JP2010106305A - Stainless steel for cell composing member and method for producing the same - Google Patents

Stainless steel for cell composing member and method for producing the same Download PDF

Info

Publication number
JP2010106305A
JP2010106305A JP2008278438A JP2008278438A JP2010106305A JP 2010106305 A JP2010106305 A JP 2010106305A JP 2008278438 A JP2008278438 A JP 2008278438A JP 2008278438 A JP2008278438 A JP 2008278438A JP 2010106305 A JP2010106305 A JP 2010106305A
Authority
JP
Japan
Prior art keywords
less
stainless steel
acid
battery
passive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008278438A
Other languages
Japanese (ja)
Inventor
Wakahiro Harada
和加大 原田
Hiroki Tomimura
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008278438A priority Critical patent/JP2010106305A/en
Publication of JP2010106305A publication Critical patent/JP2010106305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive stainless steel which has corrosion resistance in a cell environment and also does not deteriorate the performance of a cell due to the elution of metal ions, as a metallic material composing a collector and a separator composing a methanol reformed fuel cell or the like, and to provide a method for producing the stainless steel. <P>SOLUTION: The stainless steel for a cell composing member includes, by mass, 16.0 to 32.0% Cr, 0.5 to 2.0% Mo, ≤0.015% C, ≤0.5% Si and ≤2.0% Mn, and the balance Fe with inevitable impurities, and is characterized in that the surface layer of the stainless steel is provided with a passive film of ≤4 nm which satisfies, by atomic%, Cr/(Cr+Fe)>0.2 and also CrOOH>Cr<SB>2</SB>O<SB>3</SB>. The method for producing the stainless steel uses immersion treatment to a solution containing organic acid and nitric acid or electrolytic treatment where potential of 700 to 900 mV, SCE is applied in a solution containing sulfuric acid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電池構成部材用ステンレス鋼に関し、さらに具体的には燃料電池用の集電体やセパレータを構成するステンレス鋼に関する。   The present invention relates to stainless steel for battery constituent members, and more specifically to stainless steel constituting a current collector and separator for a fuel cell.

燃料電池は、外部より燃料と酸素または空気を連続的に供給し、電気化学的に反応させて電気エネルギーを取り出すもので、その作動温度、使用燃料の種類、用途などで分類される。主に使用される電解質の種類によって、固体酸化物型燃料電池、溶融炭酸塩型燃料電池、リン酸型燃料電池、高分子電解質型燃料電池、アルカリ水溶液型燃料電池の5種類に分類させるのが一般的である。   A fuel cell continuously supplies fuel and oxygen or air from the outside and reacts electrochemically to extract electric energy, and is classified according to its operating temperature, type of fuel used, application, and the like. Depending on the type of electrolyte used, it can be classified into five types: solid oxide fuel cells, molten carbonate fuel cells, phosphoric acid fuel cells, polymer electrolyte fuel cells, and alkaline aqueous fuel cells. It is common.

これらの燃料電池は、メタン等から生成された水素ガスを燃料とするものであるが、最近では、燃料としてメタノール水溶液を用いるダイレクトメタノール型燃料電池(以下、DMFCと称す)が知られている。このDFMCでは、水素ガスを燃料とする固体高分子型燃料電池と同様に、電解質として固体高分子電解質膜を用いたものがある。このようなDMFCでは、固体高分子電解質膜の両側に、空気極(酸素極)、燃料極(水素極)を配置した単位セルを複数個積層し、目的に応じて起電力を大きくしたスタック構造のものが一般的である.DMFCの燃料極では、下記の式(1)のような反応が生じ、空気極では、下記の式(2)のような反応が生じる。
CHOH+HO→6H+CO+6e(1)
3/2O+6e+6H→3HO(2)
These fuel cells use hydrogen gas generated from methane or the like as a fuel. Recently, a direct methanol fuel cell (hereinafter referred to as DMFC) using an aqueous methanol solution as a fuel is known. Some DFMCs use a solid polymer electrolyte membrane as an electrolyte, as in a polymer electrolyte fuel cell using hydrogen gas as a fuel. In such a DMFC, a stack structure in which a plurality of unit cells each having an air electrode (oxygen electrode) and a fuel electrode (hydrogen electrode) are stacked on both sides of a solid polymer electrolyte membrane to increase the electromotive force according to the purpose. Is common. A reaction such as the following formula (1) occurs in the fuel electrode of the DMFC, and a reaction such as the following formula (2) occurs in the air electrode.
CH 3 OH + H 2 O → 6H + + CO 2 + 6e (1)
3 / 2O 2 + 6e + 6H + → 3H 2 O (2)

