JP2004269969A - Separator for solid polymer type fuel cell and manufacturing method therefor - Google Patents

Separator for solid polymer type fuel cell and manufacturing method therefor Download PDF

Info

Publication number
JP2004269969A
JP2004269969A JP2003062930A JP2003062930A JP2004269969A JP 2004269969 A JP2004269969 A JP 2004269969A JP 2003062930 A JP2003062930 A JP 2003062930A JP 2003062930 A JP2003062930 A JP 2003062930A JP 2004269969 A JP2004269969 A JP 2004269969A
Authority
JP
Japan
Prior art keywords
mass
separator
less
fuel cell
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003062930A
Other languages
Japanese (ja)
Inventor
Shin Ishikawa
伸 石川
Kenji Takao
研治 高尾
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003062930A priority Critical patent/JP2004269969A/en
Publication of JP2004269969A publication Critical patent/JP2004269969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a separator made of stainless steel for a solid polymer type fuel cell, which gives superior generation efficiency to the fuel cell because of low contact resistance, has high corrosion resistance, and hardly decreases the generation efficiency even after a long period of service. <P>SOLUTION: The separator for the solid polymer type fuel cell is made of a stainless steel comprising, by mass%, 0.03% or less C, 0.03% or less N, 0.03% or less C+N, 20-45% Cr, 0.1-5.0% Mo, and 0.1-5.0% Cu and the balance mainly Fe. The manufacturing method comprises carrying out ageing treatment so as to control the sizes of Cu precipitates in the stainless steel to 0.01 to 0.1μm, in the step of making a gas flow passage by machining or press forming the stainless steel. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池用セパレータに関し、特に耐食性に優れると共に接触抵抗値の小さい固体高分子型燃料電池用のステンレス製セパレータに関するものである。
【0002】
【従来の技術】
近年、地球環境を保全する観点から、クリーンで発電効率が優れた燃料電池の開発が進められている。この燃料電池は、水素と酸素を反応させて電気を発生させるもので、その基本構造は、サンドイッチのような構造となっており、電解質膜(イオン交換膜)、2つの電極(燃料極と空気極)、水素および酸素(空気)の拡散層および2つのセパレータから構成されている。そして、この燃料電池は、電解質の種類により、リン酸型、溶融炭酸塩型、固体電解質型、アルカリ型および固体高分子型などに分けられている。
【0003】
上記の燃料電池の中で、固体高分子型燃料電池は、溶融炭酸塩型やリン酸型燃料電池等に比べて、(1)運転温度が80℃程度と格段に低い、(2)電池本体の軽量化・小型化が可能である、(3)立上げが早く、燃料効率、出力密度が高い、などの特徴を有している。そのため、固体高分子型燃料電池は、電気自動車の搭載用電源、定置型の小型分散型電源、さらに携帯機器用電源としての利用が期待され、今日もっとも注目されている燃料電池の一つである。
【0004】
固体高分子型燃料電池の原理は、高分子膜を介して水素と酸素を反応させて電気を取り出すことにある。その代表的な構造は、図1に示すように高分子膜と白金系触媒を担持した電極材料とを一体化した膜−電極接合体(MEA:Membrane−Electrode Assembly、厚み:数10〜数100μm)1を、カーボンクロス等のガス拡散層2,3およびセパレータ4,5により挟み込み、これを単一の構成要素(単セル)とし、セパレータ4と5の間に起電力を生じさせるものであり、この単セルを、数十から数百個、直列につないで燃料電池スタックを構成し、使用されている。なお、ガス拡散層は、MEAと一体化されることが多い。
【0005】
上記セパレータには、単セル間を隔てる隔壁としての役割に加えて、(1)発生した電子を運ぶ導電体、(2)酸素(空気)や水素の流路(それぞれ、図1中の空気流路6、水素流路7)、および(3)生成した水や排出ガスの排出路(それぞれ、図1中の空気流路6、水素流路7)、としての機能などが求められる。また、耐用性に関しては、自動車用の燃料電池では約5,000時間と想定されているが、家庭用電源などに使用される定置型の燃料電池では、約40,000時間と想定されており、自動車用に比較して格段の耐久性が要求される。
【0006】
したがって、このセパレータに求められる特性としては、まず、電気伝導性に優れること、即ち、セパレータとガス拡散層の間の接触抵抗が高くなると発電特性が低下するので、接触抵抗は極力低いこと、また、セパレータの腐食によって金属イオンが溶出すると、電解質膜の導電性が低下するため、長期間の運転が可能な優れた耐食性を有することが望まれている。
【0007】
現在までに実用化された固体高分子型燃料電池は、上記セパレータの素材として、グラファイトを用いたものが提供されている。このグラファイト製セパレータは、接触抵抗も比較的低く、腐食しないという特徴がある一方で、衝撃により破損しやすく、コンパクト化するのが困難で、かつ流路を形成するための加工コストが高いという欠点がある。特にコストの問題は、燃料電池を普及する上で最大の障害となっている。そこで、グラファイト素材に代って金属素材、特にステンレス鋼を素材として用いる試みがなされている。
【0008】
例えば、特許文献1には、不動態皮膜を形成しやすい金属をセパレータとして用いる技術が開示されている。しかし、不動態皮膜の形成は、接触抵抗の上昇を招くことになり、発電効率の劣化につながる。そのため、上記素材は、グラファイト素材に比べて接触抵抗が高く、また、耐食性が劣るなどの改善すべき問題点が指摘されていた。
【0009】
また、特許文献2には、SUS304などの金属セパレータの表面に、金めっきを施すことにより、接触抵抗を低減し高出力を確保する技術が開示されている。しかし、薄い金めっきでは、ピンホールの発生を防止することが困難であり、逆に厚い金めっきはコストの問題が残っている。
【0010】
さらに、特許文献3には、フェライト系ステンレス鋼の基材に、カーボン粉末を分散付着させて、電導性(接触抵抗)を改善したセパレータを得る技術が開示されている。しかしながら、カーボン粉末を用いた場合も、表面処理には相応のコストがかかることから、依然としてコストの問題が残っている。また、表面処理を施したセパレータは、組立時にキズ等が入った場合には耐食性が著しく低下するという問題点も指摘されている。
【0011】
一方、ステンレス鋼に表面処理を施さずに、無垢のままでセパレータに使用する試みがなされている。例えば、特許文献4,5には、Cu,Niを積極的に添加したうえで、S,P,N等の不純物元素を低減し、かつC+N≦0.03mass%、10.5mass%≦Cr+3×Mo≦43mass%を満足するセパレータ用フェライト系ステンレス鋼が開示されている。また、特許文献6,7には、Cu,Niを0.2mass%以下に制限して金属イオンの溶出を抑えたうえで、S,P,N等の不純物元素を低減しかつC+N≦0.03mass%、10.5mass%≦Cr+3×Mo≦43mass%を満足するセパレータ用フェライト系ステンレス鋼が開示されている。また、1%以上のCuをステンレス鋼に添加して、表面の接触抵抗を低減する技術が幾つか開示されている(特許文献8〜10)。
【0012】
【特許文献1】特開平08−180883号公報
【特許文献2】特開平10−228914号公報
【特許文献3】特開2000−277133号公報
【特許文献4】特開平2000−239806号公報
【特許文献5】特開平2000−294255号公報
【特許文献6】特開平2000−265248号公報
【特許文献7】特開平2000−294256号公報
【特許文献8】特開2002−184497号公報
【特許文献9】特開2001−234296号公報
【特許文献10】特開2001−135323号公報
【0013】
