0.5質量%
必要に応じて添加される成分であり、セパレータが曝される酸性雰囲気における耐食性の向上に顕著な作用を呈する。酸性,70℃の燃料電池セル内の環境における電気化学特性から適正N含有量を0.01〜0.5質量%の範囲に設定した。自然電位及び高電位何れの酸性雰囲気においてもNの添加により腐食電流値が低くなり、0.01質量%以上のN添加でセパレータの耐食性が向上する。しかし、0.5質量%を超える過剰量のNを添加すると、窒化物の生成が助長され、結果としてN増量に見合った耐食性の向上が図られない。Nの高濃度添加は、冶金学的にも困難を伴う制御を必要とし、窒素ガス,アンモニアガス等を用いてNを溶鋼に吸収させる製造プロセスを経るため製造コスト上昇の原因となる。
【0021】
Cu:0.2〜6.0質量%
表面接触抵抗の低下に有効な表層へのCu濃化やCuリッチ相の分散析出を促進させるため、比較的多量のCuを添加する。Cu含有量は、表層へのCuリッチ相又はCuリッチ相の分散析出によりセパレータに要求される表面接触抵抗を付与する上から、0.2〜6.0質量%の範囲に設定される。Cu添加による表面接触抵抗の低減は、0.2質量%以上でみられる。しかし、過剰量のCuを添加すると熱間加工性や製造性に悪影響が現れるので、Cu含有量の上限を6.0質量%に規制した。
【0022】
本発明で使用するオーステナイト系ステンレス鋼は、Cr,Ni,N,Cuを含むが、燃料電池用セパレータの要求特性である耐食性,加工性等を更に高めるため、Mo,Co,Nb,Ti,Al,V,希土類金属(REM),B等の合金成分を含有させることもできる。Mo,Co,Nb,Ti,Al,V,REM,B等は、酸性環境における耐食性の更なる向上に有効である。REMは、熱間加工性に有害なSを固定する作用も呈し、ステンレス鋼板の熱間加工性を向上させる。
Mo,Co,Nb,Ti,Al,V,REM,B等を添加する場合、耐食性の向上効果及び加工性,製造性に及ぼす影響を勘案し、それぞれMo:0.2〜6.0質量%,Co:0.01〜1.0質量%,Nb:0.05〜1.0質量%,Ti:0.05〜1.0質量%,Al:0.01〜3.0質量%,V:0.01〜1.0質量%,REM:0.001〜0.5質量%,B:0.001〜1.0質量の範囲にすることが好ましい。
【0023】
以上の合金成分の他にC,Si,Mn等も含まれるが、燃料電池用セパレータの用途では、C,Si,Mn等の含有量を低減し、加工性,製造性にとって不利な硬質化を抑制することが好ましい。表面接触抵抗を低減する上でも、C,Si,Mn等の含有量を低く抑えることが有効である。
たとえば、鋼材を硬質化させるCを過剰に含ませるとプレス加工が困難になるので、C含有量を好ましくは0.08質量%以下に規制する。Siは、鋼材の硬質化及び表面接触抵抗の増加に作用するので、好ましくは1.00質量%以下の含有量に規制する。Mnは、耐食性の低下,接触抵抗の増加に作用するので、好ましくは2.00質量%以下の含有量に規制する。
【0024】
Cuリッチ相:0.2体積%以上
Cuリッチ相を均一微細に析出させ、表面に露出させた部分では、その上下にCr,Si,Mn等を含む不動態皮膜が形成されず、表面接触抵抗が低下する。Cuリッチ相の分散析出と表面接触抵抗の低下との関係を詳細に調査・検討した結果、Cuリッチ相:0.2体積%以上で燃料電池用セパレータに要求される低表面接触抵抗を示す。
Cuリッチ相を分散析出させる熱処理は、ステンレス鋼のCu含有量によっても異なるが、一般的には800℃前後で1〜24時間の時効処理を施す条件が採用される。時効処理により、微細なCuリッチ相が分散析出する。
【0025】
表層へのCu濃化:Cu/(Si+Mn)≧0.5(原子比)
不動態皮膜又は最表層のSi,Mnに対するCuの濃度比を高くすると、表面接触電気抵抗が低下する。表層へのCu濃化は、不動態皮膜又は最表層における原子比Cu/(Si+Mn)で定量化でき、原子比Cu/(Si+Mn)が0.5以上になると、燃料電池用セパレータとして満足できる程度に表面接触抵抗が低下する。Cu/(Si+Mn)≧0.5は、乾燥雰囲気下での光輝焼鈍や大気焼鈍後の混酸酸洗で達成される。
【0026】
光輝焼鈍:露点−30℃以下の雰囲気で加熱
焼鈍雰囲気の露点が高くなると、比抵抗の高いMnの酸化物が多くなり不動態皮膜の表面接触抵抗が増加する。Cu/(Si+Mn)≧0.5で表層にCuを濃化させるため上では、後述の実施例からも明らかなように露点−30℃以下の焼鈍雰囲気で、好ましくは950〜1200℃にステンレス鋼板を焼鈍する。光輝焼鈍により、マトリックスにCuリッチ相が均一に分散析出し、或いは表層にCuが濃化して表面接触抵抗の低い表層に改質される。
【0027】
大気焼鈍後の混酸酸洗:
光輝焼鈍に代えて大気焼鈍後の混酸酸洗によっても、不動態皮膜又は最表層にCuを濃化できる。大気焼鈍では、Cuリッチ相の分散析出又は表層へのCu濃化のため、750〜1200℃の温度域にステンレス鋼板を加熱する。大気焼鈍されたステンレス鋼板の酸洗には、酸の種類や濃度に特段の制約が加わるものではないが、一般的に濃度10体積%程度のフッ酸−硝酸,硫酸−硝酸等が使用される。混酸酸洗では、電解酸洗で生じるCu又はCuリッチ相の優先溶解がなく、Cu濃化の低下がない不動態皮膜が酸洗後に生成する。
【0028】
【実施例1】
表1に示した組成をもつ各種オーステナイト系ステンレス鋼を真空溶解炉で溶製し、鋳造,熱間鍛造,熱間圧延,焼鈍・酸洗,冷間圧延を経て板厚1.0mmの冷延鋼帯を製造した。比較のため、同じ条件下でSUS304,SUS304N1の冷延鋼帯を製造した。一部の冷延鋼帯については、最終焼鈍前までの工程で800℃×24時間のCuリッチ相析出処理を施した。
【0029】

Figure 2004002960
【0030】
製造された冷延鋼帯を光輝焼鈍仕上げし、或いは大気焼鈍後に酸洗仕上げした。光輝焼鈍では、露点が異なる焼鈍雰囲気で1100℃に10秒加熱し、雰囲気の露点が焼鈍材の特性に及ぼす影響を調査した。酸洗仕上げでは、5%硝酸を用いた電解酸洗,6%硝酸+2%フッ酸の混酸酸洗を採用し、酸洗形態の相違が焼鈍材の特性に及ぼす影響を調査した。
光輝焼鈍又は酸洗仕上げされた冷延鋼帯から切り出された試験片を透過型電子顕微鏡で観察し、マトリックスに分散析出しているCuリッチ相の析出量(体積%)を算出した。また、グロー発光分析で分析全元素量に対するCu,Si,Mnの濃度(原子%)を求め、原子比Cu/(Si+Mn)に従って表層のCu濃度を算出した。更に、純金製の対極及び測定端子を試験片の表面に接触させ、測定端子に100gの荷重を付加した条件下で表面接触抵抗を測定した。