このDMFCでは、アノードにおいて、メタノールの酸化に伴って一酸化炭素をはじめ、ホルムアルデヒド、ギ酸等が副生し、酸性環境になる。さらにDMFCの場合には白金又は白金合金からなる触媒粒子をプロトン伝導性ポリマーを結着剤として用いて電極触媒層として導電性多孔質基材に結着させている。結着剤や触媒層にSが存在する場合には硫酸を生成するため、集電体に金属を使用する場合には耐酸性が優れることが要求される。また、これらの電極部材には電位がかかることから高電位、酸性環境における耐食性が望まれる。金属材料から金属イオンの溶出は電池性能に対して大きな障害となる。   In this DMFC, as the methanol is oxidized, carbon monoxide, formaldehyde, formic acid, and the like are by-produced at the anode, resulting in an acidic environment. Further, in the case of DMFC, catalyst particles made of platinum or a platinum alloy are bound to a conductive porous substrate as an electrode catalyst layer using a proton conductive polymer as a binder. When S is present in the binder or the catalyst layer, sulfuric acid is generated. Therefore, when a metal is used for the current collector, excellent acid resistance is required. In addition, since potential is applied to these electrode members, high potential and corrosion resistance in an acidic environment are desired. The elution of metal ions from the metal material is a major obstacle to battery performance.

これらの金属材料に耐酸性を有する貴金属、例えばTiなどを用いるとコスト的に不利になり、また使用状況によってはTiでも耐酸性を有しない場合がある。   When a noble metal having acid resistance, such as Ti, is used for these metal materials, it is disadvantageous in cost, and even Ti may not have acid resistance depending on the use situation.

本発明者らはこれらの電池用部材として耐食性、特に耐酸性を有するステンレス鋼の適用性を検討した。基材の材質が特定されCrの水酸化物リッチな不働態皮膜が基材表面に形成されているステンレス鋼を使用することにより、それらの問題が解決可能となった。   The present inventors examined the applicability of stainless steel having corrosion resistance, particularly acid resistance, as these battery members. These problems can be solved by using stainless steel in which the base material is specified and a Cr hydroxide-rich passive film is formed on the surface of the base material.

本発明はその目的を達成するために、質量%においてCr:16.0〜32.0%、Mo:0.5〜2.0%、C:0.015%以下、Si:0.5%以下、Mn:2.0%以下を含有し、残部がFeおよび不可避的不純物よりなるステンレス鋼、あるいはさらにNi:2.0%以下、Cu:2.0%以下の1種又は2種以上を含有し、あるいはさらにNb:0.1〜0.8%、Ti:0.05〜0.4%、Al:0.01〜0.5%、B:0.3%以下の1種又は2種以上を含有するステンレス鋼において、その表層に4nm以下の不動態皮膜が存在し、その不動態皮膜では、原子%でCr/(Cr+Fe)>0.2、およびCrOOH>Crの関係式が成り立つ不動態皮膜を有する電池構成部材、特にダイレクトメタノール型燃料電池に有用な電池構成部材を提供する。 In order to achieve the object of the present invention, in mass%, Cr: 16.0 to 32.0%, Mo: 0.5 to 2.0%, C: 0.015% or less, Si: 0.5% Hereinafter, Mn: 2.0% or less of stainless steel with the balance being Fe and inevitable impurities, or Ni: 2.0% or less, Cu: 2.0% or less 1 or 2 of Nb: 0.1-0.8%, Ti: 0.05-0.4%, Al: 0.01-0.5%, B: 0.3% or less In stainless steel containing more than seeds, a passive film of 4 nm or less exists on the surface layer, and in the passive film, Cr / (Cr + Fe)> 0.2 and CrOOH> Cr 2 0 3 in atomic% Battery components with passive film where the equation holds, especially direct methanol fuel Provide a useful cell components in the battery.

さらにそれらの不動態皮膜を得るために、有機酸、硝酸を含む溶液への浸漬処理あるいは硫酸を含む溶液で700〜900mV,SCEの電位を印加した電解処理を行うことが有効であることを見出した。   Furthermore, in order to obtain those passive films, it has been found that it is effective to perform an immersion treatment in a solution containing an organic acid or nitric acid or an electrolytic treatment in which a potential of SCE of 700 to 900 mV is applied with a solution containing sulfuric acid. It was.

本発明によれば、安価で、耐食性の劣化により電池性能を損なうことのない電池部材用ステンレス鋼及びその製造方法を提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the stainless steel for battery members which is cheap and does not impair battery performance by deterioration of corrosion resistance, and its manufacturing method.

ステンレス鋼は表面の不動態皮膜によって優れた耐食性が維持できる。しかし、酸環境に晒されるとステンレス鋼表面の不動態皮膜は不動態化できずに活性溶解を生じる。それらの不動態化能は構成成分の影響を受けるとともに、表面の不動態皮膜の組成、その比率および厚みにより異なる。本発明の組成および不動態皮膜を有するものは電池構成部材として適切な耐食性を有することができる。   Stainless steel can maintain excellent corrosion resistance due to the passive film on the surface. However, when exposed to an acid environment, the passive film on the surface of the stainless steel cannot be passivated and causes active dissolution. Their passivating ability is influenced by the constituents and varies depending on the composition of the surface passivation film, its ratio and thickness. Those having the composition and passive film of the present invention can have appropriate corrosion resistance as a battery component.