【発明が解決しようとする課題】
しかし、ステンレス鋼を表面処理無しで無垢のまま使用する特許文献4〜7の技術はいずれも、鋼の組成成分を所定の範囲にして不動態皮膜を強固にすることにより、溶出した金属イオンによる電極担持触媒の劣化を低減し、腐食生成物による電極との接触抵抗の増加を抑制しようとする思想に基くものであり、ステンレス自体の接触抵抗を低下させようとするものではない。また、数万時間の発電耐久性(耐出力電圧低下)を確保できるものでもない。また、Cu添加により表面接触抵抗を低減する技術は、電気配線端子(特許文献8)、電池ケース(特許文献9)、燃料電池用セパレータ(特許文献10)等の用途を想定しているが、燃料電池の運転中に、セパレータがおかれる環境下での耐久性については全く考慮されていない。
【0014】
本発明の目的は、従来技術が抱えている上記問題点に鑑み、表面処理を施さなくとも、接触抵抗が小さくて発電効率に優れかつ耐食性が高く長時間使用しても発電効率が低下しにくい固体高分子型燃料電池用のステンレス製セパレータならびにその製造方法を提案することにある。
【0015】
【課題を解決するための手段】
発明者らは、接触抵抗を低く抑えたうえで、高い耐食性を発揮するステンレス製セパレータについて、ステンレス鋼の成分、表面不働態皮膜の成分、Cu添加量および析出Cuのサイズの観点から鋭意研究を行った。その結果、Moを含有した高純度フェライト系ステンレス鋼を素材として、不動態皮膜中の成分を調整し、かつ鋼中に析出したCuのサイズを所定の範囲とすることにより、初期発電特性および耐久性(長時間発電特性)が大幅に改善されることを見出した。
【0016】
上記知見にもとづく本発明は、C:0.03mass%以下、N:0.03mass%以下、C+N:0.03mass%以下、Cr:20〜45mass%、Mo:0.1〜5.0mass%、Cu:0.1〜5.0mass%、残部が主にFeからなるステンレス鋼からなり、鋼表面の不働態皮膜中のCr含有量とFe含有量の原子数比(Cr/Fe)が1以上であり、鋼中のCu析出物サイズが0.01〜0.1μmであることを特徴とする固体高分子型燃料電池セパレータである。なお、上記ステンレス鋼は、残部として不可避的不純物を含有する。
【0017】
なお、本発明のセパレータは、上記成分に加えてさらに、下記▲1▼〜▲4▼の群から選ばれるいずれか1種以上を含有することが好ましい。

▲1▼ Si:1.0mass%以下
▲2▼ Mn:1.0mass%以下
▲3▼ Al:0.001〜0.2%
▲4▼ Ti,Nbのうち少なくとも1種を0.01〜0.5mass%
【0018】
また、本発明は、固体高分子型燃料電池用セパレータを製造するにあたり、C:0.03mass%以下、N:0.03mass%以下、C+N:0.03mass%以下、Cr:20〜45mass%、Mo:0.1〜5.0mass%、Cu:0.1〜5.0mass%、残部が主にFeからなるステンレス鋼に、ガス流通路を作製する工程と、前記鋼中のCu析出物のサイズを0.01〜0.1μmとする時効処理工程と、前記鋼表面の不働態皮膜中のCr含有量とFe含有量の原子数比(Cr/Fe)を1以上とする処理工程とを経ることを特徴とする固体高分子型燃料電池用セパレータの製造方法を提案する。
【0019】
なお、本発明の製造方法は、上記成分に加えてさらに、下記▲1▼〜▲4▼の群から選ばれるいずれか1種以上を含有することが好ましい。

▲1▼ Si:1.0mass%以下
▲2▼ Mn:1.0mass%以下
▲3▼ Al:0.001〜0.2%
▲4▼ Ti,Nbのうち少なくとも1種を0.01〜0.5mass%
【0020】
【発明の実施の形態】
本発明に係るステンレス製セパレータの成分、とくに必須成分の組成を、上述した範囲に限定する理由について説明する。
C:0.03mass%以下、N:0.03mass%以下およびC+N:0.03mass%以下
CおよびNは、ともに鋼中のCrと化合物を形成し、粒界にCr炭窒化物として析出し、耐食性の低下をもたらすため、両元素とも低いほど望ましい。C:0.03mass%以下、N:0.03mass%以下およびC+N:0.03mass%以下であれば、耐食性を著しく低下させることはない。また、C+Nが0.03mass%を超えると、セパレータをプレス加工する際に割れを生じることが多い。そこで、C:0.03mass%以下、N:0.03mass%以下、C+N:0.03mass%以下に制限する。好ましくは、C:0.015mass%以下、N:0.015mass%以下、C+N:0.02mass%以下である。
【0021】
Cr:20〜45mass%
Crは、ステンレス鋼としての基本的な耐食性を確保するために必要な元素である。Cr量が20mass%未満ではセパレータとして長期の使用に耐えられない。また、接触抵抗の面でも、Cr量が20mass%未満では接触抵抗値を10mΩ・cm以下とすることができない。一方、Cr量が45mass%を超えると、σ相の析出によって靭性が低下する。そのため、Cr量は20〜45mass%とする。好ましくは、22〜35mass%である。
【0022】
Mo:0.1〜5.0mass%
Moは、ステンレス鋼の耐隙間腐食性を改善するのに有効な元素である。この効果を得るためには0.1mass%以上含有させる必要がある。一方、5.0mass%を超えて添加すると、鋼が著しく脆化し、圧延が困難になる。そのため、Mo量は0.1〜5.0mass%とした。好ましくは0.5〜3.0mass%である。
【0023】
Cu:0.1〜5.0mass%
Cuは、析出物として鋼中に析出させることにより、ステンレス鋼の接触抵抗を低減するのに有効な元素である。この効果を得るためには、0.1mass%以上含有させる必要がある。一方、5.0mass%を超えて添加すると、熱間圧延時に鋼が著しく脆化し、生産が困難になる。そのため、Cuの含有量は0.1〜5.0mass%とした。好ましくは0.5〜3.0mass%である。
【0024】
また、本発明のセパレータにおいては、上記必須成分の他、以下の成分を含有するものであってもよい。
Si:1.0mass%以下
Siは、脱酸元素として添加されるが、過度に含有させると鋼板の硬質化と延性の低下を招く。よって、その含有量の上限を1.0mass%とするのが好ましい。より好ましくは、0.01〜0.6mass%である。
【0025】
Mn:1.0mass%以下
Mnは、SとMnSを形成して固溶Sを低減し、Sの粒界偏析を抑制することにより、熱間圧延時の割れを防止するのに有効な元素である。この目的のためには、1.0mass%以下の含有で十分である。好ましくは、0.001〜0.8mass%である。
【0026】
Al:0.001〜0.2mass%
Alは、製鋼工程において脱酸元素として添加される。その効果を得るためには0.001mass%以上含有することが好ましい。一方、0.2mass%を超えて添加してもその効果は飽和し、コストアップとなるので0.2mass%以下が好ましい。
【0027】
Ti,Nb:合計で0.01〜0.5mass%
TiおよびNbは、鋼中のC,Nを炭窒化物として固定し、プレス成形性を改善するのに有効な元素である。C+Nが0.03mass%以下の場合、TiおよびNbの添加によるプレス成形性の改善効果は、Ti,Nbを合計で0.01mass%以上含有している場合に認められ、一方、0.5mass%を超えて含有させてもその効果は飽和する。そのため、Ti、Nbのうち少なくとも1種または2種を、合計で0.01〜0.5mass%含有させるのが好ましい。
【0028】
さらに、本発明のセパレータ用ステンレス鋼は、上記の成分以外にさらに、熱間加工性の向上を目的として、Ca,Mg、REM(希土類元素)およびBを、それぞれ0.1mass%以下、また、素材の靭性を向上する目的で、Niを1mass%以下含有させてもよい。また、接触抵抗を低減するため、Agを1mass%以下、さらにAgを微細に分散させる目的で、Vを0.5mass%以下含有してもよい。その他の元素は、残部Feおよび不可避的不純物である。
【0029】
次に、本発明に係るステンレス製セパレータが具備すべき特性について説明する。
不働態皮膜中のCr/Fe比:1以上
不働態皮膜の成分は、接触抵抗を左右する重要な因子であり、接触抵抗値を低くするためには、不働態皮膜中のCr含有量とFe含有量から算出されるCr/Fe比(原子数比)を高くする必要がある。特に、燃料電池の発電特性を良好な状態に維持するためには、Cr/Fe比を1以上とする必要がある。
【0030】
Cu析出物のサイズ:0.01〜0.1μm
Cu添加による接触抵抗の低減効果を得るには、Cu析出物のサイズが0.01μm以上であることが必要である。その理由は、Cu析出物が0.01μm以上の大きさであれば、ステンレス鋼表面に厚さ数nm程度の不動態皮膜が存在しても、この析出物を通じて導通が図れ、接触抵抗を低減できるからである。一方、析出物のサイズが0.1μmを超えて大きくなっても、同様の接触抵抗低減効果を得られるが、燃料電池を運転する環境下で、Cu析出物を起点とする腐食が発生し、発電特性の劣化を招くという悪影響を無視できなくなる。そのため、Cu析出物のサイズは0.01〜0.1μmの範囲に制限する必要がある。
【0031】
次に、本発明に係るステンレス製セパレータの製造方法について説明する。
まず、本発明のセパレータの素材となるステンレス鋼は、通常公知の溶製方法が適用でき、特に限定する必要はないが、例えば製鋼の工程は、転炉、電気炉等で溶製し、強攪拌・真空酸素脱炭処理(SS−VOD)により2次精錬を行うのが好適である。鋳造方法は、生産性、品質面から連続鋳造法が好ましい。得られた鋼スラブは、熱間圧延により所定の板厚(通常、5mm程度)に圧延した後、800〜1150℃の熱延板焼鈍と酸洗処理を施し熱延板とする。この熱延板は、切削加工により溝を形成してセパレータを製造する場合の素材に用いて好適である。
【0032】
