JP2004149920A - Stainless steel for separator of solid polymer fuel cell and its manufacturing method, and solid polymer fuel cell using that stainless steel - Google Patents

Stainless steel for separator of solid polymer fuel cell and its manufacturing method, and solid polymer fuel cell using that stainless steel Download PDF

Info

Publication number
JP2004149920A
JP2004149920A JP2003348772A JP2003348772A JP2004149920A JP 2004149920 A JP2004149920 A JP 2004149920A JP 2003348772 A JP2003348772 A JP 2003348772A JP 2003348772 A JP2003348772 A JP 2003348772A JP 2004149920 A JP2004149920 A JP 2004149920A
Authority
JP
Japan
Prior art keywords
stainless steel
mass
fuel cell
content
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003348772A
Other languages
Japanese (ja)
Other versions
JP4496750B2 (en
Inventor
Shin Ishikawa
伸 石川
Kunio Fukuda
國夫 福田
Yasushi Kato
康 加藤
Osamu Furukimi
古君  修
Kenji Takao
研治 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003348772A priority Critical patent/JP4496750B2/en
Publication of JP2004149920A publication Critical patent/JP2004149920A/en
Priority to CA002503030A priority patent/CA2503030C/en
Priority to PCT/JP2004/008401 priority patent/WO2005035816A1/en
Priority to US10/533,609 priority patent/US8900379B2/en
Application granted granted Critical
Publication of JP4496750B2 publication Critical patent/JP4496750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/088Iron or steel solutions containing organic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel for the separator of a solid polymer fuel cell having excellent corrosion resistance, and small contact resistance (that is, it excels in electrical conductivity), and the solid polymer fuel cell using it. <P>SOLUTION: The stainless steel for the separator of the solid polymer fuel cell contains ≤0.03mass% C, ≤0.03 mass% N, 20-45mass% Cr and 0.1-5.0mass% Mo, and the sum total of C and N content satisfies ≤0.03mass%, and the balance Fe with inevitable impurities. Moreover, in the stainless steel, a Cr/Fe ratio by atomic ratio computed from Cr and Fe content contained in the passive state film of a surface is 1 or more. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、耐久性に優れるとともに接触抵抗値の小さい固体高分子型燃料電池セパレータ用ステンレス鋼とその製造方法、ならびにそのステンレス鋼製セパレータを用いた固体高分子型燃料電池に関するものである。   The present invention relates to a stainless steel for a polymer electrolyte fuel cell separator having excellent durability and a small contact resistance value, a method for producing the same, and a polymer electrolyte fuel cell using the stainless steel separator.

近年、地球環境保全の観点から、発電効率に優れ、CO2 を排出しない燃料電池の開発が進められている。この燃料電池はH2 とO2 を反応させて電気を発生させるものであり、使用される電解質の種類により、リン酸型燃料電池,溶融炭酸塩型燃料電池,固体電解質型燃料電池,アルカリ型燃料電池,固体高分子型燃料電池等が開発されている。 2. Description of the Related Art In recent years, from the viewpoint of global environmental protection, development of a fuel cell which has excellent power generation efficiency and does not emit CO 2 has been promoted. This fuel cell generates electricity by reacting H 2 and O 2 , and depending on the type of electrolyte used, a phosphoric acid fuel cell, a molten carbonate fuel cell, a solid electrolyte fuel cell, an alkaline fuel cell Fuel cells, polymer electrolyte fuel cells, and the like have been developed.

これらの燃料電池のうち、固体高分子型燃料電池は、他の燃料電池に比べて、
(a) 発電温度が80℃程度であり、格段に低い温度で発電できる、
(b) 燃料電池本体の軽量化,小型化が可能である、
(c) 短時間で立上げできる、
等の利点を有している。このため、固体高分子型燃料電池は、電気自動車の搭載用電源,家庭用の定置型発電機,携帯用の小型発電機として利用するべく、今日もっとも注目されている燃料電池である。
Among these fuel cells, the polymer electrolyte fuel cell is different from other fuel cells,
(a) The power generation temperature is about 80 ° C, and power can be generated at a much lower temperature.
(b) The fuel cell body can be reduced in weight and size.
(c) Can be set up in a short time,
And so on. For this reason, polymer electrolyte fuel cells are the fuel cells that have received the most attention today for use as electric power sources for electric vehicles, stationary generators for home use, and small portable generators.

固体高分子型燃料電池は、高分子膜を介してH2 とO2 から電気を取り出すものであり、図1に示すように、ガス拡散層2,3(たとえばカーボンペーパ等)およびセパレータ4,5によって膜−電極接合体1を挟み込み、これを単一の構成要素(いわゆる単セル)とし、セパレータ4とセパレータ5との間に起電力を生じさせるものである。 The polymer electrolyte fuel cell extracts electricity from H 2 and O 2 through a polymer membrane, and as shown in FIG. 1, gas diffusion layers 2 and 3 (for example, carbon paper and the like) and separators 4 and 4. 5, the membrane-electrode assembly 1 is sandwiched between them to form a single component (a so-called single cell), and an electromotive force is generated between the separator 4 and the separator 5.

なお膜−電極接合体1は、MEA(すなわち Membrance-Electrode Assembly )と呼ばれており、高分子膜とその膜の表裏面に白金系触媒を担持したカーボンブラック等の電極材料を一体化したものであり、厚さは数10μm〜数100 μmである。ガス拡散層2,3は、膜−電極接合体1と一体化される場合も多い。   The membrane-electrode assembly 1 is called an MEA (namely, Membrance-Electrode Assembly), and is formed by integrating a polymer film and an electrode material such as carbon black carrying a platinum-based catalyst on the front and back surfaces of the film. And the thickness is several tens μm to several hundreds μm. The gas diffusion layers 2 and 3 are often integrated with the membrane-electrode assembly 1.

固体高分子型燃料電池を上記した用途に適用する場合は、このような単セルを直列に数十〜数百個つないで燃料電池スタックを構成して使用している。   When the polymer electrolyte fuel cell is applied to the above-mentioned applications, several tens to several hundreds of such single cells are connected in series to constitute a fuel cell stack.

セパレータ4,5には、
(A) 単セル間を隔てる隔壁
としての役割に加え、
(B) 発生した電子を運ぶ導電体、
(C) O2 (すなわち空気)とH2 が流れる空気流路,水素流路、
(D) 生成した水やガスを排出する排出路
としての機能が求められる。さらに固体高分子型燃料電池を実用に供するためには、耐久性や電気伝導性に優れたセパレータ4,5を使用する必要がある。
Separators 4 and 5
(A) In addition to its role as a partition separating single cells,
(B) a conductor that carries the generated electrons,
(C) an air flow path, a hydrogen flow path through which O 2 (ie, air) and H 2 flow,
(D) It is required to function as a discharge channel for discharging generated water and gas. Further, in order to put the polymer electrolyte fuel cell into practical use, it is necessary to use the separators 4 and 5 having excellent durability and electrical conductivity.

耐久性に関しては、電気自動車の搭載用電源として使用される場合は、約5000時間と想定されている。あるいは家庭用の定置型発電機等として使用される場合は、約 40000時間と想定されている。したがってセパレータ4,5には、長時間の発電に耐えられる耐食性等の特性が要求される。   As for the durability, when used as a power supply for mounting on an electric vehicle, it is assumed to be about 5,000 hours. Alternatively, when used as a stationary generator for home use, it is assumed to be about 40,000 hours. Therefore, the separators 4 and 5 are required to have characteristics such as corrosion resistance that can withstand long-term power generation.

また電気伝導性に関しては、セパレータ4,5とガス拡散層2,3との接触抵抗は極力低いことが望まれる。 その理由は、セパレータ4,5とガス拡散層2,3との接触抵抗が増大すると、固体高分子型燃料電池の発電効率が低下するからである。つまり、接触抵抗が小さいほど、電気伝導性が優れている。   Regarding the electric conductivity, it is desired that the contact resistance between the separators 4 and 5 and the gas diffusion layers 2 and 3 is as low as possible. The reason is that when the contact resistance between the separators 4, 5 and the gas diffusion layers 2, 3 increases, the power generation efficiency of the polymer electrolyte fuel cell decreases. That is, the smaller the contact resistance, the better the electrical conductivity.

現在までに、セパレータ4,5としてグラファイトを用いた固体高分子型燃料電池が実用化されている。このグラファイトからなるセパレータ4,5は、接触抵抗が比較的低く、しかも腐食しないという利点がある。しかしながら衝撃によって破損しやすいので、小型化が困難であり、しかも空気流路6,水素流路7を形成するための加工コストが高いという欠点がある。グラファイトからなるセパレータ4,5が有するこれらの欠点は、固体高分子型燃料電池の普及を妨げる原因になっている。   Until now, polymer electrolyte fuel cells using graphite as the separators 4 and 5 have been put to practical use. The separators 4 and 5 made of graphite have the advantages of relatively low contact resistance and no corrosion. However, since it is easily damaged by an impact, it is difficult to reduce the size, and furthermore, there is a disadvantage that the processing cost for forming the air flow path 6 and the hydrogen flow path 7 is high. These drawbacks of the graphite separators 4 and 5 hinder the spread of polymer electrolyte fuel cells.

そこでセパレータ4,5の素材として、グラファイトに替えて金属素材を適用する試みがなされている。特に、耐久性向上の観点から、ステンレス鋼を素材としたセパレータ4,5の実用化に向けて、種々の検討がなされている。   Therefore, attempts have been made to use a metal material instead of graphite as a material for the separators 4 and 5. In particular, various studies have been made toward practical use of the separators 4 and 5 made of stainless steel from the viewpoint of improving durability.