【0031】
表2の調査結果にみられるように、Cuが0.2質量%未満のSUS304,SUS304N1では、Cuリッチ相の析出量が0.2体積%に達せず、或いは表層のCu濃化がCu/(Si+Mn)≧0.5に至らず、高い表面接触抵抗が示された。0.2質量%以上のCuを添加したA1鋼でも、露点が−30℃より高い雰囲気で光輝焼鈍すると、表層のCu濃化がCu/(Si+Mn)≧0.5に至らず、表面接触抵抗が依然として高い値であった。
これに対し、Cuを0.2質量%以上含有するA1,A2鋼を用い、Cuリッチ相を0.2体積%以上析出させ(試験番号5,9)、或いはCu/(Si+Mn)≧0.5で表層をCu濃化すると(試験番号6,8)、表面接触抵抗が大幅に低下していた。Cuリッチ相:0.2体積%以上,Cu/(Si+Mn)≧0.5の双方を満足する試験番号7,10は、表面接触抵抗が一層低下していた。
【0032】
Figure 2004002960
【0033】
【実施例2】
表1の鋼種A1,A2〜A4,A7に実施例1と同じCuリッチ相析出処理を施し、電気化学試験で燃料電池セパレータ環境下での耐食性を調査した。
電気化学試験では、供試材を樹脂に埋め込んで被測定面10mm×10mmの試験片を用意した。pH2に調整した硫酸水溶液(試験液)を70℃に保持し、走査速度20mV/分で自然電位から1300mV,SCEまでのアノード分極を測定した。燃料電池セパレータが曝される雰囲気には、電位が付加されない自然電位環境,電位が付加される高電位環境がある。自然電位環境における耐食性はアノード分極の不動態化電流密度の低さ、高電位環境における耐食性は1000mV,SCE時の腐食電流の低さから評価できる。
図2に示すアノード分極曲線の測定結果から、Cr:15.2質量%の鋼A1は、自然電位側の不動態化限界電流密度が他の供試材よりも高い値を示し、耐食性に不足していることが判る。Cr:40.9質量%のA7は、不動態化限界電流密度が低いものの、高電位側での電流値が他の供試材に比較して極めて高く、セパレータに電位が印加された状態で耐食性に劣ることが示されている。鋼A2〜A4は、不動態化限界電流密度,高電位側の電流値共に低く、セパレータ環境で十分な耐食性を呈することが理解できる。
【0034】
【実施例3】
表3に示した組成をもつ各種オーステナイト系ステンレス鋼から実施例1と同様に板厚1.0mmの冷延鋼帯を製造した。一部の冷延鋼帯については、最終焼鈍前までの工程で800℃×24時間のCuリッチ相析出処理を施した。
【0035】
Figure 2004002960
【0036】
製造された冷延鋼帯に実施例1と同じ光輝焼鈍又は大気焼鈍→酸洗を施した後、実施例1と同じ条件下でCuリッチ相の析出量(体積%),原子比Cu/(Si+Mn),表面接触抵抗を調査した。
表4の調査結果にみられるように、Cuを0.2質量%以上含有するA11,A12鋼を用い、Cuリッチ相を0.2体積%以上析出させ(試験番号1,5)、或いはCu/(Si+Mn)≧0.5で表層をCu濃化すると(試験番号2,4)、表面接触抵抗が大幅に低下していた。Cuリッチ相:0.2体積%以上,Cu/(Si+Mn)≧0.5の双方を満足する試験番号3,6は、表面接触抵抗が一層低下していた。この結果から、耐食性向上のためにNiを添加した場合でも、Cuリッチ相の析出又は不動態皮膜へのCu濃化を図ることにより、表面接触抵抗を低下できることが確認された。
【0037】
Figure 2004002960
【0038】
【実施例4】
表3の鋼種A11〜A26,比較鋼に実施例1と同じCuリッチ相析出処理を施したものを供試材とし、実施例2と同じ電気化学試験で燃料電池セパレータ環境における耐食性を調査した。
硫酸液中でのアノード分極曲線から求めた不動態電極密度及び1000mV,SCE時の腐食電流の測定結果を表5に示す。
【0039】
本発明に従った試験No.1〜16は、不動態化電流密度が10μA/cm以下であることから、自然電位環境で耐食性に優れていることが判る。高電位環境下の腐食電流密度も400μA/cm前後であり、Cr含有量が40.0質量%を超えるA28鋼と比較すると小さかった。高電位環境下でA28鋼が高い腐食電流密度を示すことは、Cr含有量が高くCrの過不動態溶解に起因しているものと推察される。
【0040】
更に、N含有量が高く、Mo,Co,Nb,Ti,Al,V,REM,Bの少なくとも1種を添加したA14〜A21,A23,A26鋼は、自然電位環境,高電位環境の何れにおいても不動態電流密度が小さく、一層優れた耐食性を呈した。
Crが不足するA27鋼は、高電位環境下の腐食電流密度は本発明鋼なみであるものの不動態化電流密度が高く、セパレータ環境では十分な耐食性を有しているとはいえない。
【0041】
Figure 2004002960
【0042】
【発明の効果】
以上に説明したように、Cr,Ni,Cuの添加量を規制し、場合によってはNを添加し、Cuリッチ相をマトリックスに分散析出させ、或いは表層にCuを濃化させると、オーステナイト系ステンレス鋼本来の優れた耐食性を維持しながら、長期にわたって表面接触抵抗が低位に安定維持された表面状態に改質される。耐食性は、Mo,Co,Nb,Ti,Al,V,REM,B等の添加によって一層向上する。このようにして低表面接触抵抗と耐食性を両立させたオーステナイト系ステンレス鋼板は、過酷な腐食環境に曝される燃料電池用セパレータの基材として好適な材料であり、多数の燃料電池モジュールをスタックした状態でもジュール発熱が少ないため発電効率のよい燃料電池が構築される。
【図面の簡単な説明】
【図1】固体高分子膜を電解質として使用した燃料電池の内部構造を説明する断面図(a)及び分解斜視図(b)
【図2】実施例2で用いたステンレス鋼板のアノード分極極線を示すグラフ[0001]
[Industrial applications]
The present invention relates to an austenitic stainless steel for a fuel cell separator which is suitable for a polymer electrolyte fuel cell or the like and has low surface contact resistance and excellent corrosion resistance, and a method for producing the same.