一方、プレス加工によりセパレータを製造する場合の素材には、上記熱延板をさらに冷間圧延して所定の板厚(通常、0.3mm程度)とし、あるいはさらに800〜1150℃の焼鈍と酸洗処理を施した冷延板を素材とするのが好ましい。なお、溝加工の方法は、上記切削加工やプレス加工に限定する必要はなく、例えば、エッチングやコイニング等の他の方法を用いてもかまわない。
【0033】
また、本発明のセパレータが必須の要件とする所定サイズのCu析出物は、550〜600℃付近の温度で時効処理を行うことにより得られる。好ましい時効処理条件は、Cu含有量により異なるが、例えば、Cuを1mass%含有する場合には、550〜600℃で、1〜20時間である。このCu析出を目的とした時効処理は、切削あるいはプレス成形等によるセパレータへの加工の前または後のいずれで行ってもよい。鋼板製造工程中、あるいはプレス加工や切削加工等によりガス流路溝を形成した後、Cu析出の時効処理を行い、さらに酸洗等により表面の酸化スケールを除去すれば、低い接触抵抗をもつセパレータ表面が得られるので好ましい。
【0034】
一方、不働態皮膜中のCr含有量とFe含有量を調整する方法としては、酸を用いたエッチングや酸性水溶液への浸漬、電解エッチングなどの手法を用いることができる。Cr/Fe比を1以上にするための上記処理条件としては、例えば、硝酸:10mass%とピクリン酸:1mass%に加えて、塩酸:30mass%以上を含む50〜70℃の溶液中に、60〜180sec浸漬処理する方法を用いることができる。このCr/Fe比の調整は、ステンレス鋼板をセパレータに加工する前に行ってもよいし、あるいはセパレータに加工した後で行ってもよい。ただし、加工時の疵や熱等により、皮膜の厚さや組成が変化する虞がある場合には、セパレータに加工した後で調整するのが好ましい。
【0035】
【実施例】
表1に示す化学組成の鋼を転炉−2次精錬(SS−VOD)により溶製し、連続鋳造法により200mm厚のスラブとした。これらのスラブを1250℃に加熱した後、熱間圧延により板厚4mmの熱延板とし、850〜1100℃の熱延板焼鈍に続いて酸洗処理を施した。得られた各鋼の熱延コイルの長手方向、幅方向中央部から供試材として200mm×200mmのサンプルを切出した。これらのサンプルを素材として、切削加工により2枚1組のセパレータに加工し、その一部をさらに550℃または800℃でCu析出のための時効処理を行い、その後、NaOH:NaNO=3:1の組成を有するソルトへの浸漬(425℃×3分)、硫酸電解(12A/dm×60秒)および混酸(5%硝酸+2.5%フッ酸)水溶液を用いた酸洗処理により脱スケールを行った。さらに、硝酸を10mass%、塩酸を50mass%、ピクリン酸を1mass%含む50℃の酸性水溶液に120秒浸漬処理を施して、不働態皮膜中のCr/Fe比の調整を行った。
【0036】
【表1】

Figure 2004269969
【0037】
以上のようにして製作したセパレータを用いて、発電特性の評価試験を行った。また、同時に、セパレータとして使用しなかったサンプルの端部から透過電子顕微鏡観察用の試料を作製し、Cu析出物のサイズを測定した。さらに、オージェ電子分光法を用いてセパレータ表面の不働態皮膜のCr含有量とFe含有量を求め、その原子数比を算出してCr/Fe比とした。
【0038】
発電特性の評価は、高分子膜としてナフィオンを使用し、ガス拡散層を一体化した有効面積50cmの膜−電極接合体(エレクトロケム社製:FC50−MEA)に、上記のようにして作製した各種のセパレータを組合わせて、図1に示す形状の単セルを作製して行った。ただし、単セルでの評価試験であるため、セパレータの空気流路、水素流路の溝は、各セパレータの片面にのみ形成した。溝の断面形状は、高さ1mm、幅2mmの矩形形状とし、2mm間隔で全体に17列配置した。また、切削加工後のセパレータの厚さは3mmとした。
【0039】
発電特性は、カソード側には空気を、アノード側には超高純度水素(純度99.9999%)をバブラで加湿したのち流して、電流密度0.4A/cmの出力電圧で初期発電特性(出力電圧)を測定し、評価した。また、同様の条件で2000時間に亘る長期運転を行い、出力電圧の劣化度を評価した。なお、電池本体およびバブラは80℃±1℃に、バブラから電池への配管は120℃±2℃にそれぞれ保持し、膜−電極接合体、カーボンクロス等は、セパレータを変えるごとに新品に取り替えた。また、参考例として、板厚4mmのSUS304を上記と同一形状に加工したのち、表面に厚さ約0.1μmの金めっきを施したステンレス製セパレータ、および、板厚3mmで片面に高さ1mm、幅2mmの溝を2mm間隔で17列切削加工したカーボン製セパレータを用いて、上記と同様の条件で単セルの発電特性を評価した。
【0040】
上記発電特性の評価試験の結果を表2に示した。これから明らかなように、本発明の成分組成を満たさない鋼を素材としたセパレータでは、十分な発電特性は得られない。すなわち、Cr含有量が低く不働態皮膜のCr/Fe比が1に満たない鋼1を用いた場合(No.1,2)には、接触抵抗が高いために初期出力電圧が十分でなく、耐食性も劣るため長時間発電特性の劣化が著しい。また、Mo含有量が低い鋼2を用いた場合(No.3,4)には、やはり耐食性が劣るため、長時間発電特性が劣る。また、Cu含有量が低い鋼3を用いた場合(No.5,6)には、接触抵抗を低減するCu析出物が得られないため、十分な初期出力電圧が得られていない。さらに、CあるいはC+Nが本発明の範囲を外れる鋼7,8を素材とした場合(No.17〜20)には、いずれも耐食性が劣るため、長時間の発電特性が大きく劣化している。
【0041】
一方、本発明の成分組成を満たし、かつ不働態皮膜中のCr/Fe比が1以上で、時効処理によりCuを微細に析出させたセパレータを用いた場合(No.8,11,15)には、カーボンセパレータおよび金めっきしたステンレスセパレータを用いたのと同等の初期出力電圧および耐久性を得ることができる。しかし、成分組成を満たしても、時効処理を行わない場合(No.7,10,14)には、Cuの析出がないために、初期出力電圧が低い。一方、時効処理により、Cu析出物が大きくなり過ぎた場合(No.9,10,12,13,16)には、初期出力電圧は優れるものの、耐食性が劣化し長期発電特性が劣る傾向が認められる。
【0042】
【表2】
Figure 2004269969
【0043】
【発明の効果】
以上説明したように、本発明によれば、従来のカーボンセパレータや金めっきを施したステンレスセパレータと同等の、接触抵抗が小さくかつ耐食性に優れた固体高分子型燃料電池に用いて好適なステンレスセパレータを得ることができる。その結果、従来、耐久性の問題から、高価なカーボンセパレータを使用していた燃料電池に、安価なステンレス製セパレータを提供することが可能となる。なお、本発明のステンレス鋼は、燃料電池用セパレータに限ることなく、導電性のステンレス製電気部材としても広く利用可能である。
【図面の簡単な説明】
【図1】固体高分子型燃料電池の単セルの構造を示す模式図である。
【符号の説明】
1:膜−電極接合体(MEA)
2,3:ガス拡散層
4,5:セパレータ
6:空気流路
7:水素流路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a separator for a polymer electrolyte fuel cell, and more particularly to a stainless steel separator for a polymer electrolyte fuel cell having excellent corrosion resistance and low contact resistance.
[0002]
[Prior art]
In recent years, from the viewpoint of preserving the global environment, development of fuel cells that are clean and have excellent power generation efficiency has been promoted. This fuel cell generates electricity by reacting hydrogen and oxygen, and its basic structure is a sandwich-like structure, comprising an electrolyte membrane (ion exchange membrane), two electrodes (a fuel electrode and air). Electrode), a diffusion layer of hydrogen and oxygen (air), and two separators. The fuel cells are classified into a phosphoric acid type, a molten carbonate type, a solid electrolyte type, an alkaline type, a solid polymer type, and the like, depending on the type of the electrolyte.
[0003]