たとえば特開平8-180883号公報には、不働態皮膜を形成しやすい金属をセパレータとして用いる技術が開示されている。しかし不働態皮膜の形成は、接触抵抗の上昇を招くことになり、発電効率の低下につながる。このため、これらの金属素材は、カーボン素材と比べて接触抵抗が大きく、しかも耐食性が劣る等の改善すべき問題点が指摘されていた。   For example, Japanese Patent Application Laid-Open No. 8-180883 discloses a technique using a metal that easily forms a passive film as a separator. However, the formation of a passive film leads to an increase in contact resistance, which leads to a decrease in power generation efficiency. Therefore, it has been pointed out that these metal materials have problems to be improved, such as higher contact resistance and lower corrosion resistance than carbon materials.

また特開平10-228914 号公報には、SUS304等の金属セパレータの表面に金めっきを施すことにより、接触抵抗を低減し、高出力を確保する技術が開示されている。しかし、薄い金めっきではピンホールの発生防止が困難であり、逆に厚い金めっきではコストの問題が残る。   Japanese Patent Application Laid-Open No. Hei 10-228914 discloses a technique in which the surface of a metal separator such as SUS304 is plated with gold to reduce contact resistance and secure high output. However, it is difficult to prevent the occurrence of pinholes with thin gold plating, and conversely, the problem of cost remains with thick gold plating.

また特開2000-277133 号公報には、フェライト系ステンレス鋼基材にカーボン粉末を分散させて、電気伝導性を改善したセパレータを得る方法が開示されている。しかしながらカーボン粉末を用いた場合も、セパレータの表面処理には相応のコストがかかることから、依然としてコストの問題が残っている。 また、表面処理を施したセパレータは、組立て時にキズ等が生じた場合に、耐食性が著しく低下するという問題点も指摘されている。   Japanese Patent Application Laid-Open No. 2000-277133 discloses a method of dispersing carbon powder in a ferritic stainless steel base material to obtain a separator having improved electric conductivity. However, even when carbon powder is used, the surface treatment of the separator requires a considerable cost, so that the cost problem still remains. Further, it has been pointed out that the separator subjected to the surface treatment has a problem that the corrosion resistance is remarkably reduced when a flaw or the like occurs during the assembling.

さらに、ステンレス鋼に表面処理を施さず、そのままセパレータに適用しようとする試みがなされている。たとえば特開2000-239806 号公報や特開2000-294255 号公報には、Cu,Niを積極的に添加した上で、S,P,N等の不純物元素を低減し、かつC+N≦0.03質量%,10.5質量%≦Cr+3×Mo≦43質量%を満足するセパレータ用フェライト系ステンレス鋼が開示されている。特開2000-265248 号公報や特開2000-294256 号公報には、Cu,Niを 0.2質量%以下に制限して金属イオンの溶出を抑えた上で、S,P,N等の不純物元素を低減し、かつC+N≦0.03質量%,10.5質量%≦Cr+3×Mo≦43質量%を満足するセパレータ用フェライト系ステンレス鋼が開示されている。   Further, attempts have been made to apply the stainless steel as it is to the separator without performing a surface treatment. For example, in JP-A-2000-239806 and JP-A-2000-294255, after adding Cu and Ni positively, impurity elements such as S, P and N are reduced, and C + N ≦ 0.03 mass%. , 10.5% by mass ≦ Cr + 3 × Mo ≦ 43% by mass is disclosed. JP-A-2000-265248 and JP-A-2000-294256 disclose that Cu and Ni are limited to 0.2% by mass or less to suppress the elution of metal ions, and that impurities such as S, P, and N are removed. Disclosed is a ferritic stainless steel for a separator which is reduced and satisfies C + N ≦ 0.03 mass%, 10.5 mass% ≦ Cr + 3 × Mo ≦ 43 mass%.

しかし、これらの発明は、いずれもステンレス鋼の成分を所定の範囲に規定して、不働態皮膜を強固にすることによって、表面処理を施さず、そのまま使用しても溶出金属イオンによる電極担持触媒の触媒能の劣化を低減し、腐食生成物による電極との接触抵抗の増加を抑制しようとする思想に基づいている。したがって、ステンレス鋼自体の接触抵抗を低下させようとするものではない。また数万時間の発電に耐える耐久性(すなわち耐出力電圧低下)を確保できるものでもない。
特開平8-180883号公報 特開平10-228914 号公報 特開2000-277133 号公報 特開2000-239806 号公報 特開2000-294255 号公報 特開2000-265248 号公報 特開2000-294256 号公報
However, in these inventions, the components of the stainless steel are defined in a predetermined range and the passivation film is strengthened. Based on the idea of reducing the deterioration of the catalytic activity of the catalyst and suppressing the increase in the contact resistance with the electrode due to the corrosion products. Therefore, it is not intended to reduce the contact resistance of the stainless steel itself. Further, it is not possible to ensure the durability (that is, the reduction in output voltage) that can endure power generation for tens of thousands of hours.
JP-A-8-180883 JP 10-228914 A JP 2000-277133 A JP 2000-239806 A JP 2000-294255 A JP 2000-265248 A JP 2000-294256 A

本発明は、従来の技術が抱えている上記のような問題点に鑑み、耐食性が良好であると同時に、接触抵抗が小さい(すなわち電気伝導性に優れる)固体高分子型燃料電池セパレータ用ステンレス鋼、およびそれを用いた固体高分子型燃料電池を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and at the same time has good corrosion resistance and low contact resistance (that is, excellent electrical conductivity), a stainless steel for a polymer electrolyte fuel cell separator. And a polymer electrolyte fuel cell using the same.

すなわち本発明は、素材となるステンレス鋼の成分のみならず表面に存在する不働態皮膜の成分を所定の範囲に規定することにより、表面処理を施さなくても接触抵抗が小さく、発電効率が優れ、かつステンレス鋼自体の耐食性が高い固体高分子型燃料電池セパレータ用ステンレス鋼、およびそれを用いた固体高分子型燃料電池を提供することを目的とする。   That is, the present invention regulates not only the component of the stainless steel as a material but also the component of the passive film present on the surface within a predetermined range, so that the contact resistance is small even without surface treatment, and the power generation efficiency is excellent. Another object of the present invention is to provide a stainless steel for a polymer electrolyte fuel cell separator having high corrosion resistance of stainless steel itself, and a polymer electrolyte fuel cell using the same.

本発明者は、接触抵抗を低く抑えた上で、高い耐食性を発揮するためのステンレス鋼製セパレータについて、ステンレス鋼の成分,不働態皮膜の成分の観点から鋭意研究を行なった。その結果、Moを含有した高純度フェライト系ステンレス鋼を素材として、その表面に生成する不働態皮膜の成分を調整することによって接触抵抗が大幅に低減されることを見出した。   The present inventor has conducted intensive studies on a stainless steel separator for exhibiting high corrosion resistance while keeping the contact resistance low, from the viewpoint of the components of the stainless steel and the components of the passive film. As a result, they found that the contact resistance was significantly reduced by adjusting the composition of the passive film formed on the surface of a high-purity ferritic stainless steel containing Mo as a material.

まず本発明を想到するにいたった実験結果について説明する。   First, experimental results that led to the present invention will be described.

実験では、C: 0.004質量%,N: 0.007質量%,Si: 0.1質量%,Mn: 0.1質量%,Cr:30.5質量%,Mo:1.85質量%,P:0.03質量%,S: 0.005質量%を含有し、冷間圧延を施したフェライト系ステンレス鋼(板厚0.5mm )を素材とした。一部の素材には大気中で焼鈍( 950℃,2分間)を行なった後、湿式で 600番研磨を行なった。また、他の素材には、露点−60℃の75体積%H2 +25体積%N2 雰囲気中で焼鈍( 950℃,2分間)を行ない、いわゆるBA仕上げとした。さらに、硝酸を10質量%,塩酸を50質量%,ピクリン酸を1質量%含む酸性水溶液を用いて、これらの素材に種々の温度,時間でエッチング処理を行なった後、純水洗浄,冷風乾燥して、接触抵抗の測定に供した。 In the experiment, C: 0.004% by mass, N: 0.007% by mass, Si: 0.1% by mass, Mn: 0.1% by mass, Cr: 30.5% by mass, Mo: 1.85% by mass, P: 0.03% by mass, S: 0.005% by mass And a cold-rolled ferritic stainless steel (sheet thickness 0.5 mm). Some materials were annealed in air (950 ° C, 2 minutes), and then wet-polished # 600. The other materials were annealed (950 ° C., 2 minutes) in an atmosphere of 75% by volume H 2 + 25% by volume N 2 with a dew point of −60 ° C., so-called BA finishing. Furthermore, these materials are etched at various temperatures and times using an acidic aqueous solution containing 10% by mass of nitric acid, 50% by mass of hydrochloric acid, and 1% by mass of picric acid, followed by washing with pure water and drying with cold air. And used for measurement of contact resistance.

接触抵抗の測定は、同一条件でエッチング処理した試験片(50mm×50mm)を4枚準備して、図2に示すように2枚の試験片8を、その両側から同じ大きさの3枚のカーボンペーパ(東レ製 TGP-H-120)9で交互に挟み、さらに銅板に金めっきを施した電極10を接触させ、単位面積あたり 137.2N/cm2 (すなわち 14kgf/cm2 )の圧力をかけて試験片8間の抵抗を測定した。その測定値に接触面の面積を乗じ、さらに接触面の数(=2)で除した値を接触抵抗値とした。 For the measurement of the contact resistance, four test pieces (50 mm × 50 mm) etched under the same conditions were prepared, and as shown in FIG. It is sandwiched between carbon papers (TGP-H-120 made by Toray) 9 alternately, and the electrode 10 that is gold-plated on a copper plate is brought into contact with it, and a pressure of 137.2 N / cm 2 (ie, 14 kgf / cm 2 ) is applied per unit area. Then, the resistance between the test pieces 8 was measured. The value obtained by multiplying the measured value by the area of the contact surface and dividing by the number of contact surfaces (= 2) was defined as the contact resistance value.