酸環境において耐溶出性を得るためには、ステンレス鋼の表層に厚さ4nm以下、組成が原子%でCr/(Cr+Fe)>0.2、かつCrOOH>Crの関係が成り立つ不動態皮膜を生成させることが必要である。
ステンレス鋼表面の不動態皮膜は非晶質のCrの酸化物および水和物よりなる。Crの組成比が高いほどFeの溶出にともなう腐食が起こりにくく耐食性には有利であることから、電池環境における耐食性を維持するための組成としてCr/(Cr+Fe)>0.2とした。また、不動態皮膜中のCrは酸化物あるいは水和物の形で存在するが、CrOOHの方がCrと酸素、水との結合力が強くCrOOHの組成比が高いほど耐溶出性に優れることからCrOOH>Crとした。さらに、不動態皮膜の耐食性は薄くて緻密なものほど優れることから、その不動態皮膜の厚みを4nm以下とした。
To obtain elution resistance in acid environment, than the thickness 4nm the surface layer of stainless steel, Cr / (Cr + Fe) composition in atomic%> 0.2, and CrOOH> Cr 2 0 3 relationship holds passivating It is necessary to produce a film.
The passive film on the stainless steel surface consists of amorphous Cr oxide and hydrate. Since the higher the Cr composition ratio, the less likely the corrosion due to elution of Fe is, and the better the corrosion resistance, Cr / (Cr + Fe)> 0.2 is set as the composition for maintaining the corrosion resistance in the battery environment. In addition, Cr in the passive film exists in the form of an oxide or hydrate, but CrOOH has a stronger binding force between Cr and oxygen and water, and the higher the composition ratio of CrOOH, the better the elution resistance. To CrOOH> Cr 2 O 3 . Furthermore, since the corrosion resistance of the passive film is thinner and finer, the thickness of the passive film is set to 4 nm or less.

不動態皮膜は通常の腐食環境においてもステンレス鋼の表面に自然に生成するものであるが、空気中の酸素をとりこむと厚く、ポーラスな皮膜が形成されやすい。したがって、あらかじめ不動態皮膜中のFeを選択溶解できるような酸あるいはステンレス鋼が不動態状態に維持できる酸化環境での酸洗処理によって、Cr組成比が高く、緻密な皮膜が得られる。光輝焼鈍などの還元雰囲気下での焼鈍では、Cr組成比は高くなるものの粗で欠陥の多い皮膜となり、電池内部のような酸環境では十分な耐食性は得られない。また、酸洗に使用する酸が塩酸など非酸化性で再不動態化性のない酸である場合には、Crの低い皮膜となるため耐食性は劣る。   The passive film is naturally formed on the surface of the stainless steel even in a normal corrosive environment, but it is thick and porous film is easily formed when oxygen in the air is taken in. Therefore, a dense film having a high Cr composition ratio can be obtained by pickling in an oxidizing environment where the acid or stainless steel that can selectively dissolve Fe in the passive film can be maintained in a passive state. In annealing under a reducing atmosphere such as bright annealing, although the Cr composition ratio is high, the film is rough and has many defects, and sufficient corrosion resistance cannot be obtained in an acid environment such as the inside of the battery. In addition, when the acid used for pickling is a non-oxidizing acid such as hydrochloric acid and has no repassivation property, the corrosion resistance is inferior because of a low Cr film.

以下に詳細に本発明の作用を述べる。
Crは電池環境におけるステンレス鋼としての耐食性を維持するために最も重要な元素である。耐食性を備えるためには16.0%の含有が必要であるが、Cr量が高くなると、靭性や加工性の低下を招くためCr含有量の上限を32.0%とする。
The operation of the present invention will be described in detail below.
Cr is the most important element for maintaining the corrosion resistance as stainless steel in the battery environment. In order to provide corrosion resistance, the content of 16.0% is necessary. However, if the Cr content is increased, the toughness and workability are reduced, so the upper limit of the Cr content is 32.0%.

Cは炭化物を形成し、それが最終焼鈍での再結晶フエライトのランダム化の再結晶核として働く。しかしCは冷延焼鈍後の強度を上昇させる元素であり、あまり高いと延性の低下を招くため、0.015%以下とした。   C forms carbides, which serve as recrystallization nuclei for the randomization of recrystallized ferrite in the final annealing. However, C is an element that increases the strength after cold rolling annealing, and if it is too high, the ductility is lowered.