Among the above fuel cells, the polymer electrolyte fuel cell (1) has an operating temperature of about 80 ° C., which is remarkably lower than that of a molten carbonate fuel cell or a phosphoric acid fuel cell, and (2) a cell body. (3) Fast start-up, high fuel efficiency and high power density. Therefore, the polymer electrolyte fuel cell is expected to be used as an electric power supply for electric vehicles, a stationary small-sized dispersed power supply, and a power supply for portable devices, and is one of the fuel cells that have received the most attention today. .
[0004]
The principle of a polymer electrolyte fuel cell is to extract electricity by reacting hydrogen and oxygen through a polymer membrane. A typical structure is a membrane-electrode assembly (MEA: Membrane-Electrode Assembly, thickness: several tens to several hundreds μm) in which a polymer membrane and an electrode material supporting a platinum-based catalyst are integrated as shown in FIG. 1.) 1 is sandwiched between gas diffusion layers 2 and 3 such as carbon cloth and separators 4 and 5 to form a single component (single cell) and generate an electromotive force between separators 4 and 5. A dozen or hundreds of these single cells are connected in series to form a fuel cell stack, which is used. Note that the gas diffusion layer is often integrated with the MEA.
[0005]
In addition to the role as a partition separating the single cells, the separator has (1) a conductor for carrying generated electrons, and (2) a flow path for oxygen (air) and hydrogen (each of the air flow in FIG. 1). It is required to function as a passage 6 and a hydrogen passage 7) and (3) a discharge passage for the generated water and exhaust gas (the air passage 6 and the hydrogen passage 7 in FIG. 1, respectively). Regarding the durability, it is assumed that the fuel cell for an automobile is about 5,000 hours, while the stationary fuel cell used for a home power supply is assumed to be about 40,000 hours. However, it is required to have remarkable durability as compared with automobiles.
[0006]
Therefore, as the characteristics required for this separator, first, the electrical conductivity is excellent, that is, since the power generation characteristics are reduced when the contact resistance between the separator and the gas diffusion layer is increased, the contact resistance is as low as possible, and When metal ions are eluted due to the corrosion of the separator, the conductivity of the electrolyte membrane is reduced. Therefore, it is desired that the electrolyte membrane has excellent corrosion resistance that enables long-term operation.
[0007]
The polymer electrolyte fuel cells that have been put into practical use so far have been provided using graphite as a material for the separator. This graphite separator has the characteristics of relatively low contact resistance and non-corrosion, but is susceptible to damage by impact, difficult to make compact, and high in processing cost for forming the flow path. There is. In particular, the problem of cost is the biggest obstacle to the spread of fuel cells. Therefore, attempts have been made to use a metal material, particularly stainless steel, as a material instead of the graphite material.
[0008]
For example, Patent Literature 1 discloses a technique in which a metal that easily forms a passivation film is used as a separator. However, the formation of the passivation film leads to an increase in contact resistance, which leads to a deterioration in power generation efficiency. For this reason, it has been pointed out that the above materials have problems to be improved, such as higher contact resistance and lower corrosion resistance than graphite materials.
[0009]
Further, Patent Literature 2 discloses a technique in which a surface of a metal separator such as SUS304 is plated with gold to reduce contact resistance and secure high output. However, it is difficult to prevent the occurrence of pinholes with thin gold plating, and conversely, thick gold plating still has a cost problem.
[0010]
Further, Patent Literature 3 discloses a technique in which carbon powder is dispersed and adhered to a base material of ferritic stainless steel to obtain a separator having improved conductivity (contact resistance). However, even when carbon powder is used, the surface treatment still requires a considerable cost, so that the problem of cost still remains. In addition, it has been pointed out that the surface-treated separator has a problem that the corrosion resistance is remarkably reduced when a scratch or the like is formed during assembly.