なお接触抵抗値は、2枚1組の試験片8を交換しながら6回測定した測定値に基づいてそれぞれ算出し、その平均値を表1に示す。   Note that the contact resistance value was calculated based on the measurement values measured six times while exchanging a pair of test pieces 8, and the average value is shown in Table 1.

参考例として、表面に金めっき(厚さ約 0.1μm)を施したステンレス鋼板(厚さ0.3mm ,SUS304相当)およびグラファイト板(厚さ5mm)についても、同様の測定を行ない、接触抵抗値を算出した。その結果を表1に併せて示す。   As a reference example, the same measurement was performed on a stainless steel plate (thickness of about 0.3 mm, equivalent to SUS304) and a graphite plate (thickness of 5 mm) with gold plating (thickness of about 0.1 μm) on the surface. Calculated. The results are shown in Table 1.

またエッチング処理を施した後の不働体皮膜を光電子分光法によって測定し、ピーク分離法により不働体皮膜中(すなわち酸化状態)のFe,Cr,Alのスペクトル強度を算出し、このスペクトル強度からCr含有量,Fe含有量,Al含有量を求めた。さらにそのCr含有量,Fe含有量からCr,Feの原子数を算出してCr/Fe比を原子数の比で算出した。またCr含有量,Fe含有量,Al含有量からCr,Fe,Alの原子数を算出してAl/(Cr+Fe)比を原子数の比で算出した。その結果を表1に示す。   The passivation film after the etching treatment was measured by photoelectron spectroscopy, and the spectrum intensities of Fe, Cr, and Al in the passivation film (that is, in the oxidized state) were calculated by the peak separation method, and the Cr intensity was calculated from the spectrum intensity. The content, Fe content, and Al content were determined. Further, the number of Cr and Fe atoms was calculated from the Cr content and the Fe content, and the Cr / Fe ratio was calculated as the ratio of the number of atoms. The number of atoms of Cr, Fe, and Al was calculated from the Cr content, Fe content, and Al content, and the Al / (Cr + Fe) ratio was calculated as the ratio of the number of atoms. Table 1 shows the results.

不働態皮膜に含有されるO(酸素)のうち、金属酸化物の状態で存在する酸素(以下、O(M) という)と、金属水酸化物の状態で存在する酸素(以下、O(H) という)をピーク分離してそれぞれのスペクトル強度を算出し、O(M) とO(H) の原子数を算出してO(M) /O(H) 比を原子数の比で算出した。その結果を表1に示す。   Of the O (oxygen) contained in the passive film, oxygen existing in the form of a metal oxide (hereinafter referred to as O (M)) and oxygen existing in the state of a metal hydroxide (hereinafter referred to as O (H) )), The peak intensities are calculated, the respective spectral intensities are calculated, the number of O (M) and O (H) atoms is calculated, and the O (M) / O (H) ratio is calculated by the ratio of the number of atoms. . Table 1 shows the results.

Figure 2004149920
Figure 2004149920

表1から明らかなように、ステンレス鋼板をエッチング処理することによって接触抵抗値は低下する。特に、不働態皮膜のCr/Fe比が原子数比で1以上であれば、ステンレス鋼板の接触抵抗値は10mΩ・cm2 以下となる。またO(M) /O(H) 比が原子数比で 0.9以下では、接触抵抗値がさらに低減して8mΩ・cm2 以下となる。 As is clear from Table 1, the contact resistance value is reduced by etching the stainless steel plate. In particular, when the Cr / Fe ratio of the passivation film is 1 or more in terms of the atomic ratio, the contact resistance value of the stainless steel sheet is 10 mΩ · cm 2 or less. When the O (M) / O (H) ratio is 0.9 or less in atomic ratio, the contact resistance value is further reduced to 8 mΩ · cm 2 or less.

さらにBA仕上げとしたステンレス鋼では、不働態皮膜中にAlが含まれているが、エッチング処理によってAl含有量を低下させると、接触抵抗値も低下する。このとき、不働態皮膜を構成する主要な金属元素であるCr,Fe,Alのそれぞれの含有量から算出されるAl/(Cr+Fe)比が原子数比で0.05未満であれば、BA仕上げとしたステンレス鋼板の接触抵抗値は10mΩ・cm2 以下となる。 Further, in the stainless steel with the BA finish, Al is contained in the passive film, but when the Al content is reduced by the etching treatment, the contact resistance value also decreases. At this time, if the Al / (Cr + Fe) ratio calculated from the respective contents of Cr, Fe, and Al, which are the main metal elements constituting the passivation film, is less than 0.05 in terms of the atomic number ratio, a BA finish was adopted. The contact resistance value of the stainless steel sheet is 10 mΩ · cm 2 or less.

接触抵抗値が10mΩ・cm2 以下であれば、燃料電池の特性にほとんど悪影響を及ぼさない。 If the contact resistance value is 10 mΩ · cm 2 or less, there is almost no adverse effect on the characteristics of the fuel cell.

これまで耐食性の観点から不働態皮膜のCr/Fe比の影響が調査された例はあるが、この実験によって、不働態皮膜の成分を調整すれば接触抵抗値を大幅に低減できるという従来にない知見を得た。この知見に基づいて完成された本発明は下記の通りである。   There have been cases where the influence of the Cr / Fe ratio of the passive film has been investigated from the viewpoint of corrosion resistance, but this experiment has shown that contact resistance can be significantly reduced by adjusting the components of the passive film. Obtained knowledge. The present invention completed based on this finding is as follows.

1.Cを0.03質量%以下、Nを0.03質量%以下、Crを20〜45質量%、Moを 0.1〜5.0 質量%含有し、かつC含有量とN含有量の合計が0.03質量%以下を満足し、残部がFeおよび不可避的不純物からなる組成を有するステンレス鋼であって、かつ前記ステンレス鋼の表面の不働態皮膜に含有されるCr含有量とFe含有量から算出されるCr/Fe比が原子数比で1以上であることを特徴とする固体高分子型燃料電池セパレータ用ステンレス鋼。   1. Contains 0.03% by mass or less of C, 0.03% by mass or less of N, 20 to 45% by mass of Cr, 0.1 to 5.0% by mass of Mo, and satisfies 0.03% by mass or less of the total of C content and N content. The balance is a stainless steel having a composition consisting of Fe and unavoidable impurities, and a Cr / Fe ratio calculated from the Cr content and the Fe content contained in the passive film on the surface of the stainless steel is atomic. A stainless steel for a polymer electrolyte fuel cell separator, wherein the number ratio is 1 or more.

2.前記ステンレス鋼が、前記組成に加えて下記の (1)〜(4) の群から選ばれる1種以上を含有することを特徴とする上記1に記載の固体高分子型燃料電池セパレータ用ステンレス鋼。   2. The stainless steel for a polymer electrolyte fuel cell separator according to the above item 1, wherein the stainless steel contains, in addition to the composition, at least one selected from the group consisting of the following (1) to (4). .

(1) Si: 1.0質量%以下
(2) Mn: 1.0質量%以下
(3) Al: 0.001〜0.2 質量%以下
(4) TiまたはNbを0.01〜0.5 質量%、あるいはTiおよびNbを合計0.01〜0.5 質量%
3.前記不働態皮膜に含有される酸素のうち、金属酸化物の状態で存在する酸素:O(M) の含有量と、金属水酸化物の状態で存在する酸素:O(H) の含有量から算出されるO(M) /O(H) 比が、原子数比で 0.9以下であることを特徴とする上記1または2に記載の固体高分子型燃料電池セパレータ用ステンレス鋼。
(1) Si: 1.0 mass% or less
(2) Mn: 1.0 mass% or less
(3) Al: 0.001 to 0.2 mass% or less
(4) 0.01 to 0.5% by mass of Ti or Nb, or 0.01 to 0.5% by mass of Ti and Nb in total
3. Of the oxygen contained in the passive film, the content of oxygen: O (M) existing in the state of metal oxide and the content of oxygen: O (H) existing in the state of metal hydroxide 3. The stainless steel for a polymer electrolyte fuel cell separator according to the above item 1 or 2, wherein the calculated O (M) / O (H) ratio is 0.9 or less in atomic ratio.

4.前記不働態皮膜に含有されるAlの含有量,Crの含有量およびFeの含有量から算出されるAl/(Cr+Fe)比が、原子数比で 0.05未満であることを特徴とする上記1,2または3に記載の固体高分子型燃料電池セパレータ用ステンレス鋼。   4. The Al / (Cr + Fe) ratio calculated from the Al content, Cr content and Fe content contained in the passive film is less than 0.05 in atomic ratio, 4. Stainless steel for a polymer electrolyte fuel cell separator according to 2 or 3.

5.固体高分子膜、電極およびセパレータとからなる固体高分子型燃料電池であって、前記セパレータとして上記1〜4のいずれかに記載の固体高分子型燃料電池セパレータ用ステンレス鋼を用いることを特徴とする固体高分子型燃料電池。   5. A polymer electrolyte fuel cell comprising a polymer electrolyte membrane, an electrode, and a separator, wherein the separator is a polymer electrolyte fuel cell separator stainless steel according to any one of the above items 1 to 4. Polymer electrolyte fuel cell.