[0002]
[Prior art]
The fuel cell includes a phosphoric acid fuel cell, a molten carbonate fuel cell, a solid electrolyte fuel cell, a polymer electrolyte fuel cell, and the like. In particular, the polymer electrolyte fuel cell can operate at a temperature of 100 ° C. or less and has an advantage of being started in a short time. In addition, since each member is solid, the structure is simple, maintenance is easy, and it can be applied to applications exposed to vibration and impact. Furthermore, it has advantages such as high output density, suitable for miniaturization, high fuel efficiency, and low noise. From these advantages, use as a vehicle-mounted power source is being studied. When it equipped with a fuel cell put out a travel distance equivalent to gasoline vehicles in a vehicle, NO x, almost no generation of SO x, etc. generation of CO 2 is reduced by half, becomes very clean power source to the environment .
[0003]
Solid polymer fuel cells utilize the fact that solid polymer resin membranes with proton exchange groups in their molecules function as proton conductive electrolytes. The structure is such that a fuel gas such as hydrogen flows on one side and an oxidizing gas such as air flows on the other side.
Specifically, the solid polymer membrane 1 has an oxidizing electrode 2 and a fuel electrode 3 joined on both sides, and the separator 5 is opposed to each other via a gasket 4 (FIG. 1a). An air supply port 6 and an air discharge port 7 are formed in the separator 5 on the oxidation electrode 2 side, and a hydrogen supply port 8 and a hydrogen discharge port 9 are formed in the separator 5 on the fuel electrode 3 side.
[0004]
For conduction and uniform distribution of hydrogen g and oxygen or air o, a plurality of grooves 10 extending in the flow direction of hydrogen g and oxygen or air o are formed in separator 5. Further, since heat is generated at the time of power generation, the separator 5 has a built-in water cooling mechanism for circulating the cooling water w sent from the water supply port 11 and then discharging the cooling water w from the drain port 12. Hydrogen g sent from the hydrogen supply port 8 into the gap between the fuel electrode 3 and the separator 5 becomes protons that have emitted electrons, passes through the solid polymer membrane 1, receives electrons on the oxidation electrode 2 side, and The fuel is burned by oxygen or air o passing through the gap between the separator 2 and the separator 5. Therefore, when a load is applied between the oxidation electrode 2 and the fuel electrode 3, electric power can be taken out.
[0005]
Fuel cells generate very little power per cell. Therefore, the solid polymer film sandwiched between the separators 5 and 5 is set as one unit, and the amount of power that can be taken out by stacking a plurality of cells is increased (FIG. 1B). In a structure in which many cells are stacked, the resistance of the separator 5 has a large effect on the power generation efficiency. In order to improve the power generation efficiency, a separator having good conductivity and low contact resistance is required, and a graphite separator is used similarly to the phosphate type fuel cell. The graphite separator cuts a graphite block into a predetermined shape and forms various holes and grooves by cutting. For this reason, material costs and processing costs are high, which increases the price of the fuel cell as a whole and causes a decrease in productivity. In addition, a separator made of graphite, which is brittle in material, is likely to be damaged when subjected to vibration or impact. Therefore, a metal plate separator manufactured by pressing, punching, or the like is expected (see JP-A-2000-239806, JP-A-2000-265248, and the like).
[0006]
[Problems to be solved by the invention]
The oxidation electrode 2 side through which oxygen or air o passes is in an acidic atmosphere having an acidity of pH 2 to 3. A metal material that withstands such a strongly acidic atmosphere and satisfies the characteristics required for the separator has not been put to practical use so far. For example, an acid-resistant material such as stainless steel is considered as a metal material that can withstand a strong acid. Although stainless steel exhibits excellent corrosion resistance due to the passivation film on the surface, the passivation film is a composite film mainly composed of Cr and containing Fe, Si, and Mn and having a high specific electrical resistance, and therefore has poor electrical conductivity. When the specific electrical resistance, in other words, the contact resistance increases, a large amount of Joule heat is generated at the contact portion, resulting in a large heat loss, and lowering the power generation efficiency of the fuel cell. Most other metal plates have an oxide film on the surface to increase the contact resistance.
[0007]
Au is known as a metal material that does not form an oxide film or a passive film on the surface. Although Au can withstand an acidic atmosphere, it is not practical as a fuel cell separator material because it is a very expensive material. Pt is a metal material on which an oxide film or a passivation film is unlikely to be formed, and can withstand an acidic atmosphere. However, Pt is a very expensive material like Au and is not practical as a fuel cell separator material. A general-purpose stainless steel coated with a conductive paint is also used. However, there is a concern about an increase in cost and an increase in contact resistance due to deterioration of the paint.
From the above, it is preferable to use a stainless steel plate as a solid for the separator of the fuel cell.
[0008]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem, and uses an austenitic stainless steel sheet containing a relatively large amount of Cu as a base material and modifies a passive film or a surface layer on the base material surface. Accordingly, it is an object of the present invention to provide a stainless steel fuel cell separator that can maintain low surface contact resistance and excellent corrosion resistance for a long period of time and is suitable for a fuel cell such as a polymer electrolyte fuel cell.
[0009]
The present invention has a composition of Cr: 16.0 to 40.0% by mass, Ni: 5.0 to 26.0% by mass, Cu: 0.2 to 6.0% by mass, and the balance being substantially Fe. An austenitic stainless steel plate is used as the base material of the fuel cell separator. The base material / stainless steel sheet preferably contains N: 0.01 to 0.5% by mass, further Mo: 0.2 to 6.0% by mass, Co: 0.01 to 1.0% by mass, Nb : 0.05 to 1.0% by mass, Ti: 0.05 to 1.0% by mass, Al: 0.01 to 3.0% by mass, V: 0.01 to 1.0% by mass, rare earth metal ( REM): 0.001 to 0.5% by mass, B: 0.001 to 1.0% by mass.
[0010]
The electrical conductivity of the substrate / stainless steel sheet is improved by the dispersion precipitation of the Cu-rich phase and the concentration of Cu on the surface layer, and the contact resistance is reduced. The low contact resistance effective as a fuel cell separator is a metal structure in which a Cu-rich phase is dispersed and precipitated in a matrix at a rate of 0.2% by volume or more, and a Cu-enriched surface layer having an atomic ratio of Cu / (Si + Mn) ≧ 0.5. Is achieved in. When the dispersion precipitation of the Cu-rich phase and the concentration of Cu on the surface layer are used in combination, the contact resistance is further reduced.