Siは通常脱酸の目的のために使用するが、固溶強化能が高く、あまりその含有量が多いと材質が硬化し延性の低下を招くので、0.5%以下とした。   Si is usually used for the purpose of deoxidation, but its solid solution strengthening ability is high, and if its content is too large, the material is hardened and the ductility is lowered, so the content was made 0.5% or less.

Mnはオーステナイト形成元素であり、固溶強化能が小さく材質への悪影響が少ない。しかし、含有量が多いと溶製時にMnヒュームが生成する等、製造性が低下するので、成分範囲を2.0%以下とした。   Mn is an austenite-forming element, has a low solid solution strengthening ability and has little adverse effect on the material. However, if the content is large, manufacturability deteriorates, such as generation of Mn fumes during melting, so the component range was set to 2.0% or less.

Moは耐食性を改善するのに有効な元素である。特に耐酸性の向上には有効で、0.5%以上でその作用は認められる。しかし、過度の添加は高温での固溶強化や動的再結晶の遅滞により、熱間加工性の低下をもたらすとともにコストの上昇を招くので0.5〜2.0%とした。   Mo is an element effective for improving the corrosion resistance. In particular, it is effective for improving acid resistance, and its action is recognized at 0.5% or more. However, excessive addition causes a reduction in hot workability and an increase in cost due to solid solution strengthening at a high temperature and delay of dynamic recrystallization, so the content is set to 0.5 to 2.0%.

Niはオ一ステナイト形成元素であり、酸環境での耐食性を改善するのに有効な元素であるが、2.0%を越える添加は硬質化やコスト上昇を招くため、2.0%を上限とした。   Ni is an austenite-forming element and is an element effective for improving the corrosion resistance in an acid environment. However, addition over 2.0% causes hardening and cost increase, so the upper limit is set to 2.0%. It was.

Cuはステンレス鋼の耐食性を向上させるのに有効であり、電池材として表面接触抵抗を低下させるのにも有効な元素である。しかし、過度の添加は熱間加工性や耐食性を低下させるので2.0%以下とした。   Cu is effective for improving the corrosion resistance of stainless steel, and is also an effective element for reducing surface contact resistance as a battery material. However, excessive addition reduces hot workability and corrosion resistance, so it was made 2.0% or less.

NbはC,Nを固定し、耐衝撃特性や二次加工性を向上させる元素であり、電池ケースなどの加工に対しては加工性を向上させる効果がある。しかし、添加しすぎると材料が硬化し逆に加工性に悪影響をもたらす。また、再結晶温度を上げることから、0.10〜0.80%とした。   Nb is an element that fixes C and N and improves impact resistance and secondary workability, and has an effect of improving workability for processing battery cases and the like. However, if it is added too much, the material hardens and adversely affects the workability. Further, since the recrystallization temperature is raised, the content is made 0.10 to 0.80%.

TiはC,Nを固定し、加工性および耐食性を向上させる元素である.しかし、添加しすぎると絞り加工における割れの原因となるTi系介在物などの表面欠陥が存在することから、添加する場合は0.05〜0.40%とする。   Ti is an element that fixes C and N and improves workability and corrosion resistance. However, if it is added too much, surface defects such as Ti inclusions that cause cracks in drawing work exist, so 0.05% to 0.40% when added.

Alは脱酸や耐酸化性のために有効な元素であるが、過剰な添加は表面欠陥の原因となるため、添加する場合は0.01〜0.50%とした。   Al is an effective element for deoxidation and oxidation resistance, but excessive addition causes surface defects, so when added, the content was made 0.01 to 0.50%.

Bは、Nを固定し、耐食性や加工性を改善する作用をもつ合金成分であり、必要に応じて添加される。上記作用を発揮させるためには0.0005%以上添加することが望ましい。しかし、過剰に添加すると熟間加工性の低下や溶接性の低下を招くため、0.3%以下とした。   B is an alloy component that has the effect of fixing N and improving the corrosion resistance and workability, and is added as necessary. In order to exert the above action, it is desirable to add 0.0005% or more. However, if added in excess, it causes a decrease in maturing workability and weldability, so 0.3% or less.

以下の元素は請求項の中では記載していないが、不可避的に含まれるP,S以外に下記の元素を含有してもさしつかえない。   Although the following elements are not described in the claims, they may contain the following elements in addition to P and S which are inevitably included.

V、Zr:固溶Cを炭化物として析出させる効果による加工性向上、Zrは鋼中の酸素を酸化物として捕えることによる加工性や靭性向上の面から有用な元素である。しかしながら、多量に添加すると製造性が低下するので、V、Zrの適正含有量は0.01〜0.30%である。
これら以外にもCa、Mg、Co、REMなどは、溶製中に原料であるスクラップ中より含まれることもあるが、とりたてて多量に含まれる場合を除き、耐食性や加工性には影響ない。
V, Zr: Workability improvement by the effect of precipitating solute C as carbide, Zr is a useful element from the viewpoint of workability and toughness improvement by capturing oxygen in steel as an oxide. However, since the manufacturability decreases when added in a large amount, the appropriate content of V and Zr is 0.01 to 0.30%.
In addition to these, Ca, Mg, Co, REM, and the like may be contained in the scrap, which is a raw material, during melting, but do not affect the corrosion resistance and workability unless they are contained in large amounts.