以上に説明したように本発明によれば、接触抵抗値が低く、かつ耐食性に優れた固体高分子型燃料電池セパレータ用ステンレス鋼が得られる。 したがって、従来は耐久性の問題から高価なグラファイト製セパレータを使用していた固体高分子型燃料電池に、安価なステンレス鋼製セパレータを提供することが可能となった。   As described above, according to the present invention, a stainless steel for a polymer electrolyte fuel cell separator having a low contact resistance value and excellent corrosion resistance can be obtained. Therefore, it has become possible to provide an inexpensive stainless steel separator to a polymer electrolyte fuel cell which conventionally used an expensive graphite separator due to durability issues.

なお、本発明は、固体高分子型燃料電池セパレータに限らず、電気伝導性を有するステレンス鋼製電気部品としても広く利用できる。   The present invention can be widely used not only as a polymer electrolyte fuel cell separator but also as an electrical component made of stainless steel having electrical conductivity.

まず、本発明に係るセパレータ用ステンレス鋼の成分の限定理由を説明する。   First, the reasons for limiting the components of the stainless steel for separator according to the present invention will be described.

C:0.03質量%以下,N:0.03質量%以下,C+N:0.03質量%以下
CおよびNは、ともにステンレス鋼中のCrと反応し、粒界にCr炭窒化物として析出するので、耐食性の低下をもたらす。したがってC,Nは、いずれも含有量が小さいほど好ましく、C:0.03質量%以下,N:0.03質量%以下であれば、耐食性を著しく低下させることはない。また、C含有量とN含有量の合計(以下、C+Nという)が0.03質量%を超えると、セパレータをプレス加工する際に生じる割れが著しく増加する。したがってC+Nは、0.03質量%以下とする。好ましくは、C: 0.015質量%以下,N: 0.015質量%以下,C+N:0.02質量%以下である。
C: 0.03% by mass or less, N: 0.03% by mass or less, C + N: 0.03% by mass or less Both C and N react with Cr in stainless steel and precipitate as Cr carbonitrides at grain boundaries, so that corrosion resistance decreases. Bring. Accordingly, the content of each of C and N is preferably as small as possible. If C: 0.03% by mass or less and N: 0.03% by mass or less, the corrosion resistance is not significantly reduced. If the sum of the C content and the N content (hereinafter, referred to as C + N) exceeds 0.03% by mass, cracks generated when the separator is pressed are significantly increased. Therefore, C + N is set to 0.03% by mass or less. Preferably, C: 0.015% by mass or less, N: 0.015% by mass or less, and C + N: 0.02% by mass or less.

Cr:20〜45質量%
Crは、ステンレス鋼板の耐食性を確保するために必要な元素であり、Cr含有量が20質量%未満では、セパレータとして長時間の使用に耐えられない。また、Cr含有量が20質量%未満では、不働態皮膜のCr/Fe比を1以上に調整して、接触抵抗値を10mΩ・cm2 以下とすることが困難である。一方、Cr含有量が45質量%を超えると、σ相の析出によって靭性が低下する。したがってCr含有量は、20〜45質量%とした。好ましくは22〜35質量%である。
Cr: 20 to 45 mass%
Cr is an element necessary for ensuring the corrosion resistance of the stainless steel sheet, and if the Cr content is less than 20% by mass, it cannot withstand long-term use as a separator. If the Cr content is less than 20% by mass, it is difficult to adjust the Cr / Fe ratio of the passivation film to 1 or more to make the contact resistance 10 mΩ · cm 2 or less. On the other hand, when the Cr content exceeds 45% by mass, toughness is reduced due to precipitation of the σ phase. Therefore, the Cr content was set to 20 to 45% by mass. Preferably it is 22 to 35% by mass.

Mo: 0.1〜5.0 質量%
Moは、ステンレス鋼板の耐隙間腐食性を改善するのに有効な元素である。この効果を発揮するためには、 0.1質量%以上含有させる必要がある。一方、 5.0質量%を超えて添加すると、ステンレス鋼が著しく脆化して生産が困難になる。したがってMo含有量は、 0.1〜5.0 質量%とした。好ましくは 0.5〜3.0 質量%である。
Mo: 0.1 to 5.0 mass%
Mo is an element effective for improving the crevice corrosion resistance of a stainless steel sheet. In order to exhibit this effect, the content needs to be 0.1% by mass or more. On the other hand, if it is added in excess of 5.0% by mass, the stainless steel becomes extremely brittle and production becomes difficult. Therefore, the Mo content was set to 0.1 to 5.0% by mass. Preferably it is 0.5 to 3.0% by mass.

本発明に係るセパレータ用ステンレス鋼は、上記した組成に加えて、次の成分についても含有量を規定することが望ましい。   In the stainless steel for separator according to the present invention, in addition to the above-described composition, it is desirable to define the contents of the following components.

Si: 1.0質量%以下
Siは、脱酸のために有効な元素であり、ステンレス鋼の溶製段階で添加される。しかし過度に含有させるとステンレス鋼板が硬質化し、しかも延性が低下する。したがってSi含有量の上限を 1.0質量%とするのが好ましい。さらに好ましくは0.01〜0.6 質量%である。
Si: 1.0 mass% or less
Si is an element effective for deoxidation, and is added during the smelting stage of stainless steel. However, if it is excessively contained, the stainless steel plate becomes hard and the ductility decreases. Therefore, the upper limit of the Si content is preferably set to 1.0% by mass. More preferably, it is 0.01 to 0.6% by mass.

Mn: 1.0質量%以下
Mnは、Sと結合し、ステンレス鋼に固溶したSを低減する効果を有するので、Sの粒界偏析を抑制し、熱間圧延時の割れを防止するのに有効な元素である。Mn含有量が 1.0質量%以下であれば、この効果を十分に発揮する。好ましくは 0.001〜0.8 質量%である。
Mn: 1.0 mass% or less
Mn is an element effective in suppressing the grain boundary segregation of S and preventing cracking during hot rolling, since Mn has an effect of reducing S dissolved in stainless steel by being combined with S. When the Mn content is 1.0% by mass or less, this effect is sufficiently exhibited. Preferably it is 0.001-0.8 mass%.

Al: 0.001〜0.2 質量%
Alは、製鋼工程における脱酸に有効な元素であり、その効果を得るためには 0.001質量%以上が必要である。一方、 0.2 質量%を超えて添加しても、その効果は飽和し、コストアップとなる。したがってAl含有量は、 0.001〜0.2 質量%とするのが好ましい。
Al: 0.001 to 0.2 mass%
Al is an element effective for deoxidation in the steelmaking process, and 0.001% by mass or more is required to obtain the effect. On the other hand, if it is added in excess of 0.2% by mass, the effect is saturated and the cost increases. Therefore, the Al content is preferably set to 0.001 to 0.2% by mass.

Tiを0.01〜0.5 質量%またはNbを0.01〜0.5 質量%,あるいはTiおよびNbを合計0.01〜0.5 質量%
TiおよびNbは、ステンレス鋼中のC,Nを炭窒化物として固定し、プレス成形性を改善するのに有効な元素である。C含有量とN含有量が上記した範囲を満足し、TiまたはNbを添加する場合は、Ti含有量が0.01質量%以上またはNb含有量が0.01質量%以上でその効果が発揮される。またTiおよびNbを添加する場合は、TiおよびNbを合計0.01質量%以上含有すると、その効果が発揮される。一方、TiまたはNbを添加する場合に、Ti含有量が 0.5質量%またはNb:含有量が 0.5質量%を超えると、その効果は飽和する。またTiおよびNbを添加する場合は、TiおよびNbが合計 0.5質量%を超えると、その効果は飽和する。したがってTiまたはNbを添加する場合は、Tiを0.01〜0.5 質量%またはNbを0.01〜0.5 質量%含有させ、TiおよびNbを添加する場合は、TiおよびNbを合計0.01〜0.5 質量%させるのが好ましい。
0.01 to 0.5% by mass of Ti or 0.01 to 0.5% by mass of Nb, or a total of 0.01 to 0.5% by mass of Ti and Nb
Ti and Nb are elements effective for fixing C and N in stainless steel as carbonitrides and improving press formability. When the C content and the N content satisfy the above ranges and Ti or Nb is added, the effect is exhibited when the Ti content is 0.01% by mass or more or the Nb content is 0.01% by mass or more. When Ti and Nb are added, the effect is exhibited when the total content of Ti and Nb is 0.01% by mass or more. On the other hand, when Ti or Nb is added, if the Ti content exceeds 0.5% by mass or the Nb: content exceeds 0.5% by mass, the effect is saturated. When Ti and Nb are added, the effect is saturated when the total content of Ti and Nb exceeds 0.5% by mass. Therefore, when adding Ti or Nb, it is preferable to contain 0.01 to 0.5% by mass of Ti or 0.01 to 0.5% by mass of Nb, and when adding Ti and Nb, it is preferable to add 0.01 to 0.5% by mass of Ti and Nb in total. preferable.

本発明では、セパレータの素材となるステンレス鋼板の熱間加工性を向上するために上記した元素の他に、Ca,Mg, REM(すなわち希土類元素),Bをそれぞれ 0.1質量%以下、 あるいはステンレス鋼板の靭性向上の目的でNi:1質量%以下を添加しても良い。また、接触抵抗値を低減するために、Ag:1質量%以下,Cu:5質量%以下を添加し、さらにAgを微細に分散させる目的でV: 0.5質量%以下を添加しても良い。   In the present invention, in order to improve the hot workability of the stainless steel sheet used as the material of the separator, in addition to the above-described elements, each of Ca, Mg, REM (that is, a rare earth element) and B is 0.1% by mass or less, or a stainless steel sheet. May be added for the purpose of improving the toughness of Ni. Further, in order to reduce the contact resistance value, Ag: 1% by mass or less, Cu: 5% by mass or less may be added, and V: 0.5% by mass or less may be added for the purpose of finely dispersing Ag.