[0011]
The Cu-rich phase is dispersed and precipitated in the matrix by an aging treatment of heating at a temperature of, for example, about 800 ° C. for 1 hour or more in a steel sheet manufacturing process until final annealing. The precipitation amount of the Cu-rich phase can be adjusted to 0.2% by volume or more according to the aging treatment conditions. Means for enriching Cu in the surface layer include a method of performing a bright annealing in an atmosphere having a dew point of −30 ° C. or less as a final annealing, and a method of performing a pickling finish using a mixed acid of hydrofluoric acid-nitric acid or sulfuric acid-nitric acid after air annealing. Adopted.
[0012]
[Action]
The present inventors conducted various preliminary experiments on the material and surface condition of austenitic stainless steel in order to satisfy the required characteristics of a fuel cell separator. As a result, a stainless steel sheet containing 0.2% by mass or more of Cu is used as a base material, and a second phase mainly composed of Cu (hereinafter, referred to as a Cu-rich phase) is formed in a matrix of 0.2% by volume or more. It was found that the surface contact resistance was reduced when the particles were dispersed and precipitated.
An austenitic stainless steel sheet in which a Cu-rich phase is dispersed and deposited has a passivation film formed on the steel sheet surface in the same manner as other stainless steel sheets. However, in a portion where the Cu-rich phase is exposed on the surface, Cr, Si It is presumed that the passivation film containing Mn, Mn, etc. was not formed, so that the surface contact resistance was significantly reduced.
[0013]
Even when the Cu-rich phase is not exposed on the surface of the austenitic stainless steel sheet, if the Cu concentration in the outermost layer or the passivation film is higher than the Si and Mn concentrations, the surface contact resistance similarly decreases. The passive film containing a large amount of Cu oxide having a low specific electrical resistance shows a low surface contact resistance as compared with the passive film containing a large amount of Mn or Si oxide having a high specific electric resistance. As is clear, the atomic ratio Cu / (Si + Mn) ≧ 0.5 satisfies the low surface contact resistance required for the fuel cell separator.
[0014]
When Cu is enriched in the surface layer by final annealing, bright annealing in an annealing atmosphere having a dew point of −30 ° C. or less is effective. Oxides such as Mn having a high specific resistance increase as the dew point in the annealing atmosphere increases, and in an annealing atmosphere in which the dew point exceeds −30 ° C., the amount of Si from the inside of the base material to the surface layer depends on the progress of oxidation of Si, Mn, etc. , Mn and the like are promoted, and the outermost layer or the passive film having a low Cu concentration is formed. On the other hand, in an annealing atmosphere having a dew point of −30 ° C. or lower, an increase in the amount of metal oxides such as Mn can be suppressed, and as a result, metal Cu or an oxide of Cu is concentrated in the outermost layer or the passive film.
[0015]
Dispersion and precipitation of a Cu-rich phase or concentration of Cu on the surface layer can be achieved by pickling after air annealing instead of bright annealing. When a stainless steel plate is annealed in the air, a scale containing oxides such as Cr, Fe, Mn, Si, and Cu is formed on the surface of the steel plate, but the scale is removed by pickling, and a passivation film is formed thereafter. At this time, when the anodized stainless steel sheet is electrolytically pickled, Cu or a Cu-rich phase present on the steel sheet surface after the scale exfoliation is preferentially eluted from the base material by the electrolytic reaction. Therefore, a passive film having a low Cu concentration is formed on the surface of the steel sheet after the electrolytic pickling. On the other hand, in pickling using a mixed acid such as hydrofluoric acid-nitric acid or sulfuric acid-nitric acid, there is no preferential elution of Cu or a Cu-rich phase, and there is no decrease in the Cu concentration in the passive film formed after the pickling. .
[0016]
Under the condition that the surface contact resistance of the base material / stainless steel plate is reduced by the dispersion precipitation of the Cu-rich phase and the concentration of Cu on the surface layer, the components of the stainless steel having corrosion resistance that can withstand the corrosive environment of the fuel cell separator were examined.
The fuel cell separator is exposed to an acidic atmosphere having a pH of 2 to 3, and may be heated to about 70 ° C. at startup. In addition, since a potential difference is applied between the separators, corrosion resistance in an acidic high-potential environment when the potential is noble is required in addition to corrosion resistance at the time of spontaneous immersion in an acidic liquid.
[0017]
Corrosion resistance in a self-potential environment and an acidic high-potential environment is improved by adjusting the Cr content to a range of 16.0 to 40.0% by mass, and further improved by adding 0.01 to 0.5% by mass of N. I do. When N is used in combination with Cr, which is an alloy component essential for improving acid resistance in a self-potential environment, NH 4 + is generated on the surface of the passive film and the corrosion environment of the electrolytic solution is reduced, so that corrosion resistance is reduced. It is presumed to improve. N exerts an effective corrosion resistance improving effect even in an overpassive region of a noble potential so that Cr is completely dissolved without adversely affecting the contact resistance.
[0018]
Next, the components and contents of the austenitic stainless steel used in the present invention will be described.
Cr: 16.0 to 40.0 mass%
Generally, it is an alloy component necessary for obtaining the corrosion resistance of a stainless steel plate, but is set to a content in consideration of the environment in the fuel cell. Specifically, the appropriate Cr content was examined from the electrochemical characteristics in an acidic, 70 ° C. atmosphere. In view of the passivation limit current density in an acidic atmosphere at a natural potential, the higher the Cr concentration, the lower the current value, which is advantageous for corrosion resistance. However, in a high-potential acidic atmosphere, the higher the concentration of Cr exposed to the overpassive region, the more easily the Cr dissolution current flows. Therefore, the higher the Cr concentration, the more disadvantageous is the corrosion resistance when a potential difference is applied to the separator. Therefore, the Cr content was set in the range of 16.0 to 40.0% by mass. If the Cr content is less than 16.0% by mass, sufficient acid resistance cannot be obtained. If the Cr content exceeds 40.0% by mass, the corrosion resistance in an acidic atmosphere subjected to a high potential decreases. Excessive addition of Cr causes the steel material to harden and causes the workability of the separator to deteriorate.
[0019]
Ni: 5.0 to 26.0 mass%
In order to form an austenite phase and ensure corrosion resistance in an acidic atmosphere, Ni of 5.0 mass% or more is necessary. However, excessive addition of Ni adversely affects weldability and workability and is disadvantageous in terms of cost, so the upper limit of the Ni content was set to 26.0% by mass. When the austenitic structure is formed by adding Ni, solid solution of N effective for improving corrosion resistance in an acidic atmosphere is promoted, and forming into a separator shape is facilitated.