[0011]
On the other hand, attempts have been made to use stainless steel as a separator without performing surface treatment on the stainless steel. For example, Patent Documents 4 and 5 disclose that, after Cu and Ni are positively added, impurity elements such as S, P, and N are reduced, and C + N ≦ 0.03 mass%, 10.5 mass% ≦ Cr + 3 × A ferritic stainless steel for a separator satisfying Mo ≦ 43 mass% is disclosed. Further, in Patent Documents 6 and 7, Cu and Ni are limited to 0.2 mass% or less to suppress elution of metal ions, while reducing impurity elements such as S, P, and N, and C + N ≦ 0. A ferritic stainless steel for a separator that satisfies 03 mass%, 10.5 mass% ≦ Cr + 3 × Mo ≦ 43 mass% is disclosed. In addition, several techniques for reducing the surface contact resistance by adding 1% or more of Cu to stainless steel have been disclosed (Patent Documents 8 to 10).
[0012]
[Patent Document 1] JP-A-08-180883 [Patent Document 2] JP-A-10-228914 [Patent Document 3] JP-A-2000-277133 [Patent Document 4] JP-A-2000-239806 [Patent Document 4] Reference 5 Japanese Patent Application Laid-Open No. 2000-294255 [Patent Document 6] Japanese Patent Application Laid-Open No. 2000-265248 [Patent Document 7] Japanese Patent Application Laid-Open No. 2000-294256 [Patent Document 8] Japanese Patent Application Laid-Open No. 2002-184497 [Patent Document 9] Japanese Patent Application Laid-Open No. 2001-234296 [Patent Document 10] Japanese Patent Application Laid-Open No. 2001-135323
[Problems to be solved by the invention]
However, the techniques of Patent Documents 4 to 7, which use stainless steel intact without surface treatment, make the passivation film strong by setting the composition of the steel to a predetermined range, and thereby the metal ions eluted by This is based on the idea of reducing the deterioration of the electrode-carrying catalyst and suppressing the increase in the contact resistance between the electrode and the electrode due to corrosion products, and does not attempt to reduce the contact resistance of the stainless steel itself. In addition, it is not one that can ensure the power generation durability (lower output voltage resistance) for tens of thousands of hours. The technology of reducing the surface contact resistance by adding Cu is assumed to be used for electric wiring terminals (Patent Document 8), battery cases (Patent Document 9), fuel cell separators (Patent Document 10), and the like. No consideration is given to durability in an environment where the separator is placed during operation of the fuel cell.
[0014]
The object of the present invention, in view of the above problems of the prior art, even without surface treatment, low contact resistance, excellent power generation efficiency and high corrosion resistance, even if used for a long time, power generation efficiency is not easily reduced. It is to propose a stainless steel separator for a polymer electrolyte fuel cell and a method for producing the same.
[0015]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on stainless steel separators that exhibit high corrosion resistance while keeping the contact resistance low, from the viewpoints of the components of stainless steel, the components of the surface passive film, the amount of Cu added, and the size of precipitated Cu. went. As a result, by using a high-purity ferritic stainless steel containing Mo as a material, the components in the passivation film are adjusted, and the size of Cu precipitated in the steel is set within a predetermined range, thereby improving initial power generation characteristics and durability. Characteristics (long-time power generation characteristics) were found to be significantly improved.
[0016]
The present invention based on the above findings provides: C: 0.03 mass% or less, N: 0.03 mass% or less, C + N: 0.03 mass% or less, Cr: 20 to 45 mass%, Mo: 0.1 to 5.0 mass%, Cu: 0.1 to 5.0 mass%, the balance being made of stainless steel mainly composed of Fe, wherein the atomic ratio (Cr / Fe) of the Cr content to the Fe content in the passive film on the steel surface is 1 or more. Wherein the size of the Cu precipitate in the steel is 0.01 to 0.1 μm. The stainless steel contains inevitable impurities as the balance.
[0017]
The separator of the present invention preferably further contains at least one selected from the following groups (1) to (4) in addition to the above components.
Description (1) Si: 1.0 mass% or less (2) Mn: 1.0 mass% or less (3) Al: 0.001 to 0.2%
(4) 0.01 to 0.5 mass% of at least one of Ti and Nb
[0018]
Further, in the present invention, in producing a separator for a polymer electrolyte fuel cell, C: 0.03 mass% or less, N: 0.03 mass% or less, C + N: 0.03 mass% or less, Cr: 20 to 45 mass%, Mo: 0.1 to 5.0 mass%, Cu: 0.1 to 5.0 mass%, the balance being a step of forming a gas flow passage in stainless steel mainly made of Fe, and a step of removing a Cu precipitate in the steel. An aging treatment step of setting the size to 0.01 to 0.1 μm and a treatment step of setting the atomic ratio (Cr / Fe) of the Cr content to the Fe content in the passive film on the steel surface to 1 or more. The present invention proposes a method for producing a separator for a polymer electrolyte fuel cell, which is characterized by passing through.
[0019]
The production method of the present invention preferably further contains one or more selected from the following groups (1) to (4) in addition to the above components.
Description (1) Si: 1.0 mass% or less (2) Mn: 1.0 mass% or less (3) Al: 0.001 to 0.2%
(4) 0.01 to 0.5 mass% of at least one of Ti and Nb
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The reasons for limiting the components of the stainless steel separator according to the present invention, particularly the composition of the essential components, to the above-described ranges will be described.
C: 0.03 mass% or less, N: 0.03 mass% or less, and C + N: 0.03 mass% or less C and N both form a compound with Cr in steel, and precipitate as Cr carbonitride at grain boundaries, Both elements are preferably as low as possible because they cause a reduction in corrosion resistance. When C: 0.03 mass% or less, N: 0.03 mass% or less, and C + N: 0.03 mass% or less, the corrosion resistance is not significantly reduced. On the other hand, when C + N exceeds 0.03 mass%, cracks often occur when the separator is pressed. Therefore, C is limited to 0.03% by mass or less, N: 0.03% by mass or less, and C + N: 0.03% by mass or less. Preferably, C: 0.015 mass% or less, N: 0.015 mass% or less, and C + N: 0.02 mass% or less.
[0021]
Cr: 20 to 45 mass%
Cr is an element necessary for securing basic corrosion resistance as stainless steel. If the Cr content is less than 20 mass%, the separator cannot be used for a long period of time. Further, in terms of contact resistance, if the Cr content is less than 20 mass%, the contact resistance cannot be reduced to 10 mΩ · cm 2 or less. On the other hand, if the Cr content exceeds 45 mass%, the toughness decreases due to precipitation of the σ phase. Therefore, the amount of Cr is set to 20 to 45 mass%. Preferably, it is 22 to 35 mass%.
[0022]
Mo: 0.1 to 5.0 mass%
Mo is an element effective for improving the crevice corrosion resistance of stainless steel. In order to obtain this effect, it is necessary to contain 0.1 mass% or more. On the other hand, if added in excess of 5.0 mass%, the steel becomes extremely brittle and rolling becomes difficult. Therefore, the amount of Mo was set to 0.1 to 5.0 mass%. Preferably, it is 0.5 to 3.0 mass%.
[0023]
Cu: 0.1 to 5.0 mass%
Cu is an element effective for reducing the contact resistance of stainless steel by precipitating it in steel as a precipitate. In order to obtain this effect, it is necessary to contain 0.1 mass% or more. On the other hand, if it is added in excess of 5.0 mass%, the steel becomes extremely embrittled during hot rolling, and production becomes difficult. Therefore, the content of Cu is set to 0.1 to 5.0 mass%. Preferably, it is 0.5 to 3.0 mass%.