ステンレス鋼の表面に生成する不動態皮膜は主としてFe,Crの酸化物、水酸化物からなり、皮膜の最表面から深さ10Å程度の表層域ではFeの酸化物、水酸化物が多く、それより深い基材側ではCrの酸化物、水酸化物が多くなっている。通常条件下で生成する不動態皮膜は、表層域でFeの酸化物、水酸化物が占める割合が非常に多く、Fe濃度が70原子%を超える。Fe濃度が高いと、溶出したFeの痕跡が皮膜欠陥となる.その結果、基材ステンレス鋼から溶解能の高い金属や硫化物系介在物の溶出が進行する。Feの溶出や腐食欠陥の発生を防止するため、本発明では不動態皮膜の組成比をCr/(Cr+Fe)>0.2でかつ不動態皮膜中のCrOOH>Crである厚さ4nm以下とした。その皮膜生成には以下の手法が有効である。 The passive film formed on the surface of stainless steel is mainly composed of Fe and Cr oxides and hydroxides, and in the surface layer area at a depth of about 10 mm from the outermost surface of the film, there are many Fe oxides and hydroxides. On the deeper substrate side, there are more oxides and hydroxides of Cr. The passive film produced under normal conditions has a very large proportion of Fe oxide and hydroxide in the surface layer region, and the Fe concentration exceeds 70 atomic%. If the Fe concentration is high, the trace of the eluted Fe becomes a film defect. As a result, the dissolution of metals and sulfide inclusions with high melting ability proceeds from the base stainless steel. In order to prevent the elution of Fe and the occurrence of corrosion defects, in the present invention, the composition ratio of the passive film is Cr / (Cr + Fe)> 0.2 and the thickness of CrOOH> Cr 2 O 3 in the passive film is 4 nm. It was as follows. The following methods are effective for generating the film.

有機酸含有溶液を用いた酸洗処理浸漬処理:有機酸は、不動態皮膜に含まれているFeの酸化物、水酸化物を優先的に溶解し、不動態皮膜の組成比が、Cr/(Cr+Fe)>0.2かつCrOOH>CrFeである不動態皮膜に改質できる。使用可能な有機酸はクエン酸,マレイン酸.酒石酸,乳酸,リンゴ酸,コハク酸等があり、1種又は2種以上の有機酸を総濃度100ppm以上で添加した溶液にステンレス鋼を30分以上浸漬することにより目標の不動態皮膜が得られる。処理温度としては反応が促進する60℃以上が望ましい。 Pickling treatment dipping treatment using organic acid-containing solution: The organic acid preferentially dissolves the oxides and hydroxides of Fe contained in the passive film, and the composition ratio of the passive film is Cr / It can be modified to a passive film where (Cr + Fe)> 0.2 and CrOOH> Cr 2 O 3 Fe. Usable organic acids are citric acid and maleic acid. There are tartaric acid, lactic acid, malic acid, succinic acid, etc. The target passive film can be obtained by immersing stainless steel in a solution added with one or more organic acids at a total concentration of 100 ppm or more for 30 minutes or more. . The treatment temperature is preferably 60 ° C. or higher, which promotes the reaction.

硝酸浸漬、硫酸電解:Crを酸化する能力に優れた硝酸を含む溶液中でステンレス鋼を酸洗するとステンレス鋼が不動態領域に保持され、不動態皮膜のCr濃度が上昇すると共に、鋼中のCaS,MnS等の介在物及び不動態皮膜からのFeの溶解が促進される。硝酸の濃度は10%以上が好ましく、反応速度を上げるために60℃以上の浸漬処理が望ましい。反応時間は30秒以上必要であり、より安定した皮膜を得るためには10分以上の加熱が望ましい。   Nitric acid immersion, sulfuric acid electrolysis: Pickling stainless steel in a solution containing nitric acid with excellent ability to oxidize Cr retains the stainless steel in the passive region, increases the Cr concentration in the passive film, Dissolution of Fe from inclusions such as CaS and MnS and a passive film is promoted. The concentration of nitric acid is preferably 10% or higher, and an immersion treatment of 60 ° C. or higher is desirable to increase the reaction rate. The reaction time must be 30 seconds or longer, and heating for 10 minutes or longer is desirable to obtain a more stable film.