[0020]
N: 0.01 to 0.5% by mass
It is a component that is added as needed, and has a remarkable effect on improving corrosion resistance in an acidic atmosphere to which the separator is exposed. The proper N content was set in the range of 0.01 to 0.5% by mass from the electrochemical characteristics in the environment of the acidic, 70 ° C. fuel cell. The corrosion current value is reduced by the addition of N in the acidic atmosphere at both the natural potential and the high potential, and the corrosion resistance of the separator is improved by the addition of 0.01% by mass or more of N. However, when an excessive amount of N exceeding 0.5% by mass is added, the formation of nitrides is promoted, and as a result, improvement in corrosion resistance corresponding to the increase in N cannot be achieved. The addition of N at a high concentration requires difficult control in metallurgy, and causes a rise in manufacturing cost because of a manufacturing process of absorbing N into molten steel using nitrogen gas, ammonia gas, or the like.
[0021]
Cu: 0.2 to 6.0% by mass
A relatively large amount of Cu is added in order to promote the concentration of Cu on the surface layer effective for lowering the surface contact resistance and the dispersion and precipitation of the Cu-rich phase. The Cu content is set in the range of 0.2 to 6.0% by mass from the viewpoint of imparting the required surface contact resistance to the separator by the Cu-rich phase or the dispersed precipitation of the Cu-rich phase on the surface layer. The reduction in surface contact resistance due to the addition of Cu is seen at 0.2% by mass or more. However, the addition of an excessive amount of Cu adversely affects hot workability and manufacturability, so the upper limit of the Cu content was restricted to 6.0% by mass.
[0022]
The austenitic stainless steel used in the present invention contains Cr, Ni, N, and Cu. However, Mo, Co, Nb, Ti, and Al are used in order to further enhance the corrosion resistance, workability, and the like required characteristics of the fuel cell separator. , V, rare earth metals (REM), B, and other alloy components. Mo, Co, Nb, Ti, Al, V, REM, B, etc. are effective for further improving the corrosion resistance in an acidic environment. REM also has the effect of fixing S harmful to hot workability, and improves the hot workability of a stainless steel plate.
When adding Mo, Co, Nb, Ti, Al, V, REM, B, etc., Mo: 0.2 to 6.0% by mass in consideration of the effect of improving corrosion resistance and the effect on workability and manufacturability. , Co: 0.01 to 1.0% by mass, Nb: 0.05 to 1.0% by mass, Ti: 0.05 to 1.0% by mass, Al: 0.01 to 3.0% by mass, V : 0.01 to 1.0% by mass, REM: 0.001 to 0.5% by mass, B: 0.001 to 1.0% by mass.
[0023]
In addition to the above alloy components, C, Si, Mn, etc. are also contained. However, in the use of a fuel cell separator, the content of C, Si, Mn, etc. is reduced, and hardening which is disadvantageous to workability and manufacturability is performed. Preferably, it is suppressed. In order to reduce the surface contact resistance, it is effective to keep the contents of C, Si, Mn, and the like low.
For example, if excessively containing C for hardening the steel material, it becomes difficult to press work. Therefore, the C content is preferably regulated to 0.08% by mass or less. Since Si acts to harden the steel material and increase the surface contact resistance, the content is preferably limited to 1.00% by mass or less. Since Mn acts on a decrease in corrosion resistance and an increase in contact resistance, the content is preferably restricted to 2.00% by mass or less.
[0024]
Cu-rich phase: 0.2 volume% or more Cu-rich phase is deposited uniformly and finely, and a passivation film containing Cr, Si, Mn, etc. is not formed above and below the portion exposed on the surface, and the surface contact resistance is reduced. Decreases. As a result of detailed investigation and study of the relationship between the dispersed precipitation of the Cu-rich phase and the reduction of the surface contact resistance, a low surface contact resistance required for a fuel cell separator is shown at a Cu-rich phase of 0.2% by volume or more.
The heat treatment for dispersing and precipitating the Cu-rich phase varies depending on the Cu content of the stainless steel, but generally a condition of performing aging treatment at about 800 ° C. for 1 to 24 hours is employed. By the aging treatment, a fine Cu-rich phase is dispersed and precipitated.
[0025]
Cu concentration on surface layer: Cu / (Si + Mn) ≧ 0.5 (atomic ratio)
When the concentration ratio of Cu to Si or Mn in the passivation film or the outermost layer is increased, the surface contact electric resistance decreases. Cu concentration on the surface layer can be quantified by the atomic ratio Cu / (Si + Mn) in the passivation film or the outermost layer, and when the atomic ratio Cu / (Si + Mn) becomes 0.5 or more, a satisfactory degree as a fuel cell separator. The surface contact resistance decreases. Cu / (Si + Mn) ≧ 0.5 is achieved by bright annealing in a dry atmosphere or mixed pickling after air annealing.
[0026]
Bright annealing: When the dew point of the heating annealing atmosphere is increased in an atmosphere having a dew point of −30 ° C. or lower, the oxide of Mn having a high specific resistance increases and the surface contact resistance of the passive film increases. In order to enrich Cu in the surface layer when Cu / (Si + Mn) ≧ 0.5, the stainless steel sheet is preferably heated to 950 to 1200 ° C. in an annealing atmosphere having a dew point of −30 ° C. or less, as is clear from the examples described later. Annealing. By bright annealing, a Cu-rich phase is uniformly dispersed and precipitated in the matrix, or Cu is concentrated in the surface layer to be reformed into a surface layer having low surface contact resistance.
[0027]
Mixed acid pickling after air annealing:
Instead of bright annealing, mixed acid pickling after air annealing can also enrich Cu in the passive film or the outermost layer. In the air annealing, the stainless steel plate is heated to a temperature range of 750 to 1200 ° C. for dispersion precipitation of the Cu-rich phase or Cu concentration on the surface layer. The pickling of the stainless steel sheet annealed in the air is not subject to any particular restrictions on the type and concentration of the acid, but generally, hydrofluoric acid-nitric acid, sulfuric acid-nitric acid or the like having a concentration of about 10% by volume is used. . In the mixed acid pickling, a passive film that does not have a preferential dissolution of Cu or a Cu-rich phase generated by electrolytic pickling and has no decrease in Cu concentration is formed after the pickling.
[0028]
Embodiment 1
Various austenitic stainless steels having the compositions shown in Table 1 were melted in a vacuum melting furnace and subjected to casting, hot forging, hot rolling, annealing / pickling, and cold rolling, and then cold-rolled to a thickness of 1.0 mm. Steel strip was manufactured. For comparison, SUS304 and SUS304N1 cold-rolled steel strips were manufactured under the same conditions. Some of the cold rolled steel strips were subjected to a Cu-rich phase precipitation treatment at 800 ° C. for 24 hours in a process before final annealing.