[0024]
Further, the separator of the present invention may contain the following components in addition to the above essential components.
Si: 1.0 mass% or less Si is added as a deoxidizing element. However, excessive addition of Si causes hardening of the steel sheet and lowering of ductility. Therefore, the upper limit of the content is preferably set to 1.0 mass%. More preferably, it is 0.01 to 0.6 mass%.
[0025]
Mn: 1.0 mass% or less Mn is an element effective for forming S and MnS to reduce solid solution S and suppressing grain boundary segregation of S, thereby preventing cracking during hot rolling. is there. For this purpose, a content of 1.0 mass% or less is sufficient. Preferably, it is 0.001 to 0.8 mass%.
[0026]
Al: 0.001 to 0.2 mass%
Al is added as a deoxidizing element in the steel making process. In order to obtain the effect, the content is preferably 0.001 mass% or more. On the other hand, even if it is added in excess of 0.2 mass%, the effect is saturated and the cost increases, so that 0.2 mass% or less is preferable.
[0027]
Ti, Nb: 0.01 to 0.5 mass% in total
Ti and Nb are elements effective for fixing C and N in steel as carbonitride and improving press formability. When C + N is 0.03% by mass or less, the effect of improving press formability by adding Ti and Nb is recognized when Ti and Nb are contained in a total of 0.01% by mass or more, while 0.5% by mass is added. , The effect is saturated. Therefore, it is preferable to contain at least one or two of Ti and Nb in a total amount of 0.01 to 0.5 mass%.
[0028]
Further, the stainless steel for a separator of the present invention further contains Ca, Mg, REM (rare earth element) and B in an amount of 0.1 mass% or less, in addition to the above components, for the purpose of improving hot workability. For the purpose of improving the toughness of the material, Ni may be contained at 1 mass% or less. Further, in order to reduce contact resistance, Ag may be contained at 1 mass% or less, and V may be contained at 0.5 mass% or less for the purpose of finely dispersing Ag. Other elements are the balance Fe and inevitable impurities.
[0029]
Next, the characteristics that the stainless steel separator according to the present invention should have will be described.
The Cr / Fe ratio in the passive film: 1 or more The component of the passive film is an important factor influencing the contact resistance. To lower the contact resistance value, the Cr content in the passive film and the Fe content It is necessary to increase the Cr / Fe ratio (atomic ratio) calculated from the content. In particular, in order to maintain good power generation characteristics of the fuel cell, the Cr / Fe ratio needs to be 1 or more.
[0030]
Cu precipitate size: 0.01-0.1 μm
In order to obtain the effect of reducing the contact resistance by adding Cu, the size of the Cu precipitate needs to be 0.01 μm or more. The reason is that if the Cu precipitate has a size of 0.01 μm or more, even if there is a passivation film with a thickness of about several nm on the stainless steel surface, conduction can be achieved through this precipitate and the contact resistance is reduced. Because you can. On the other hand, even when the size of the precipitates exceeds 0.1 μm, the same contact resistance reduction effect can be obtained, but under the environment in which the fuel cell is operated, corrosion starting from the Cu precipitates occurs, The adverse effect of deteriorating the power generation characteristics cannot be ignored. Therefore, it is necessary to limit the size of the Cu precipitate to a range of 0.01 to 0.1 μm.
[0031]
Next, a method for manufacturing the stainless steel separator according to the present invention will be described.
First, the stainless steel to be used as the material of the separator of the present invention can be applied to a generally known melting method, and is not particularly limited. For example, the steel making process is performed by melting in a converter, an electric furnace, or the like. It is preferable to perform secondary refining by stirring and vacuum oxygen decarburization treatment (SS-VOD). As the casting method, a continuous casting method is preferable in terms of productivity and quality. The obtained steel slab is rolled to a predetermined thickness (normally, about 5 mm) by hot rolling, and then subjected to hot-rolled sheet annealing at 800 to 1150 ° C and pickling to form a hot-rolled sheet. This hot-rolled sheet is suitable for use as a raw material when a separator is manufactured by forming grooves by cutting.
[0032]
On the other hand, when a separator is manufactured by press working, the hot-rolled sheet is further cold-rolled to a predetermined sheet thickness (usually about 0.3 mm), or further subjected to annealing at 800 to 1150 ° C and acidification. It is preferable to use a cold-rolled plate that has been subjected to a washing treatment. In addition, the method of groove processing does not need to be limited to the above-described cutting and pressing, and other methods such as etching and coining may be used.
[0033]
Further, the Cu precipitate of a predetermined size, which is an essential requirement of the separator of the present invention, can be obtained by performing an aging treatment at a temperature around 550 to 600 ° C. Preferred aging treatment conditions vary depending on the Cu content. For example, when Cu is contained at 1 mass%, the aging is performed at 550 to 600 ° C. for 1 to 20 hours. The aging treatment for the purpose of Cu precipitation may be performed before or after processing into a separator by cutting or press molding. During the steel plate manufacturing process, or after forming gas flow grooves by pressing or cutting, aging treatment of Cu precipitation is performed, and if oxide scale on the surface is removed by pickling etc., a separator with low contact resistance This is preferable because a surface can be obtained.
[0034]
On the other hand, as a method for adjusting the Cr content and the Fe content in the passive film, techniques such as etching using an acid, immersion in an acidic aqueous solution, and electrolytic etching can be used. The above-mentioned treatment conditions for setting the Cr / Fe ratio to 1 or more include, for example, a solution containing 50 mass% or more of hydrochloric acid: 30 mass% or more in addition to nitric acid: 10 mass% and picric acid: 1 mass%. A method of immersion treatment for up to 180 seconds can be used. The adjustment of the Cr / Fe ratio may be performed before processing the stainless steel plate into the separator, or may be performed after processing the stainless steel plate into the separator. However, if there is a possibility that the thickness or composition of the film may change due to flaws or heat during processing, it is preferable to adjust the thickness after processing the separator.
[0035]
【Example】
Steel having the chemical composition shown in Table 1 was melted by converter-secondary refining (SS-VOD), and a slab having a thickness of 200 mm was formed by a continuous casting method. After heating these slabs to 1250 ° C, they were hot-rolled into hot-rolled sheets having a thickness of 4 mm, and were subjected to pickling treatment after annealing at 850 to 1100 ° C. A 200 mm x 200 mm sample was cut out from the center of the obtained hot rolled coil of each steel in the longitudinal direction and width direction as a test material. Using these samples as raw materials, a set of two separators is processed by cutting, a part of which is further subjected to aging treatment for Cu precipitation at 550 ° C. or 800 ° C., and then NaOH: NaNO 3 = 3: 1 (425 ° C. × 3 minutes), sulfuric acid electrolysis (12 A / dm 2 × 60 seconds), and pickling using a mixed acid (5% nitric acid + 2.5% hydrofluoric acid) aqueous solution. Scale was performed. Furthermore, a Cr / Fe ratio in the passive film was adjusted by immersing in a 50 ° C. acidic aqueous solution containing 10% by mass of nitric acid, 50% by mass of hydrochloric acid, and 1% by mass of picric acid for 120 seconds.
[0036]
[Table 1]
Figure 2004269969
[0037]
An evaluation test of the power generation characteristics was performed using the separator manufactured as described above. At the same time, a sample for observation with a transmission electron microscope was prepared from the end of the sample not used as a separator, and the size of the Cu precipitate was measured. Further, the Cr content and the Fe content of the passive film on the separator surface were determined by Auger electron spectroscopy, and the atomic ratio was calculated to obtain the Cr / Fe ratio.