その他の元素は、残部Feおよび不可避的不純物である。   Other elements are the balance Fe and inevitable impurities.

次に、本発明に係るセパレータ用ステンレス鋼が具備すべき特性について説明する。   Next, the characteristics that the stainless steel for separator according to the present invention should have will be described.

ステンレス鋼板表面の不働態皮膜のCr/Fe比:原子数比で1以上
不働態皮膜の成分は接触抵抗値を低減する上で重要な要因であり、接触抵抗値を低くするためには、不働態皮膜のCr含有量とFe含有量から算出されるCr/Fe比を高くする必要がある。前記した実験結果で説明した通り、 10mΩ・cm2 以下の接触抵抗値を得るためには、Cr/Fe比を原子数比で1以上とする必要がある。
Cr / Fe ratio of the passive film on the surface of the stainless steel sheet: 1 or more in terms of the atomic ratio The component of the passive film is an important factor in reducing the contact resistance value. It is necessary to increase the Cr / Fe ratio calculated from the Cr content and the Fe content of the active film. As described in the above experimental results, in order to obtain a contact resistance value of 10 mΩ · cm 2 or less, the Cr / Fe ratio needs to be 1 or more in atomic ratio.

ステンレス鋼板表面の不働態皮膜のO(M) /O(H) 比:原子数比で 0.9以下
不働態皮膜に含有されるO(酸素)の結合状態も、接触抵抗値を低減する上で重要な因子である。接触抵抗値を低減するためには、金属酸化物の状態で存在する酸素(すなわちO(M) )と金属水酸化物の状態で存在する酸素(すなわちO(H) )から算出されるO(M) /O(H) 比を低くするのが有効である。前記した実験結果で説明した通り、O(M) /O(H) 比を原子数比で 0.9以下とすれば、8mΩ・cm2 以下の接触抵抗値が得られる。
O (M) / O (H) ratio of passive film on stainless steel sheet surface: 0.9 or less in atomic ratio The bonding state of O (oxygen) contained in the passive film is also important in reducing the contact resistance Factor. In order to reduce the contact resistance value, O (O (M)) existing in the state of a metal oxide and O (H) calculated from the oxygen existing in the state of a metal hydroxide (ie, O (H)) are used. It is effective to lower the (M) / O (H) ratio. As described in the above experimental results, if the O (M) / O (H) ratio is 0.9 or less in atomic ratio, a contact resistance of 8 mΩ · cm 2 or less can be obtained.

ステンレス鋼板表面の不働態皮膜のAl/(Cr+Fe)比:原子数比で0.05未満
不働態皮膜にAl酸化物が含まれると、接触抵抗値が増加する。酸洗仕上げや研磨仕上げのステンレス鋼板に比べて、BA仕上げのステンレス鋼板では不働態皮膜に含まれるAlが多い。したがってBA仕上げのステンレス鋼板の接触抵抗値を低減するためには、不働態皮膜中のAl量を減少させる必要がある。前記した実験結果で説明した通り、不働態皮膜のCr含有量,Fe含有量,Al含有量から算出されるAl/(Cr+Fe)比を原子数比で0.05未満とすれば、BA仕上げのステンレス鋼板においても10mΩ・cm2 以下の接触抵抗値が得られる。
The Al / (Cr + Fe) ratio of the passive film on the surface of the stainless steel plate: the atomic number ratio is less than 0.05. When the passive film contains Al oxide, the contact resistance increases. Compared to the pickled or polished stainless steel plate, the passivation film contains more Al in the BA finished stainless steel plate. Therefore, in order to reduce the contact resistance value of the BA-finished stainless steel sheet, it is necessary to reduce the amount of Al in the passive film. As described in the above experimental results, if the Al / (Cr + Fe) ratio calculated from the Cr content, Fe content, and Al content of the passive film is less than 0.05 in atomic ratio, the BA-finished stainless steel sheet , A contact resistance value of 10 mΩ · cm 2 or less can be obtained.

このように不働態皮膜のCr含有量,Fe含有量,Al含有量およびO(酸素)の結合状態を調整するためには、酸を用いたエッチング,酸性水溶液への浸漬,電解エッチング等の手法を用いることができる。   In order to adjust the Cr content, Fe content, Al content and the bonding state of O (oxygen) of the passive film in this way, etching using an acid, immersion in an acidic aqueous solution, electrolytic etching, etc. Can be used.

このような不働態皮膜の組成の調整は、ステンレス鋼板をセパレータに加工する前に行なっても良いし、あるいはセパレータに加工した後で行なっても良い。ただし、Cr/Fe比,O(M) /O(H) 比,Al/(Cr+Fe)比を所定の範囲に安定して維持するためには、セパレータに加工した後で酸洗処理を行なうのが好ましい。   Such adjustment of the composition of the passive film may be performed before processing the stainless steel plate into the separator, or may be performed after processing the stainless steel plate into the separator. However, in order to stably maintain the Cr / Fe ratio, O (M) / O (H) ratio, and Al / (Cr + Fe) ratio within predetermined ranges, it is necessary to perform pickling after processing into a separator. Is preferred.

このようにして作製したステンレス鋼製セパレータを用いて固体高分子型燃料電池を製造すると、接触抵抗値が低く、発電効率が優れ、かつ耐食性が高い固体高分子型燃料電池が製造できる。   When a polymer electrolyte fuel cell is manufactured using the stainless steel separator thus manufactured, a polymer electrolyte fuel cell having low contact resistance, excellent power generation efficiency, and high corrosion resistance can be manufactured.

〔実施例1〕
転炉および強攪拌真空酸素脱炭処理法(SS−VOD)によって表2に示す成分のステンレス鋼を溶製し、さらに連続鋳造法によって厚さ200mm のスラブとした。このスラブを1250℃に加熱した後、熱間圧延によって厚さ4mmの熱延ステンレス鋼板とし、さらに焼鈍( 850〜1100℃)および酸洗処理を施した。次いで、冷間圧延によって厚さ0.3mm とし、さらに焼鈍( 850〜1100℃)および酸洗処理の後、調質圧延を行ない、いわゆる2B仕上げの冷延ステンレス鋼板とした。
[Example 1]
A stainless steel having the components shown in Table 2 was melted by a converter and a strong stirring vacuum oxygen decarburization method (SS-VOD), and a slab having a thickness of 200 mm was formed by a continuous casting method. After heating this slab to 1250 ° C, a hot-rolled stainless steel sheet having a thickness of 4 mm was formed by hot rolling, and further subjected to annealing (850 to 1100 ° C) and pickling. Next, the thickness was reduced to 0.3 mm by cold rolling. After annealing (850 to 1100 ° C.) and pickling, temper rolling was performed to obtain a cold-rolled stainless steel sheet having a so-called 2B finish.

Figure 2004149920
Figure 2004149920

得られた冷延ステンレス鋼板の板幅方向中央部かつ長手方向中央部から 200mm×200mm の試験片を4枚ずつ切り出した。鋼番号1〜9の冷延ステンレス鋼板から各々切り出した4枚の試験片にプレス加工を施して、所定の形状を有するセパレータとした。その後、各鋼番号毎に一部のセパレータに不働態皮膜の組成調整処理を施してCr/Fe比を調整した。ここで不働態皮膜の組成調整処理を行なう際には、A:硝酸を10質量%と塩酸を50質量%とピクリン酸を1質量%含む溶液(50℃,120 秒)あるいはB:硝酸を5質量%とフッ酸を20質量%含む溶液(50℃,300秒)を用いた。   Four 200 mm × 200 mm test pieces were cut out from the center of the obtained cold rolled stainless steel sheet in the width direction center and the center in the length direction. Four test pieces cut out from cold-rolled stainless steel sheets of steel numbers 1 to 9 were each subjected to press working to obtain a separator having a predetermined shape. Then, for each steel number, the composition of the passive film was adjusted on some of the separators to adjust the Cr / Fe ratio. Here, when performing the composition adjustment treatment of the passive film, A: a solution containing 10% by mass of nitric acid, 50% by mass of hydrochloric acid and 1% by mass of picric acid (50 ° C., 120 seconds) or B: 5% of nitric acid A solution containing 50% by mass and 20% by mass of hydrofluoric acid (50 ° C., 300 seconds) was used.

また、不働態皮膜の組成調整処理を行なわなかった場合はプレス加工後に、不働態皮膜のCr含有量,Fe含有量,Al含有量,金属酸化物として存在するO含有量,金属水酸化物として存在するO含有量を測定し、さらに各元素の原子数を算出した上で、Cr/Fe比,O(M) /O(H) 比,Al/(Cr+Fe)比を算出した。不働態皮膜の組成調整処理を行なった場合はプレス加工後さらに、不働態皮膜の組成調整処理を施した後に、不働態皮膜のCr含有量,Fe含有量,Al含有量,金属酸化物として存在するO含有量,金属水酸化物として存在するO含有量を測定し、さらに各元素の原子数を算出した上で、Cr/Fe比,O(M) /O(H) 比,Al/(Cr+Fe)比を算出した。なお、それぞれの元素の含有量は、光電子分光法を用いてスペクトル強度をピーク分離して求めた。   If the passivation film composition was not adjusted, the Cr content, the Fe content, the Al content, the O content existing as metal oxide, and the metal hydroxide of the passivation film after pressing. The O content was measured, and the number of atoms of each element was calculated. Then, the Cr / Fe ratio, the O (M) / O (H) ratio, and the Al / (Cr + Fe) ratio were calculated. In the case of passivation film composition adjustment processing, after press working, after further passivation film composition adjustment processing, it is present as the Cr content, Fe content, Al content, and metal oxide of the passive film. After measuring the O content, the O content existing as a metal hydroxide, and calculating the number of atoms of each element, the Cr / Fe ratio, the O (M) / O (H) ratio, and the Al / ( Cr + Fe) ratio was calculated. The content of each element was determined by separating the peaks of the spectral intensity using photoelectron spectroscopy.