[0029]
Figure 2004002960
[0030]
The produced cold-rolled steel strip was subjected to bright annealing finish or pickling finish after air annealing. In bright annealing, heating was performed at 1100 ° C. for 10 seconds in annealing atmospheres having different dew points, and the influence of the dew point of the atmosphere on the properties of the annealed material was investigated. In the pickling finishing, electrolytic pickling using 5% nitric acid and mixed pickling of 6% nitric acid + 2% hydrofluoric acid were adopted, and the influence of the difference in pickling form on the properties of the annealed material was investigated.
A specimen cut out from the bright-annealed or pickled-finished cold-rolled steel strip was observed with a transmission electron microscope, and the amount (% by volume) of the Cu-rich phase dispersed and precipitated in the matrix was calculated. Further, the concentration (atomic%) of Cu, Si, and Mn with respect to the total amount of the analyzed elements was determined by glow emission analysis, and the Cu concentration of the surface layer was calculated according to the atomic ratio Cu / (Si + Mn). Further, the counter electrode and the measuring terminal made of pure gold were brought into contact with the surface of the test piece, and the surface contact resistance was measured under the condition that a load of 100 g was applied to the measuring terminal.
[0031]
As can be seen from the survey results in Table 2, in SUS304 and SUS304N1 in which Cu is less than 0.2% by mass, the precipitation amount of the Cu-rich phase does not reach 0.2% by volume, or the Cu concentration in the surface layer is Cu / (Si + Mn) ≧ 0.5 was not achieved, indicating a high surface contact resistance. Even in A1 steel to which 0.2% by mass or more of Cu is added, when bright annealing is performed in an atmosphere having a dew point higher than −30 ° C., the concentration of Cu in the surface layer does not reach Cu / (Si + Mn) ≧ 0.5, and the surface contact resistance increases. Was still high.
On the other hand, using A1, A2 steel containing 0.2% by mass or more of Cu, a Cu-rich phase is precipitated by 0.2% by volume or more (test numbers 5 and 9), or Cu / (Si + Mn) ≧ 0. When the surface layer was concentrated with Cu in Test No. 5 (Test Nos. 6 and 8), the surface contact resistance was significantly reduced. Test Nos. 7 and 10 satisfying both Cu-rich phase: 0.2% by volume or more and Cu / (Si + Mn) ≧ 0.5, the surface contact resistance was further reduced.
[0032]
Figure 2004002960
[0033]
Embodiment 2
The steel types A1, A2 to A4, and A7 shown in Table 1 were subjected to the same Cu-rich phase precipitation treatment as in Example 1, and corrosion resistance in a fuel cell separator environment was examined by an electrochemical test.
In the electrochemical test, a test piece having a surface to be measured having a size of 10 mm × 10 mm was prepared by embedding a test material in a resin. The sulfuric acid aqueous solution (test solution) adjusted to pH 2 was maintained at 70 ° C., and the anodic polarization from the natural potential to 1,300 mV, SCE was measured at a scanning speed of 20 mV / min. The atmosphere to which the fuel cell separator is exposed includes a natural potential environment where no potential is applied and a high potential environment where potential is applied. The corrosion resistance in the self-potential environment can be evaluated from the low passivation current density of anodic polarization, and the corrosion resistance in the high-potential environment can be evaluated from 1000 mV and the low corrosion current at SCE.
From the measurement results of the anodic polarization curve shown in FIG. 2, the steel A1 with Cr: 15.2% by mass has a higher passivation limit current density on the spontaneous potential side than the other test materials, and lacks corrosion resistance. You can see that it is. Cr: 40.9% by mass of A7, although having a low passivation limit current density, has a very high current value on the high potential side as compared with the other test materials, and has a potential applied to the separator. It is shown that the corrosion resistance is poor. It can be understood that the steels A2 to A4 have low passivation limit current density and low current value on the high potential side, and exhibit sufficient corrosion resistance in a separator environment.
[0034]
Embodiment 3
Cold rolled steel strips having a thickness of 1.0 mm were produced from various austenitic stainless steels having the compositions shown in Table 3 in the same manner as in Example 1. Some of the cold rolled steel strips were subjected to a Cu-rich phase precipitation treatment at 800 ° C. for 24 hours in a process before final annealing.
[0035]
Figure 2004002960
[0036]
After the produced cold-rolled steel strip was subjected to the same bright annealing or atmospheric annealing as in Example 1, and then pickled, the amount of Cu-rich phase precipitated (volume%) and the atomic ratio Cu / ( Si + Mn) and surface contact resistance were investigated.
As can be seen from the inspection results in Table 4, using A11 and A12 steels containing 0.2% by mass or more of Cu, 0.2% by volume or more of a Cu-rich phase was precipitated (test numbers 1 and 5), or When /(Si+Mn)≧0.5 and the surface layer was concentrated with Cu (Test Nos. 2 and 4), the surface contact resistance was significantly reduced. Test Nos. 3 and 6 satisfying both Cu-rich phase: 0.2% by volume or more and Cu / (Si + Mn) ≧ 0.5 had further reduced surface contact resistance. From these results, it was confirmed that even when Ni was added for improving the corrosion resistance, the surface contact resistance could be reduced by precipitating a Cu-rich phase or concentrating Cu in the passive film.
[0037]
Figure 2004002960
[0038]
Embodiment 4
The steels A11 to A26 in Table 3 and the comparative steels subjected to the same Cu-rich phase precipitation treatment as in Example 1 were used as test materials, and the corrosion resistance in a fuel cell separator environment was investigated by the same electrochemical test as in Example 2.
Table 5 shows the measurement results of the passivation electrode density obtained from the anodic polarization curve in the sulfuric acid solution and the corrosion current at 1000 mV and SCE.
[0039]
Test No. 1 according to the present invention. Nos. 1 to 16 have a passivation current density of 10 μA / cm 2 or less, indicating that they have excellent corrosion resistance in a self-potential environment. The corrosion current density under a high potential environment was also about 400 μA / cm 2 , which was smaller than that of A28 steel having a Cr content exceeding 40.0% by mass. The fact that the A28 steel shows a high corrosion current density under a high potential environment is presumed to be due to the high Cr content and the overpassive dissolution of Cr.
[0040]
Further, A14 to A21, A23, and A26 steels having a high N content and adding at least one of Mo, Co, Nb, Ti, Al, V, REM, and B can be used in either a self-potential environment or a high-potential environment. Also, the passivation current density was small, and further excellent corrosion resistance was exhibited.
The A27 steel lacking Cr has a high passivation current density in a high potential environment, although it has a corrosion current density similar to that of the steel of the present invention, and cannot be said to have sufficient corrosion resistance in a separator environment.