[0038]
Evaluation of power generation characteristics was performed as described above using a membrane-electrode assembly (FC50-MEA, manufactured by Electrochem) having an effective area of 50 cm 2 in which a gas diffusion layer was integrated using Nafion as a polymer membrane. A single cell having the shape shown in FIG. 1 was produced by combining the various separators described above. However, since the evaluation test was performed using a single cell, the grooves of the air flow path and the hydrogen flow path of the separator were formed only on one surface of each separator. The cross-sectional shape of the groove was a rectangular shape having a height of 1 mm and a width of 2 mm, and 17 grooves were arranged at intervals of 2 mm. The thickness of the separator after cutting was 3 mm.
[0039]
Power generation characteristics, the air to the cathode side, the anode side to flow after a humidified ultrapure hydrogen (99.9999% purity) in the bubbler, the initial power generation characteristics by the output voltage of the current density 0.4 A / cm 2 (Output voltage) was measured and evaluated. Further, a long-term operation for 2000 hours was performed under the same conditions, and the degree of deterioration of the output voltage was evaluated. The battery body and bubbler are maintained at 80 ° C ± 1 ° C, the piping from the bubbler to the battery is maintained at 120 ° C ± 2 ° C, and the membrane-electrode assembly and carbon cloth are replaced with new ones each time the separator is changed. Was. Further, as a reference example, a stainless steel separator having a plate thickness of 4 mm processed into the same shape as above and then plated with gold having a thickness of about 0.1 μm, and a plate thickness of 3 mm and a height of 1 mm on one side. The power generation characteristics of a single cell were evaluated under the same conditions as above using a carbon separator in which 17 rows of grooves having a width of 2 mm were cut at intervals of 2 mm.
[0040]
Table 2 shows the results of the above power generation characteristic evaluation test. As is evident from the above, sufficient power generation characteristics cannot be obtained with a separator made of steel that does not satisfy the component composition of the present invention. That is, when steel 1 having a low Cr content and a Cr / Fe ratio of the passive film of less than 1 was used (Nos. 1 and 2), the initial output voltage was not sufficient due to high contact resistance, Due to poor corrosion resistance, long-term power generation characteristics are significantly deteriorated. In addition, when steel 2 having a low Mo content is used (Nos. 3 and 4), the corrosion resistance is also poor, so that the long-term power generation characteristics are poor. In addition, when steel 3 having a low Cu content was used (Nos. 5 and 6), a sufficient initial output voltage was not obtained because a Cu precipitate for reducing the contact resistance was not obtained. Furthermore, when steels 7 and 8 whose C or C + N are out of the range of the present invention are used as the raw materials (Nos. 17 to 20), the corrosion resistance is inferior, and the power generation characteristics for a long time are significantly deteriorated.
[0041]
On the other hand, when a separator that satisfies the component composition of the present invention, has a Cr / Fe ratio in the passive film of 1 or more, and uses Cu to precipitate finely by aging treatment (No. 8, 11, 15). Can obtain the same initial output voltage and durability as those obtained by using a carbon separator and a gold-plated stainless steel separator. However, when the aging treatment is not performed (No. 7, 10, 14) even if the component composition is satisfied, the initial output voltage is low because there is no precipitation of Cu. On the other hand, when the Cu precipitates became too large due to the aging treatment (Nos. 9, 10, 12, 13, and 16), the initial output voltage was excellent, but the corrosion resistance deteriorated and the long-term power generation characteristics tended to deteriorate. Can be
[0042]
[Table 2]
Figure 2004269969
[0043]
【The invention's effect】
As described above, according to the present invention, a stainless steel separator suitable for use in a polymer electrolyte fuel cell having a small contact resistance and excellent corrosion resistance is equivalent to a conventional carbon separator or a gold-plated stainless steel separator. Can be obtained. As a result, it is possible to provide an inexpensive stainless steel separator to a fuel cell that conventionally used an expensive carbon separator due to durability problems. The stainless steel of the present invention can be widely used as a conductive stainless steel electric member without being limited to the fuel cell separator.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the structure of a single cell of a polymer electrolyte fuel cell.
[Explanation of symbols]
1: Membrane-electrode assembly (MEA)
2,3: gas diffusion layer 4, 5: separator 6: air flow path 7: hydrogen flow path

Claims (4)

C:0.03mass%以下、N:0.03mass%以下、C+N:0.03mass%以下、Cr:20〜45mass%、Mo:0.1〜5.0mass%、Cu:0.1〜5.0mass%、残部が主にFeからなるステンレス鋼からなり、鋼表面の不働態皮膜中のCr含有量とFe含有量の原子数比(Cr/Fe)が1以上であり、鋼中のCu析出物サイズが0.01〜0.1μmであることを特徴とする固体高分子型燃料電池セパレータ。C: 0.03 mass% or less, N: 0.03 mass% or less, C + N: 0.03 mass% or less, Cr: 20 to 45 mass%, Mo: 0.1 to 5.0 mass%, Cu: 0.1 to 5. 0 mass%, the balance being made of stainless steel mainly composed of Fe, the atomic ratio of the Cr content to the Fe content in the passive film on the steel surface (Cr / Fe) is 1 or more, and Cu precipitation in the steel A polymer electrolyte fuel cell separator having a product size of 0.01 to 0.1 μm. 上記成分に加えてさらに、下記▲1▼〜▲4▼の群から選ばれるいずれか1種以上を含有することを特徴とする請求項1に記載の固体高分子型燃料電池用セパレータ。

▲1▼ Si:1.0mass%以下
▲2▼ Mn:1.0mass%以下
▲3▼ Al:0.001〜0.2%
▲4▼ Ti,Nbのうち少なくとも1種を0.01〜0.5mass%
2. The separator for a polymer electrolyte fuel cell according to claim 1, further comprising at least one selected from the following groups (1) to (4) in addition to the above components.
(1) Si: 1.0 mass% or less (2) Mn: 1.0 mass% or less (3) Al: 0.001 to 0.2%
(4) 0.01 to 0.5 mass% of at least one of Ti and Nb
C:0.03mass%以下、N:0.03mass%以下、C+N:0.03mass%以下、Cr:20〜45mass%、Mo:0.1〜5.0mass%、Cu:0.1〜5.0mass%、残部が主にFeからなるステンレス鋼に、ガス流通路を作製する工程と、前記鋼中のCu析出物のサイズを0.01〜0.1μmとする時効処理工程と、前記鋼表面の不働態皮膜中のCr含有量とFe含有量の原子数比(Cr/Fe)を1以上とする処理工程とを経ることを特徴とする固体高分子型燃料電池用セパレータの製造方法。C: 0.03 mass% or less, N: 0.03 mass% or less, C + N: 0.03 mass% or less, Cr: 20 to 45 mass%, Mo: 0.1 to 5.0 mass%, Cu: 0.1 to 5. 0 mass%, the balance is mainly made of Fe, a step of producing a gas flow passage in stainless steel, an aging treatment step of reducing the size of Cu precipitates in the steel to 0.01 to 0.1 μm, and the steel surface A process of setting the atomic ratio (Cr / Fe) of the Cr content to the Fe content in the passive film to 1 or more. 上記成分に加えてさらに、下記▲1▼〜▲4▼の群から選ばれるいずれか1種以上を含有することを特徴とする請求項3に記載の固体高分子型燃料電池用セパレータの製造方法。

▲1▼ Si:1.0mass%以下
▲2▼ Mn:1.0mass%以下
▲3▼ Al:0.001〜0.2%
▲4▼ Ti,Nbのうち少なくとも1種を0.01〜0.5mass%
4. The method for producing a separator for a polymer electrolyte fuel cell according to claim 3, further comprising at least one selected from the following groups (1) to (4) in addition to the above components. .