硫酸電解では、ステンレス鋼が不動態域に保持できるように電位を700〜900mV、SCEかける必要がある。それ以下の電位ではCrの組成比を上げることはできず、またそれ以上の電位ではCrが活性溶解を生じてしまい、目的とする組成、厚みの不動態皮膜が得られない。硫酸溶液に硝酸などの酸を混合してもよい。硫酸溶液に浸漬したステンレス鋼を2秒以上電解することが好ましい。
硫酸溶液の濃度、温度は硝酸浸漬と同様である。
In sulfuric acid electrolysis, it is necessary to apply SCE at a potential of 700 to 900 mV so that the stainless steel can be maintained in the passive region. If the potential is lower than that, the Cr composition ratio cannot be increased, and if the potential is higher than that, Cr will cause active dissolution, and a passive film having the desired composition and thickness cannot be obtained. An acid such as nitric acid may be mixed in the sulfuric acid solution. It is preferable to electrolyze stainless steel immersed in a sulfuric acid solution for 2 seconds or more.
The concentration and temperature of the sulfuric acid solution are the same as in the nitric acid immersion.

表1の成分組成をもつステンレス鋼板を実験室的に真空溶解し、圧延、焼鈍により1.0mmtの冷延焼鈍板を作製した。表1中の鋼No.A〜Iは化学成分値が本発明の範囲内にある本発明鋼である。
それらのステンレス鋼に有機酸酸洗、硝酸酸洗および硫酸電解酸洗を施し不動態皮膜を制御した。
有機酸酸洗には200ppmクエン酸を用いて60℃で1時間の浸漬処理を行った。硝酸酸洗には50%硝酸を用いて60℃で1時間の浸漬処理を行った。また、硫酸酸洗においては10%硫酸を用いて60℃で800mV,SCE下での1分間の電解処理を施した。比較として塩酸による酸洗処理、0mV,SCEにおける硫酸電解処理および大気中で400℃の焼鈍を施した処理材を作製した。
A stainless steel plate having the composition shown in Table 1 was vacuum-melted in a laboratory, and a 1.0 mmt cold-rolled annealed plate was produced by rolling and annealing. Steel No. in Table 1 A to I are steels of the present invention whose chemical component values are within the scope of the present invention.
These stainless steels were subjected to organic pickling, nitric acid pickling and sulfuric acid electrolytic pickling to control the passive film.
In the organic pickling, 200 ppm citric acid was used for immersion treatment at 60 ° C. for 1 hour. In the nitric acid pickling, 50% nitric acid was used for immersion for 1 hour at 60 ° C. In the sulfuric acid pickling, electrolytic treatment was performed using 10% sulfuric acid at 60 ° C. and 800 mV for 1 minute under SCE. As a comparison, a pickling treatment with hydrochloric acid, a sulfuric acid electrolytic treatment at 0 mV, SCE and a treatment material subjected to annealing at 400 ° C. in the atmosphere were prepared.

Figure 2010106305
Figure 2010106305

不動態皮膜の組成解析はESCAにより行った。最表層の金属濃度よりCr/(Fe+Cr)およびAES−EELS解析によりをCrOOH>Crの比率を算出した。不動態皮膜の厚みはESCAによる。ピークの半価値より算出した。 The composition analysis of the passive film was performed by ESCA. The ratio of CrOOH> Cr 2 O 3 was calculated from the metal concentration of the outermost layer by Cr / (Fe + Cr) and AES-EELS analysis. The thickness of the passive film depends on ESCA. Calculated from the half value of the peak.

これらの供試材を1%の硫酸を添加したメタノール中に60℃で1ヶ月間、浸漬実験を行い、試験後のメタノール中の溶出イオンとしてFe、Crの濃度をICP法により測定した。さらに、実際に供試材を2枚用いDMFC用の触媒を塗布した簡易的なDMFC電池スタックを作製し、60℃環境で3日間電池を形成させた場合の初期電流値から3日後の電流値を効率(割合)として算出し、電池性能を評価した。
評価結果を表2に示す。
These test materials were immersed in methanol with 1% sulfuric acid at 60 ° C. for one month, and the concentrations of Fe and Cr as the eluted ions in the methanol after the test were measured by the ICP method. Furthermore, the current value after 3 days from the initial current value when a simple DMFC battery stack using two test materials and coated with a catalyst for DMFC was produced and the battery was formed in a 60 ° C. environment for 3 days. Was calculated as efficiency (ratio) to evaluate battery performance.
The evaluation results are shown in Table 2.

Figure 2010106305
Figure 2010106305

本発明例である鋼No.A〜Iに有機酸浸漬、硝酸浸漬および800mV,SCEで硫酸電解処理を施した供試材では、表層に4nm以下の、原子%でCr/(Cr+Fe)>0.2で、CrOOH>Crの関係が成り立つ不動態皮膜が形成されており、メタノール浸漬試験ではFe、Crともに溶出が認められなかった。 Steel No. which is an example of the present invention. In the test materials in which A to I were subjected to organic acid immersion, nitric acid immersion and sulfuric acid electrolytic treatment at 800 mV, SCE, the surface layer was 4 nm or less, Cr / (Cr + Fe)> 0.2 in atomic%, and CrOOH> Cr 2 A passive film satisfying the relationship of O 3 was formed, and elution of both Fe and Cr was not observed in the methanol immersion test.