[0041]
Figure 2004002960
[0042]
【The invention's effect】
As described above, when the addition amounts of Cr, Ni, and Cu are regulated, and in some cases, N is added, and a Cu-rich phase is dispersed and precipitated in the matrix, or when Cu is concentrated in the surface layer, the austenitic stainless steel is used. While maintaining the excellent corrosion resistance inherent in steel, the surface state is modified to a surface state in which the surface contact resistance is stably maintained at a low level for a long time. The corrosion resistance is further improved by the addition of Mo, Co, Nb, Ti, Al, V, REM, B and the like. The austenitic stainless steel plate that has both low surface contact resistance and corrosion resistance in this way is a suitable material as a base material of a fuel cell separator exposed to a severe corrosive environment, and has stacked a large number of fuel cell modules. Even in this state, a fuel cell with high power generation efficiency is constructed because of little Joule heat generation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view (a) and an exploded perspective view (b) illustrating an internal structure of a fuel cell using a solid polymer membrane as an electrolyte.
FIG. 2 is a graph showing the anodic polarization pole of the stainless steel sheet used in Example 2.

Claims (8)

Cr:16.0〜40.0質量%,Ni:5.0〜26.0質量%,Cu:0.2〜6.0質量%,残部が実質的にFeの組成をもち、Cuリッチ相が0.2体積%以上の割合でマトリックスに分散析出していることを特徴とする燃料電池セパレータ用オーステナイト系ステンレス鋼。Cr: 16.0 to 40.0% by mass, Ni: 5.0 to 26.0% by mass, Cu: 0.2 to 6.0% by mass, the balance being substantially Fe, and a Cu-rich phase Austenitic stainless steel for a fuel cell separator, wherein the austenitic stainless steel is dispersed and precipitated in a matrix at a rate of 0.2% by volume or more. Cr:16.0〜40.0質量%,Ni:5.0〜26.0質量%,Cu:0.2〜6.0質量%,残部が実質的にFeの組成をもち、Si,Mnに対するCuの原子比Cu/(Si+Mn)が0.5以上の割合で表層にCuが濃化していることを特徴とする燃料電池セパレータ用オーステナイト系ステンレス鋼。Cr: 16.0 to 40.0% by mass, Ni: 5.0 to 26.0% by mass, Cu: 0.2 to 6.0% by mass, the balance substantially having a composition of Fe, Si, Mn An austenitic stainless steel for a fuel cell separator, wherein Cu is concentrated in the surface layer at an atomic ratio Cu / Cu / (Si + Mn) of 0.5 or more with respect to. Cr:16.0〜40.0質量%,Ni:5.0〜26.0質量%,Cu:0.2〜6.0質量%,残部が実質的にFeの組成をもち、Cuリッチ相が0.2体積%以上の割合でマトリックスに分散析出しており、Si,Mnに対するCuの原子比Cu/(Si+Mn)が0.5以上の割合で表層にCuが濃化していることを特徴とする燃料電池セパレータ用オーステナイト系ステンレス鋼。Cr: 16.0 to 40.0% by mass, Ni: 5.0 to 26.0% by mass, Cu: 0.2 to 6.0% by mass, the balance being substantially Fe, and a Cu-rich phase Are dispersed and precipitated in the matrix at a ratio of 0.2% by volume or more, and Cu is concentrated in the surface layer at an atomic ratio of Cu to Si and Mn of Cu / (Si + Mn) of 0.5 or more. Austenitic stainless steel for fuel cell separators. 更にN:0.01〜0.5質量%を含有する請求項1〜3何れかに記載の燃料電池セパレータ用オーステナイト系ステンレス鋼。The austenitic stainless steel for a fuel cell separator according to any one of claims 1 to 3, further comprising N: 0.01 to 0.5% by mass. 更にMo:0.2〜6.0質量%,Co:0.01〜1.0質量%,Nb:0.05〜1.0質量%,Ti:0.05〜1.0質量%,Al:0.01〜3.0質量%,V:0.01〜1.0質量%,希土類金属(REM):0.001〜0.5質量%,B:0.001〜1.0質量の1種又は2種以上を含有する請求項1〜4何れかに記載の燃料電池セパレータ用オーステナイト系ステンレス鋼。Further, Mo: 0.2 to 6.0% by mass, Co: 0.01 to 1.0% by mass, Nb: 0.05 to 1.0% by mass, Ti: 0.05 to 1.0% by mass, Al : 0.01 to 3.0% by mass, V: 0.01 to 1.0% by mass, rare earth metal (REM): 0.001 to 0.5% by mass, B: 0.001 to 1.0% by mass. The austenitic stainless steel for a fuel cell separator according to any one of claims 1 to 4, comprising one or more kinds. 請求項1〜5何れかに記載のオーステナイト系ステンレス鋼を基材とする燃料電池セパレータ。A fuel cell separator comprising the austenitic stainless steel according to claim 1 as a base material. Cr:16.0〜40.0質量%,Ni:5.0〜26.0質量%,Cu:0.2〜6.0質量%を含むオーステナイト系ステンレス鋼板に、最終焼鈍として露点−30℃以下の雰囲気下で光輝焼鈍することを特徴とする燃料電池セパレータ用オーステナイト系ステンレス鋼の製造方法。An austenitic stainless steel sheet containing Cr: 16.0 to 40.0% by mass, Ni: 5.0 to 26.0% by mass, and Cu: 0.2 to 6.0% by mass was subjected to a dew point of −30 ° C. as final annealing. A method for producing an austenitic stainless steel for a fuel cell separator, comprising bright annealing in the following atmosphere. Cr:16.0〜40.0質量%,Ni:5.0〜26.0質量%,Cu:0.2〜6.0質量%を含むオーステナイト系ステンレス鋼板を大気焼鈍した後、フッ酸−硝酸又は硫酸−硝酸の混酸を用いて酸洗仕上げすることを特徴とする燃料電池セパレータ用オーステナイト系ステンレス鋼の製造方法。After an austenitic stainless steel sheet containing Cr: 16.0 to 40.0% by mass, Ni: 5.0 to 26.0% by mass, and Cu: 0.2 to 6.0% by mass, it is hydrofluoric acid- A process for producing an austenitic stainless steel for a fuel cell separator, wherein the austenitic stainless steel for a fuel cell separator is finished by pickling using nitric acid or a mixed acid of sulfuric acid and nitric acid.