(1) Si: 1.0 mass% or less (2) Mn: 1.0 mass% or less (3) Al: 0.001 to 0.2%
(4) 0.01 to 0.5 mass% of at least one of Ti and Nb
JP2003062930A 2003-03-10 2003-03-10 Separator for solid polymer type fuel cell and manufacturing method therefor Pending JP2004269969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062930A JP2004269969A (en) 2003-03-10 2003-03-10 Separator for solid polymer type fuel cell and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062930A JP2004269969A (en) 2003-03-10 2003-03-10 Separator for solid polymer type fuel cell and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004269969A true JP2004269969A (en) 2004-09-30

Family

ID=33124657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062930A Pending JP2004269969A (en) 2003-03-10 2003-03-10 Separator for solid polymer type fuel cell and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004269969A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100131A1 (en) 2006-02-27 2007-09-07 Nippon Steel Corporation Separator for solid polymer fuel cell and method for manufacturing the same
WO2010041694A1 (en) * 2008-10-07 2010-04-15 住友金属工業株式会社 Sheet stainless steel for separators in solid polymer fuel cells, and solid polymer fuel cells using the same
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
JP2013093299A (en) * 2011-01-17 2013-05-16 Jfe Steel Corp Method for manufacturing stainless steel for fuel battery separators, stainless steel for fuel battery separators, fuel battery separator, and fuel battery
US9065081B2 (en) 2009-08-03 2015-06-23 Nippon Steel & Sumitomo Metal Corporation Titanium material for solid polymer fuel cell separator use and method of production of same
US9653738B2 (en) 2011-01-17 2017-05-16 Jfe Steel Corporation Method for producing stainless steel for fuel cell separator, stainless steel for fuel cell separator, fuel cell separator, and fuel cell
JP2017206725A (en) * 2016-05-17 2017-11-24 Jfeスチール株式会社 Ferritic stainless steel and manufacturing method therefor
CN107925040A (en) * 2015-09-22 2018-04-17 株式会社Posco Stainless steel and its manufacture method for fuel cell separator plate
JP2021529887A (en) * 2019-06-14 2021-11-04 ポスコPosco Austenitic stainless steel with excellent electrical conductivity and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
US8304141B2 (en) 2005-06-22 2012-11-06 Sintokogio Ltd. Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
WO2007100131A1 (en) 2006-02-27 2007-09-07 Nippon Steel Corporation Separator for solid polymer fuel cell and method for manufacturing the same
US8182961B2 (en) 2006-02-27 2012-05-22 Nippon Steel Corporation Solid polymer type fuel cell separator and method of production of same
US8361676B2 (en) 2006-02-27 2013-01-29 Nippon Steel Corporation Solid polymer type fuel cell separator and method of production of same
WO2010041694A1 (en) * 2008-10-07 2010-04-15 住友金属工業株式会社 Sheet stainless steel for separators in solid polymer fuel cells, and solid polymer fuel cells using the same
US9680162B2 (en) 2008-10-07 2017-06-13 Nippon Steel & Sumitomo Metal Corporation Stainless steel sheet for a separator for a solid polymer fuel cell and a solid polymer fuel cell employing the separator
US9065081B2 (en) 2009-08-03 2015-06-23 Nippon Steel & Sumitomo Metal Corporation Titanium material for solid polymer fuel cell separator use and method of production of same
US9653738B2 (en) 2011-01-17 2017-05-16 Jfe Steel Corporation Method for producing stainless steel for fuel cell separator, stainless steel for fuel cell separator, fuel cell separator, and fuel cell
JP2013093299A (en) * 2011-01-17 2013-05-16 Jfe Steel Corp Method for manufacturing stainless steel for fuel battery separators, stainless steel for fuel battery separators, fuel battery separator, and fuel battery
EP2667439B1 (en) * 2011-01-17 2018-10-17 JFE Steel Corporation Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
CN107925040A (en) * 2015-09-22 2018-04-17 株式会社Posco Stainless steel and its manufacture method for fuel cell separator plate
EP3363926A4 (en) * 2015-09-22 2018-08-22 Posco Stainless steel for fuel cell separator plate and manufacturing method therefor
JP2018534416A (en) * 2015-09-22 2018-11-22 ポスコPosco Stainless steel for fuel cell separator and manufacturing method thereof
CN107925040B (en) * 2015-09-22 2021-02-23 株式会社Posco Stainless steel for fuel cell separator and method for manufacturing the same
US11923580B2 (en) 2015-09-22 2024-03-05 Posco Co., Ltd Stainless steel for fuel cell separator plate and manufacturing method therefor
JP2017206725A (en) * 2016-05-17 2017-11-24 Jfeスチール株式会社 Ferritic stainless steel and manufacturing method therefor
JP2021529887A (en) * 2019-06-14 2021-11-04 ポスコPosco Austenitic stainless steel with excellent electrical conductivity and its manufacturing method

Similar Documents

Publication Publication Date Title
KR100488922B1 (en) Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
KR101231462B1 (en) Stainless steel for fuel cell separators which has excellent electrical conductivity and ductility, and process for production thereof
KR100858572B1 (en) Metal material for fuel cell, fuel cell using the same and method for producing the material
JP4496750B2 (en) Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the stainless steel
JP2003223904A (en) Separator for fuel cell, its manufacturing method, and polymer electrolyte fuel cell
WO2016052622A1 (en) Ferritic stainless steel material, separator for solid polymer fuel cells which uses same, and solid polymer fuel cell
WO2013018322A1 (en) Stainless steel for fuel cell separator
JP4967398B2 (en) Stainless steel suitable for polymer electrolyte fuel cell and its separator
JPWO2009060900A1 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP4340448B2 (en) Ferritic stainless steel for fuel cell separator and method for producing the same
JP3922154B2 (en) Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell
JP2004269969A (en) Separator for solid polymer type fuel cell and manufacturing method therefor
JP4967397B2 (en) Stainless steel suitable for polymer electrolyte fuel cell and its separator
JP4967831B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
EP3561117B1 (en) Stainless steel for polymer fuel cell separation plate, having excellent contact resistance, and manufacturing method therefor
JP4930222B2 (en) Austenitic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
KR101356954B1 (en) Stainless steel for polymer electrolyte membrane fuel cell separator and the method of manufacturing the same
JP5560533B2 (en) Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP2005166276A (en) Stainless steel for solid polymer fuel cell separator, the solid polymer fuel cell separator using the same, and solid polymer fuel cell
JP2005089800A (en) Stainless steel for solid polymer electrolyte fuel cell separator and solid polymer electrolyte fuel cell using the same
JP5703560B2 (en) Stainless steel plate for fuel cell separator with excellent conductivity
KR102497442B1 (en) Austenitic stainless steel for polymer fuel cell separator with improved contact resistance and manufacturing method thereof
CN116490632A (en) Stainless steel for solid oxide fuel cell, method for producing same, solid oxide fuel cell member, and solid oxide fuel cell
JP2022165345A (en) Fuel cell separator and fuel cell
JP4425702B2 (en) Stainless steel with excellent conductivity and corrosion resistance and polymer electrolyte fuel cell separator formed by the stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080722