こうして不働態皮膜の組成調整処理を行なったセパレータと処理を行なわなかったセパレータを用いて、それぞれ発電特性を調査した。発電特性の評価のために、高分子膜と電極、さらにガス拡散層2,3が一体化された有効面積50cm2 の膜−電極接合体1(エレクトロケム社製 FC50-MEA )を用いて、図1に示す形状の単セルを作成した。単セルの空気流路6と水素流路7は、いずれも高さ1mm,幅2mmの矩形とし、全体で17列配置した。カソード側には空気を流し、アノード側には超高純度水素(純度 99.9999体積%)を80±1℃に保持したバブラにより加湿した後供給して、電流密度 0.4A/cm2 (条件1)および0.7A/cm2(条件2)の出力電圧を測定した。 The power generation characteristics of each of the separator subjected to the composition adjustment treatment of the passive film and the separator not subjected to the treatment were examined. In order to evaluate the power generation characteristics, using a membrane-electrode assembly 1 (FC50-MEA manufactured by Electrochem) having an effective area of 50 cm 2 in which the polymer membrane, the electrodes, and the gas diffusion layers 2 and 3 were integrated, A single cell having the shape shown in FIG. 1 was prepared. The air flow path 6 and the hydrogen flow path 7 of the single cell were each a rectangle having a height of 1 mm and a width of 2 mm, and were arranged in 17 rows in total. Air is supplied to the cathode side, and ultrapure hydrogen (purity 99.9999% by volume) is supplied to the anode side after being humidified by a bubbler maintained at 80 ± 1 ° C., and the current density is 0.4 A / cm 2 (condition 1). An output voltage of 0.7 A / cm 2 (condition 2) was measured.

また電流密度0.4A/cm2の条件で2000時間にわたって連続して稼動させた後、条件1および条件2の出力電圧を測定した。この単セルの発電実験の期間中は、単セル本体の温度は80±1℃に保持した。また膜−電極接合体1,カーボンペーパ9等は試験片を替えるたびに新品に取り替えた。 After operating continuously for 2000 hours under the condition of a current density of 0.4 A / cm 2 , the output voltages under the conditions 1 and 2 were measured. During the power generation experiment of the single cell, the temperature of the single cell body was kept at 80 ± 1 ° C. The membrane-electrode assembly 1, carbon paper 9, etc. were replaced with new ones each time the test piece was replaced.

参考例として、ステンレス鋼板(SUS304相当)を上記の鋼番号1〜9と同様の形状に加工した後、表面に金めっき(厚さ約 0.1μm)を施したセパレータ、および厚さ3mmのグラファイト板の片面に幅2mm,高さ1mmの溝を2mm間隔で17列配置したセパレータを用いて、電流密度 0.4A/cm2 および0.7A/cm2の出力電圧を測定した。出力電圧の測定方法は、上記の鋼番号1〜9と同じである。 As a reference example, a stainless steel plate (equivalent to SUS304) was processed into the same shape as the above steel Nos. 1 to 9, and then the surface was plated with gold (about 0.1 μm thick), and a 3 mm thick graphite plate The output voltage at a current density of 0.4 A / cm 2 and 0.7 A / cm 2 was measured using a separator in which 17 rows of grooves having a width of 2 mm and a height of 1 mm were arranged on one side of the substrate at intervals of 2 mm. The method of measuring the output voltage is the same as that of the steel numbers 1 to 9 described above.

その結果を表3に示す。   Table 3 shows the results.

Figure 2004149920
Figure 2004149920

表3から明らかなように、本発明の成分範囲を満足するステンレス鋼(すなわち鋼番号3〜6および9)にAまたはBの液を用いて処理を行ない、不働態皮膜の成分を調整しCr/Fe比を1以上としたセパレータを用いた単セルは、初期の出力電圧および2000時間経過後の出力電圧ともに、金めっきを施したセパレータやグラファイト板のセパレータと同等の出力電圧が得られ、十分に実用に耐え得るレベルであった。   As is clear from Table 3, the stainless steel satisfying the component range of the present invention (that is, steel Nos. 3 to 6 and 9) was treated with the solution of A or B to adjust the components of the passivation film to adjust the Cr content. A single cell using a separator with a / Fe ratio of 1 or more can obtain an output voltage equivalent to that of a gold-plated separator or a graphite plate separator, both in the initial output voltage and in the output voltage after 2,000 hours. The level was sufficiently practical.

さらに、O(M) /O(H) 比が 0.9以下のセパレータを用いた単セルは、性能が一層向上し、初期の出力電圧および2000時間経過後の出力電圧ともに、金めっきを施したセパレータやグラファイト板のセパレータと同等の出力電圧が得られた。   In addition, a single cell using a separator having an O (M) / O (H) ratio of 0.9 or less has further improved performance. Both the initial output voltage and the output voltage after 2,000 hours have passed, the gold-plated separator has been used. And an output voltage equivalent to that of a graphite plate separator.

一方、 本発明の成分範囲を外れるステンレス鋼(すなわち鋼番号1,2,7,8)では、不働態皮膜の組成調整処理の有無に関わらず、初期の出力電圧および2000時間経過後の出力電圧は、いずれも金めっきを施したセパレータやグラファイト板のセパレータに比べて低下した。   On the other hand, in the case of the stainless steels (ie, steel numbers 1, 2, 7, and 8) out of the component range of the present invention, the initial output voltage and the output voltage after 2,000 hours have passed regardless of the presence or absence of the passivation film composition adjustment treatment. Decreased in comparison with gold-plated separators and graphite plate separators.

また、本発明の成分範囲を満足するステンレス鋼(すなわち鋼番号3〜6および9)であっても不働態皮膜の組成調整処理を行なわなかった場合、不働態皮膜のCr/Fe比が低く、初期の出力電圧は、金めっきを施したセパレータやグラファイト板のセパレータに比べて低下した。   Further, even if stainless steel satisfying the component range of the present invention (that is, steel numbers 3 to 6 and 9) is not subjected to the passivation film composition adjustment treatment, the passive film has a low Cr / Fe ratio, The initial output voltage was lower than that of a gold-plated separator or a graphite plate separator.

〔実施例2〕
実施例1で用いた熱延ステンレス鋼板を、冷間圧延によって厚さ0.2mm とし、さらに露点−60℃のアンモニア分解ガス中で焼鈍( 850〜1050℃)を施し、いわゆるBA仕上げの冷延ステンレス鋼板とした。
[Example 2]
The hot-rolled stainless steel sheet used in Example 1 was cold-rolled to a thickness of 0.2 mm, and further annealed (850-1050 ° C.) in ammonia decomposition gas having a dew point of −60 ° C., so-called BA-finished cold-rolled stainless steel sheet. A steel plate was used.

得られた冷延ステンレス鋼板から、実施例1と同じ方法で試験片を採取し、所定の形状を有するセパレータとした。さらに、このセパレータの不働態皮膜のCr/Fe比,O(M) /O(H) 比,Al/(Cr+Fe)比を算出した。なお、セパレータの形状や成形方法,不働態皮膜の組成調整処理,各元素の含有量の測定方法は実施例1と同じであるから説明を省略する。   From the obtained cold-rolled stainless steel sheet, a test piece was collected in the same manner as in Example 1 to obtain a separator having a predetermined shape. Further, the Cr / Fe ratio, O (M) / O (H) ratio and Al / (Cr + Fe) ratio of the passive film of this separator were calculated. The shape and forming method of the separator, the process for adjusting the composition of the passive film, and the method for measuring the content of each element are the same as those in Example 1, and therefore description thereof is omitted.

さらに実施例1と同様に、セパレータの発電特性を調査した。それらの結果を表4に示す。   Further, similarly to Example 1, the power generation characteristics of the separator were examined. Table 4 shows the results.

Figure 2004149920
Figure 2004149920

表4から明らかなように、BA仕上げとしたステンレス鋼板においても、本発明の成分範囲を満足するステンレス鋼(すなわち鋼番号3〜6および9)にAまたはBの液を用いて処理を行ない、不働態皮膜の成分を調整しCr/Fe比を1以上としたセパレータを用いた単セルは、初期の出力電圧および2000時間経過後の出力電圧ともに、金めっきを施したセパレータやグラファイト板のセパレータと同等の出力電圧が得られ、十分に実用に耐え得るレベルであった。   As is clear from Table 4, even in the stainless steel plate with the BA finish, the stainless steel satisfying the component range of the present invention (that is, steel numbers 3 to 6 and 9) is treated with the liquid A or B, A single cell using a separator with the composition of the passive film adjusted to have a Cr / Fe ratio of 1 or more can be used for both the initial output voltage and the output voltage after lapse of 2,000 hours. An output voltage equivalent to that obtained was obtained, which was a level that could sufficiently withstand practical use.

O(M)/O(H)比が0.9以下のセパレータ、またはさらに、Al/(Cr+Fe)比が0.05未満のセパレータを用いた単セルは、性能が一層向上し、初期の出力電圧および2000時間経過後の出力電圧ともに、金めっきを施したセパレータやグラファイト板のセパレータと同等の出力電圧が得られた。   A single cell using a separator having an O (M) / O (H) ratio of 0.9 or less, or a separator having an Al / (Cr + Fe) ratio of less than 0.05 has further improved performance, an initial output voltage and 2,000 hours. With respect to the output voltage after the lapse of time, an output voltage equivalent to that of a gold-plated separator or a graphite plate separator was obtained.