JP2002354689A 2002-03-13 2002-12-06 Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor Pending JP2004002960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354689A JP2004002960A (en) 2002-03-13 2002-12-06 Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002068173 2002-03-13
JP2002092994 2002-03-28
JP2002354689A JP2004002960A (en) 2002-03-13 2002-12-06 Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004002960A true JP2004002960A (en) 2004-01-08

Family

ID=30449127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354689A Pending JP2004002960A (en) 2002-03-13 2002-12-06 Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004002960A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100131A1 (en) 2006-02-27 2007-09-07 Nippon Steel Corporation Separator for solid polymer fuel cell and method for manufacturing the same
JP2007254795A (en) * 2006-03-22 2007-10-04 Jfe Steel Kk Solid polymer type fuel cell, and stainless steel suitable for its separator
JP2008274386A (en) * 2007-05-07 2008-11-13 Aichi Steel Works Ltd Surface-treated stainless steel excellent in design characteristics and corrosion resistance and method for producing the same
WO2009060900A1 (en) * 2007-11-07 2009-05-14 Sumitomo Metal Industries, Ltd. Stainless steel product for polymer electrolyte fuel cell separators and polymer electrolyte fuel cells
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
CN102473935A (en) * 2009-08-03 2012-05-23 新日本制铁株式会社 Titanium material for solid polymer fuel cell separator, and process for production thereof
WO2018199327A1 (en) * 2017-04-28 2018-11-01 株式会社Flosfia Conductive member, and method for manufacturing same
KR20190140661A (en) * 2018-06-12 2019-12-20 주식회사 포스코 Austenitic stainless steel excellent in elecctric conductivity and method of manufacturing the same
WO2020251103A1 (en) * 2019-06-14 2020-12-17 주식회사 포스코 Austenitic stainless steel having excellent electrical conductivity, and method for manufacturing same
WO2022114652A1 (en) * 2020-11-25 2022-06-02 주식회사 포스코 Austenitic stainless steel for polymer fuel cell separator with improved contact resistance, and manufacturing method thereof
TWI813701B (en) * 2019-06-18 2023-09-01 南韓商Posco公司 Austenitic stainless steel excellent in elecctric conductivity and method of manufacturing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
US8304141B2 (en) 2005-06-22 2012-11-06 Sintokogio Ltd. Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
US8182961B2 (en) 2006-02-27 2012-05-22 Nippon Steel Corporation Solid polymer type fuel cell separator and method of production of same
WO2007100131A1 (en) 2006-02-27 2007-09-07 Nippon Steel Corporation Separator for solid polymer fuel cell and method for manufacturing the same
US8361676B2 (en) 2006-02-27 2013-01-29 Nippon Steel Corporation Solid polymer type fuel cell separator and method of production of same
JP2007254795A (en) * 2006-03-22 2007-10-04 Jfe Steel Kk Solid polymer type fuel cell, and stainless steel suitable for its separator
JP2008274386A (en) * 2007-05-07 2008-11-13 Aichi Steel Works Ltd Surface-treated stainless steel excellent in design characteristics and corrosion resistance and method for producing the same
JP5152193B2 (en) * 2007-11-07 2013-02-27 新日鐵住金株式会社 Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
WO2009060900A1 (en) * 2007-11-07 2009-05-14 Sumitomo Metal Industries, Ltd. Stainless steel product for polymer electrolyte fuel cell separators and polymer electrolyte fuel cells
US9065081B2 (en) 2009-08-03 2015-06-23 Nippon Steel & Sumitomo Metal Corporation Titanium material for solid polymer fuel cell separator use and method of production of same
CN102473935A (en) * 2009-08-03 2012-05-23 新日本制铁株式会社 Titanium material for solid polymer fuel cell separator, and process for production thereof
WO2018199327A1 (en) * 2017-04-28 2018-11-01 株式会社Flosfia Conductive member, and method for manufacturing same
KR20190140661A (en) * 2018-06-12 2019-12-20 주식회사 포스코 Austenitic stainless steel excellent in elecctric conductivity and method of manufacturing the same
KR102103014B1 (en) * 2018-06-12 2020-05-29 주식회사 포스코 Austenitic stainless steel excellent in elecctric conductivity and method of manufacturing the same
WO2020251103A1 (en) * 2019-06-14 2020-12-17 주식회사 포스코 Austenitic stainless steel having excellent electrical conductivity, and method for manufacturing same
CN112585292A (en) * 2019-06-14 2021-03-30 Posco公司 Austenitic stainless steel having excellent conductivity and method for producing same
US20210254203A1 (en) * 2019-06-14 2021-08-19 Posco Austenitic stainless steel having excellent electrical conductivity, and method for manufacturing same
JP2021529887A (en) * 2019-06-14 2021-11-04 ポスコPosco Austenitic stainless steel with excellent electrical conductivity and its manufacturing method
TWI813701B (en) * 2019-06-18 2023-09-01 南韓商Posco公司 Austenitic stainless steel excellent in elecctric conductivity and method of manufacturing the same
WO2022114652A1 (en) * 2020-11-25 2022-06-02 주식회사 포스코 Austenitic stainless steel for polymer fuel cell separator with improved contact resistance, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6835487B2 (en) Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
JP6418364B1 (en) Stainless steel plate for fuel cell separator and method for producing the same
JP5218612B2 (en) Stainless steel for fuel cell separator
WO2011013832A1 (en) Stainless steel for fuel cell separators which has excellent electrical conductivity and ductility, and process for production thereof
KR20130121930A (en) Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
WO2008082162A1 (en) Method for improving surface properties of the stainless steels for bipolar plate of polymer electrolyte membrane fuel cell
JP4495796B2 (en) Stainless steel separator for low-temperature fuel cell and method for producing the same
JP2012177157A (en) Stainless steel for solid polymer type fuel cell separator and method for producing the same
JP4340448B2 (en) Ferritic stainless steel for fuel cell separator and method for producing the same
JP2004149920A (en) Stainless steel for separator of solid polymer fuel cell and its manufacturing method, and solid polymer fuel cell using that stainless steel
JP3097690B1 (en) Polymer electrolyte fuel cell
JP2000328200A (en) Austenitic stainless steel for conductive electric parts and fuel battery
WO2013018322A1 (en) Stainless steel for fuel cell separator
US8900379B2 (en) Stainless steel for solid polymer fuel cell separator and solid polymer typefuel cell using the stainless steel
JP3097689B1 (en) Polymer electrolyte fuel cell
JP2004002960A (en) Austenitic stainless steel for separator of fuel cell, and manufacturing method therefor
JP3269479B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator
JP2004124197A (en) Stainless steel for solid high polymer type fuel cell separator, its production method, and solid high polymer type fuel cell
JP4967831B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP4930222B2 (en) Austenitic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP3397168B2 (en) Ferritic stainless steel and polymer electrolyte fuel cell for polymer electrolyte fuel cell separator
JP2004269969A (en) Separator for solid polymer type fuel cell and manufacturing method therefor
JP5375191B2 (en) Stainless steel and polymer electrolyte fuel cell for polymer electrolyte fuel cell separator with low ion elution
JP2009203502A (en) Surface-roughened stainless steel sheet for separator, manufacturing method therefor, and separator
JP5560533B2 (en) Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828