また簡易電池試験後の電流値も90%を有しており、電池性能が得られていた。しかし、本発明のCr成分を外れる鋼No.Jは硝酸浸漬処理を施しても目的とする皮膜が得られておらず、その結果としてメタノール浸漬試験後のFe、Crの溶出があり、電池効率も30%しか得られなかった。また、本発明のMo成分を外れる鋼No.Hは目的とする不動態皮膜が得られたものの、メタノール浸漬試験後のFe、Crの溶出があり、電池効率も40%であった。これは本環境ではMoによる耐溶出性改善効果が示唆される。さらに本発明鋼成分である鋼No.Hに塩酸による酸洗処理、0mV,SCEにおける硫酸電解処理および大気中で400℃の焼鈍処理を施した場合は目的とする不動態皮膜が形成されておらず、その結果としてメタノール浸漬試験後のFe、Crの溶出があり、電池効率も50%以下しか得られなかった。本発明の処理が本環境における耐食性維持に有効であることが示唆された。   Further, the current value after the simple battery test was 90%, and the battery performance was obtained. However, the steel no. J did not obtain the target film even after the nitric acid immersion treatment. As a result, Fe and Cr were eluted after the methanol immersion test, and the battery efficiency was only 30%. Moreover, steel No. which removes the Mo component of the present invention. Although the intended passive film was obtained for H, Fe and Cr were eluted after the methanol immersion test, and the battery efficiency was 40%. This suggests that Mo improves dissolution resistance in this environment. Furthermore, steel No. which is a steel component of the present invention. When H was subjected to pickling treatment with hydrochloric acid, sulfuric acid electrolysis treatment at 0 mV, SCE, and annealing treatment at 400 ° C. in the atmosphere, the intended passive film was not formed, and as a result, after the methanol immersion test Fe and Cr were eluted, and the battery efficiency was only 50% or less. It was suggested that the treatment of the present invention is effective for maintaining the corrosion resistance in this environment.

本発明のステンレス鋼をDMFCなどの燃料電池用集電材やセパレータに用いることにより、安価で耐食性の劣化により電池性能を損なうことのない燃料電池を提供することが可能である。   By using the stainless steel of the present invention for a current collector or separator for a fuel cell such as DMFC, it is possible to provide a fuel cell that is inexpensive and does not impair cell performance due to deterioration of corrosion resistance.

Claims (7)