一方、 本発明の成分範囲を外れるステンレス鋼(すなわち鋼番号1,2,7,8)では、不働態皮膜の組成調整処理の有無に関わらず、初期の出力電圧および2000時間経過後の出力電圧は、いずれも金めっきを施したセパレータやグラファイト板のセパレータに比べて低下した。   On the other hand, in the case of the stainless steels (ie, steel numbers 1, 2, 7, and 8) out of the component range of the present invention, the initial output voltage and the output voltage after 2,000 hours have passed regardless of the presence or absence of the passivation film composition adjustment treatment. Decreased in comparison with gold-plated separators and graphite plate separators.

固体高分子型燃料電池の例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically illustrating an example of a polymer electrolyte fuel cell. 接触抵抗の測定に用いた試料を模式的に示す断面図である。It is sectional drawing which shows typically the sample used for the measurement of contact resistance.

符号の説明Explanation of reference numerals

1 膜−電極接合体
2 ガス拡散層
3 ガス拡散層
4 セパレータ
5 セパレータ
6 空気流路
7 水素流路
8 試験片
9 カーボンペーパ
10 電極
DESCRIPTION OF SYMBOLS 1 Membrane-electrode assembly 2 Gas diffusion layer 3 Gas diffusion layer 4 Separator 5 Separator 6 Air flow path 7 Hydrogen flow path 8 Test piece 9 Carbon paper
10 electrodes

Claims (5)

Cを0.03質量%以下、Nを0.03質量%以下、Crを20〜45質量%、Moを 0.1〜5.0 質量%含有し、かつC含有量とN含有量の合計が0.03質量%以下を満足し、残部がFeおよび不可避的不純物からなる組成を有するステンレス鋼であって、かつ前記ステンレス鋼の表面の不働態皮膜に含有されるCr含有量とFe含有量から算出されるCr/Fe比が原子数比で1以上であることを特徴とする固体高分子型燃料電池セパレータ用ステンレス鋼。   Contains 0.03% by mass or less of C, 0.03% by mass or less of N, 20 to 45% by mass of Cr, 0.1 to 5.0% by mass of Mo, and satisfies 0.03% by mass or less of the total of C content and N content. The balance is a stainless steel having a composition consisting of Fe and unavoidable impurities, and a Cr / Fe ratio calculated from the Cr content and the Fe content contained in the passive film on the surface of the stainless steel is atomic. A stainless steel for a polymer electrolyte fuel cell separator, wherein the number ratio is 1 or more. 前記ステンレス鋼が、前記組成に加えて下記の (1)〜(4) の群から選ばれる1種以上を含有することを特徴とする請求項1に記載の固体高分子型燃料電池セパレータ用ステンレス鋼。
(1) Si: 1.0質量%以下
(2) Mn: 1.0質量%以下
(3) Al: 0.001〜0.2 質量%以下
(4) TiまたはNbを0.01〜0.5 質量%、あるいはTiおよびNbを合計0.01〜0.5 質量%
The stainless steel for a polymer electrolyte fuel cell separator according to claim 1, wherein the stainless steel contains, in addition to the composition, at least one selected from the following groups (1) to (4). steel.
(1) Si: 1.0 mass% or less
(2) Mn: 1.0 mass% or less
(3) Al: 0.001 to 0.2 mass% or less
(4) 0.01 to 0.5% by mass of Ti or Nb, or 0.01 to 0.5% by mass of Ti and Nb in total
前記不働態皮膜に含有される酸素のうち、金属酸化物の状態で存在する酸素:O(M) の含有量と、金属水酸化物の状態で存在する酸素:O(H) の含有量から算出されるO(M) /O(H) 比が、原子数比で 0.9以下であることを特徴とする請求項1または2に記載の固体高分子型燃料電池セパレータ用ステンレス鋼。   Of the oxygen contained in the passive film, the content of oxygen: O (M) existing in the state of metal oxide and the content of oxygen: O (H) existing in the state of metal hydroxide The stainless steel for a polymer electrolyte fuel cell separator according to claim 1 or 2, wherein the calculated O (M) / O (H) ratio is 0.9 or less in terms of atomic ratio. 前記不働態皮膜に含有されるAlの含有量、Crの含有量およびFeの含有量から算出されるAl/(Cr+Fe)比が、原子数比で0.05未満であることを特徴とする請求項1、2または3に記載の固体高分子型燃料電池セパレータ用ステンレス鋼。   2. The Al / (Cr + Fe) ratio calculated from the Al content, Cr content and Fe content contained in the passive film is less than 0.05 in atomic ratio. 4. The stainless steel for a polymer electrolyte fuel cell separator according to 2 or 3. 固体高分子膜、電極およびセパレータとからなる固体高分子型燃料電池であって、前記セパレータとして請求項1〜4のいずれかに記載の固体高分子型燃料電池セパレータ用ステンレス鋼を用いることを特徴とする固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising a polymer electrolyte membrane, an electrode, and a separator, wherein the separator comprises the stainless steel for a polymer electrolyte fuel cell separator according to any one of claims 1 to 4. Polymer electrolyte fuel cell.
JP2003348772A 2002-10-07 2003-10-07 Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the stainless steel Expired - Lifetime JP4496750B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003348772A JP4496750B2 (en) 2002-10-07 2003-10-07 Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the stainless steel
CA002503030A CA2503030C (en) 2003-10-07 2004-06-09 Stainless steel for proton-exchange membrane fuel cell separator and proton-exchange membrane fuel cell using the same
PCT/JP2004/008401 WO2005035816A1 (en) 2003-10-07 2004-06-09 Stainless steel for solid polymer fuel cell separator and solid polymer type fuel cell using the stainless steel
US10/533,609 US8900379B2 (en) 2003-10-07 2004-06-09 Stainless steel for solid polymer fuel cell separator and solid polymer typefuel cell using the stainless steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002293710 2002-10-07
JP2003348772A JP4496750B2 (en) 2002-10-07 2003-10-07 Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the stainless steel

Publications (2)

Publication Number Publication Date
JP2004149920A true JP2004149920A (en) 2004-05-27
JP4496750B2 JP4496750B2 (en) 2010-07-07

Family

ID=32473479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348772A Expired - Lifetime JP4496750B2 (en) 2002-10-07 2003-10-07 Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the stainless steel

Country Status (1)

Country Link
JP (1) JP4496750B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254794A (en) * 2006-03-22 2007-10-04 Jfe Steel Kk Solid polymer type fuel cell and stainless steel suitable for its separator
JP2008303436A (en) * 2007-06-08 2008-12-18 Jfe Steel Kk Ferritic stainless steel for separator of solid high polymer type fuel cell, and solid high polymer type fuel cell using the same
JP2009167486A (en) * 2008-01-18 2009-07-30 Nisshin Steel Co Ltd Ferritic stainless steel for battery component member
JP2010106305A (en) * 2008-10-29 2010-05-13 Nisshin Steel Co Ltd Stainless steel for cell composing member and method for producing the same
WO2010077065A2 (en) * 2008-12-29 2010-07-08 주식회사 포스코 Stainless steel for polymer fuel cell separator and method for preparing same
JP2010205443A (en) * 2009-02-27 2010-09-16 Jfe Steel Corp Stainless steel for solid polymer fuel cell separator having little amount of ion elution and solid polymer fuel cell
WO2012046879A1 (en) 2010-10-08 2012-04-12 Jfeスチール株式会社 Ferritic stainless steel having excellent corrosion resistance and electrical conductivity, method for producing same, solid polymer fuel cell separator, and solid polymer fuel cell
JP2013065562A (en) * 2007-04-18 2013-04-11 Hyundai Hysco Stainless steel separator for fuel cell and manufacturing method thereof
JP2013093299A (en) * 2011-01-17 2013-05-16 Jfe Steel Corp Method for manufacturing stainless steel for fuel battery separators, stainless steel for fuel battery separators, fuel battery separator, and fuel battery
US8574780B2 (en) 2007-08-03 2013-11-05 Honda Motor Co., Ltd Fuel cell separator with chromium rich surface layer and method of producing the fuel cell separator
JP2014192012A (en) * 2013-03-27 2014-10-06 Nisshin Steel Co Ltd Stainless steel sheet having low contact resistance
WO2017052047A1 (en) * 2015-09-22 2017-03-30 주식회사 포스코 Stainless steel for fuel cell separator plate and manufacturing method therefor
WO2017212906A1 (en) * 2016-06-10 2017-12-14 Jfeスチール株式会社 Stainless steel sheet for fuel cell separators, and production method therefor
WO2017212905A1 (en) * 2016-06-10 2017-12-14 Jfeスチール株式会社 Stainless steel sheet for fuel cell separators, and production method therefor
WO2018117469A1 (en) 2016-12-22 2018-06-28 주식회사 포스코 Stainless steel for polymer fuel cell separation plate, having excellent contact resistance, and manufacturing method therefor
WO2021125533A1 (en) 2019-12-19 2021-06-24 주식회사 포스코 Stainless steel having excellent surface electrical conductivity for fuel cell separator and method for manufacturing same
WO2021125531A1 (en) 2019-12-19 2021-06-24 주식회사 포스코 Stainless steel having excellent surface electrical conductivity for fuel cell separator and manufacturing method therefor
WO2021125532A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Stainless steel for fuel cell separator having excellent surface electrical conductivity and manufacturing method therefor
KR20220071946A (en) 2020-11-24 2022-05-31 주식회사 포스코 Stainless steel for fuel cell separator with excellent through-plane surface electrical conductivity and hydrophilicity, and manufacturing method thereof
KR20220081280A (en) 2020-12-08 2022-06-15 주식회사 포스코 Stainless steel for fuel cell separator with excellent through-plane surface electrical conductivity and corrosion resistance, and manufacturing method thereof
WO2022124788A1 (en) * 2020-12-08 2022-06-16 주식회사 포스코 Stainless steel for fuel cell separator having excellent through-plane electrical conductivity and corrosion resistance and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157801A (en) * 1995-10-05 1997-06-17 Hitachi Metals Ltd Steel for separator of solid electrolytic fuel cell
JP2000294256A (en) * 1999-04-09 2000-10-20 Sumitomo Metal Ind Ltd Solid high polymer fuel cell
WO2002038828A1 (en) * 2000-11-10 2002-05-16 Honda Giken Kogyo Kabushiki Kaisha Method of surface treatment for stainless steel product for fuel cell
JP2002270196A (en) * 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd High molecular electrolyte type fuel cell and operating method thereof
JP2003223904A (en) * 2001-02-22 2003-08-08 Jfe Steel Kk Separator for fuel cell, its manufacturing method, and polymer electrolyte fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157801A (en) * 1995-10-05 1997-06-17 Hitachi Metals Ltd Steel for separator of solid electrolytic fuel cell
JP2000294256A (en) * 1999-04-09 2000-10-20 Sumitomo Metal Ind Ltd Solid high polymer fuel cell
WO2002038828A1 (en) * 2000-11-10 2002-05-16 Honda Giken Kogyo Kabushiki Kaisha Method of surface treatment for stainless steel product for fuel cell
JP2003223904A (en) * 2001-02-22 2003-08-08 Jfe Steel Kk Separator for fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2002270196A (en) * 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd High molecular electrolyte type fuel cell and operating method thereof

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254794A (en) * 2006-03-22 2007-10-04 Jfe Steel Kk Solid polymer type fuel cell and stainless steel suitable for its separator
JP2013065562A (en) * 2007-04-18 2013-04-11 Hyundai Hysco Stainless steel separator for fuel cell and manufacturing method thereof
JP2008303436A (en) * 2007-06-08 2008-12-18 Jfe Steel Kk Ferritic stainless steel for separator of solid high polymer type fuel cell, and solid high polymer type fuel cell using the same
US8574780B2 (en) 2007-08-03 2013-11-05 Honda Motor Co., Ltd Fuel cell separator with chromium rich surface layer and method of producing the fuel cell separator
JP2009167486A (en) * 2008-01-18 2009-07-30 Nisshin Steel Co Ltd Ferritic stainless steel for battery component member
JP2010106305A (en) * 2008-10-29 2010-05-13 Nisshin Steel Co Ltd Stainless steel for cell composing member and method for producing the same
WO2010077065A2 (en) * 2008-12-29 2010-07-08 주식회사 포스코 Stainless steel for polymer fuel cell separator and method for preparing same
WO2010077065A3 (en) * 2008-12-29 2010-10-07 주식회사 포스코 Stainless steel for polymer fuel cell separator and method for preparing same
US11047029B2 (en) 2008-12-29 2021-06-29 Posco Stainless steel for polymer fuel cell separator and method for preparing same
DE112009004330T5 (en) 2008-12-29 2012-07-05 Posco Stainless steel for a polymer electrolyte membrane fuel cell separator and method of making the same
US9290845B2 (en) 2008-12-29 2016-03-22 Posco Stainless steel for polymer fuel cell separator and method for preparing same
JP2010205443A (en) * 2009-02-27 2010-09-16 Jfe Steel Corp Stainless steel for solid polymer fuel cell separator having little amount of ion elution and solid polymer fuel cell
US9587297B2 (en) 2010-10-08 2017-03-07 Jfe Steel Corporation Ferritic stainless steel excellent in corrosion resistance and conductivity and method for manufacturing the same, separator of proton-exchange membrane fuel cell and proton-exchange membrane fuel cell
CN103154292A (en) * 2010-10-08 2013-06-12 杰富意钢铁株式会社 Ferritic stainless steel having excellent corrosion resistance and conductivity and method of the same, separator of proton-exchange membrane fuel cell and proton-exchange membrane fuel cell
KR101558276B1 (en) * 2010-10-08 2015-10-07 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel excellent in corrosion resistance and conductivity and method for manufacturing the same, separator of proton-exchange membrane fuel cell and proton-exchange membrane fuel cell
CN103154292B (en) * 2010-10-08 2016-01-20 杰富意钢铁株式会社 The ferrite-group stainless steel of erosion resistance and excellent electric conductivity and manufacture method, polymer electrolyte fuel cell dividing plate and polymer electrolyte fuel cell
JP2012097352A (en) * 2010-10-08 2012-05-24 Jfe Steel Corp Ferritic stainless steel having excellent corrosion resistance and electrical conductivity, method for producing same, solid polymer fuel cell separator, and solid polymer fuel cell
WO2012046879A1 (en) 2010-10-08 2012-04-12 Jfeスチール株式会社 Ferritic stainless steel having excellent corrosion resistance and electrical conductivity, method for producing same, solid polymer fuel cell separator, and solid polymer fuel cell
JP2013093299A (en) * 2011-01-17 2013-05-16 Jfe Steel Corp Method for manufacturing stainless steel for fuel battery separators, stainless steel for fuel battery separators, fuel battery separator, and fuel battery
JP2014192012A (en) * 2013-03-27 2014-10-06 Nisshin Steel Co Ltd Stainless steel sheet having low contact resistance
WO2017052047A1 (en) * 2015-09-22 2017-03-30 주식회사 포스코 Stainless steel for fuel cell separator plate and manufacturing method therefor
US11923580B2 (en) 2015-09-22 2024-03-05 Posco Co., Ltd Stainless steel for fuel cell separator plate and manufacturing method therefor
US10763517B2 (en) 2016-06-10 2020-09-01 Jfe Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
JP6323623B1 (en) * 2016-06-10 2018-05-16 Jfeスチール株式会社 Stainless steel plate for fuel cell separator and method for producing the same
JP6323624B1 (en) * 2016-06-10 2018-05-16 Jfeスチール株式会社 Stainless steel plate for fuel cell separator and method for producing the same
US10930940B2 (en) 2016-06-10 2021-02-23 Jfe Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
WO2017212906A1 (en) * 2016-06-10 2017-12-14 Jfeスチール株式会社 Stainless steel sheet for fuel cell separators, and production method therefor
WO2017212905A1 (en) * 2016-06-10 2017-12-14 Jfeスチール株式会社 Stainless steel sheet for fuel cell separators, and production method therefor
WO2018117469A1 (en) 2016-12-22 2018-06-28 주식회사 포스코 Stainless steel for polymer fuel cell separation plate, having excellent contact resistance, and manufacturing method therefor
WO2021125532A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Stainless steel for fuel cell separator having excellent surface electrical conductivity and manufacturing method therefor
WO2021125531A1 (en) 2019-12-19 2021-06-24 주식회사 포스코 Stainless steel having excellent surface electrical conductivity for fuel cell separator and manufacturing method therefor
WO2021125533A1 (en) 2019-12-19 2021-06-24 주식회사 포스코 Stainless steel having excellent surface electrical conductivity for fuel cell separator and method for manufacturing same
KR20220071946A (en) 2020-11-24 2022-05-31 주식회사 포스코 Stainless steel for fuel cell separator with excellent through-plane surface electrical conductivity and hydrophilicity, and manufacturing method thereof
KR20220071947A (en) 2020-11-24 2022-05-31 주식회사 포스코 Stainless steel for fuel cell separator with excellent surface through-plane electrical conductivity and manufacturing method thereof
WO2022114671A1 (en) 2020-11-24 2022-06-02 주식회사 포스코 Stainless steel for fuel cell separator with excellent surface hydrophilicity and electrical conductivity, and manufacturing method thereof
KR20220081280A (en) 2020-12-08 2022-06-15 주식회사 포스코 Stainless steel for fuel cell separator with excellent through-plane surface electrical conductivity and corrosion resistance, and manufacturing method thereof
WO2022124788A1 (en) * 2020-12-08 2022-06-16 주식회사 포스코 Stainless steel for fuel cell separator having excellent through-plane electrical conductivity and corrosion resistance and method for manufacturing same

Also Published As

Publication number Publication date
JP4496750B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US6835487B2 (en) Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
JP4496750B2 (en) Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the stainless steel
JP5434807B2 (en) Method for adjusting surface roughness of stainless steel for polymer electrolyte fuel cell
US8440029B2 (en) Stainless steel having good conductivity and ductility for use in fuel cell and method for producing the same
KR100858572B1 (en) Metal material for fuel cell, fuel cell using the same and method for producing the material
KR20130121930A (en) Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
JP2003223904A (en) Separator for fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2012177157A (en) Stainless steel for solid polymer type fuel cell separator and method for producing the same
JP2006233282A (en) Stainless steel for energizing electric parts with superior electric conductivity and corrosion resistance, and manufacturing method therefor
US8900379B2 (en) Stainless steel for solid polymer fuel cell separator and solid polymer typefuel cell using the stainless steel
JP4967398B2 (en) Stainless steel suitable for polymer electrolyte fuel cell and its separator
JP3922154B2 (en) Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell
JP4967397B2 (en) Stainless steel suitable for polymer electrolyte fuel cell and its separator
JP4967831B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP4930222B2 (en) Austenitic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP2005166276A (en) Stainless steel for solid polymer fuel cell separator, the solid polymer fuel cell separator using the same, and solid polymer fuel cell
JP2005089800A (en) Stainless steel for solid polymer electrolyte fuel cell separator and solid polymer electrolyte fuel cell using the same
JP2004269969A (en) Separator for solid polymer type fuel cell and manufacturing method therefor
JP5560533B2 (en) Stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP5703560B2 (en) Stainless steel plate for fuel cell separator with excellent conductivity
JP2006233281A (en) Stainless steel for energizing electric parts with superior electric conductivity and corrosion resistance, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4496750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term