質量%において、Cr:16.0〜32.0%、Mo:0.5〜2.0%、C:0.015%以下、Si:0.5%以下、Mn:2.0%以下を含有し、残部がFeおよび不可避的不純物よりなるステンレス鋼において、その表層に4nm以下の不動態皮膜を有し、該不動態皮膜において原子%でCr/(Cr+Fe)>0.2であり、かつCrOOH>Crである不動態皮膜を有することを特徴とする電池構成部材用ステンレス鋼。 In mass%, Cr: 16.0-32.0%, Mo: 0.5-2.0%, C: 0.015% or less, Si: 0.5% or less, Mn: 2.0% or less Stainless steel containing the balance Fe and inevitable impurities, the surface layer has a passive film of 4 nm or less, Cr / (Cr + Fe)> 0.2 in atomic% in the passive film, and Stainless steel for battery constituent members having a passive film satisfying CrOOH> Cr 2 0 3 . さらに、Ni:2.0%以下、Cu:2.0%以下の1種又は2種を含有することを特徴とする、請求項1に記載の電池構成部材用ステンレス鋼。   Furthermore, it contains 1 type or 2 types of Ni: 2.0% or less and Cu: 2.0% or less, The stainless steel for battery components of Claim 1 characterized by the above-mentioned. さらに、Nb:0.10〜0.80%、Ti:0.05〜0.40%、Al:0.01〜0.50%,またはB:0.3%以下から選択される1種又は2種以上を含有することを特徴とする、請求項1または2に記載の電池構成部材用ステンレス鋼。   Furthermore, Nb: 0.10 to 0.80%, Ti: 0.05 to 0.40%, Al: 0.01 to 0.50%, or B: one selected from 0.3% or less The stainless steel for battery constituent members according to claim 1, comprising two or more kinds. 前記電池が、ダイレクトメタノール型燃料電池である、請求項1〜3のいずれか1項に記載の電池構成部材用ステンレス鋼。   The stainless steel for battery components according to any one of claims 1 to 3, wherein the battery is a direct methanol fuel cell. 質量%において、Cr:16.0〜32.0%、Mo:0.5〜2.0%、C:0.015%以下、Si:0.5%以下、Mn:2.0%以下を含有し、任意にNi:2.0%以下、Cu:2.0%以下、Nb:0.10〜0.80%、Ti:0.05〜0.40%、Al:0.01〜0.50%,若しくはB:0.3%以下から選択される1種又は2種以上を含有し、残部がFeおよび不可避的不純物よりなるステンレス鋼を、有機酸を含む溶液への浸漬処理により不動態皮膜中にCrが濃化させることを特徴とする、請求項1〜4のいずれか1項に記載の電池構成部材用ステンレス鋼の製造方法。   In mass%, Cr: 16.0-32.0%, Mo: 0.5-2.0%, C: 0.015% or less, Si: 0.5% or less, Mn: 2.0% or less Optionally, Ni: 2.0% or less, Cu: 2.0% or less, Nb: 0.10-0.80%, Ti: 0.05-0.40%, Al: 0.01-0 50%, or B: Stainless steel containing one or more selected from 0.3% or less, the balance being Fe and unavoidable impurities is not treated by dipping in a solution containing an organic acid. The method for producing stainless steel for battery constituent members according to any one of claims 1 to 4, wherein Cr is concentrated in the dynamic film. 質量%において、Cr:16.0〜32.0%、Mo:0.5〜2.0%、C:0.015%以下、Si:0.5%以下、Mn:2.0%以下を含有し、任意にNi:2.0%以下、Cu:2.0%以下、Nb:0.10〜0.80%、Ti:0.05〜0.40%、Al:0.01〜0.50%,若しくはB:0.3%以下から選択される1種又は2種以上を含有し、残部がFeおよび不可避的不純物よりなるステンレス鋼を、硝酸を含む溶液への浸漬処理により不動態皮膜中にCrが濃化させることを特徴とする、請求項1〜4のいずれか1項に記載の電池構成部材用ステンレス鋼の製造方法。   In mass%, Cr: 16.0-32.0%, Mo: 0.5-2.0%, C: 0.015% or less, Si: 0.5% or less, Mn: 2.0% or less Optionally, Ni: 2.0% or less, Cu: 2.0% or less, Nb: 0.10-0.80%, Ti: 0.05-0.40%, Al: 0.01-0 .50%, or B: Passive by immersion treatment of a stainless steel containing one or more selected from 0.3% or less, with the balance being Fe and unavoidable impurities in a solution containing nitric acid The method for producing stainless steel for battery constituent members according to any one of claims 1 to 4, wherein Cr is concentrated in the film. 質量%において、Cr:16.0〜32.0%、Mo:0.5〜2.0%、C:0.015%以下、Si:0.5%以下、Mn:2.0%以下を含有し、任意にNi:2.0%以下、Cu:2.0%以下、Nb:0.10〜0.80%、Ti:0.05〜0.40%、Al:0.01〜0.50%,若しくはB:0.3%以下から選択される1種又は2種以上を含有し、残部がFeおよび不可避的不純物よりなるステンレス鋼を、硫酸を含む溶液で700〜900mV,SCEの電位を印加した電解処理により不動態皮膜中にCrが濃化している請求項1〜4のいずれか1項に記載の電池構成部材用ステンレス鋼の製造方法。   In mass%, Cr: 16.0-32.0%, Mo: 0.5-2.0%, C: 0.015% or less, Si: 0.5% or less, Mn: 2.0% or less Optionally, Ni: 2.0% or less, Cu: 2.0% or less, Nb: 0.10-0.80%, Ti: 0.05-0.40%, Al: 0.01-0 50%, or B: Stainless steel containing one or more selected from 0.3% or less, the balance being Fe and inevitable impurities, 700 to 900 mV, SCE in a solution containing sulfuric acid The method for producing stainless steel for battery constituent members according to any one of claims 1 to 4, wherein Cr is concentrated in the passive film by electrolytic treatment to which a potential is applied.
JP2008278438A 2008-10-29 2008-10-29 Stainless steel for cell composing member and method for producing the same Pending JP2010106305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278438A JP2010106305A (en) 2008-10-29 2008-10-29 Stainless steel for cell composing member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278438A JP2010106305A (en) 2008-10-29 2008-10-29 Stainless steel for cell composing member and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010106305A true JP2010106305A (en) 2010-05-13

Family

ID=42296044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278438A Pending JP2010106305A (en) 2008-10-29 2008-10-29 Stainless steel for cell composing member and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010106305A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149308A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp Stainless-clad steel excellent in corrosion resistance
JP2016151038A (en) * 2015-02-17 2016-08-22 日新製鋼株式会社 Ferritic stainless steel made plant member for plant application, excellent in corrosion resistance in environment containing sulfuric acid ion and chloride ion
JP2018534416A (en) * 2015-09-22 2018-11-22 ポスコPosco Stainless steel for fuel cell separator and manufacturing method thereof
KR20200064658A (en) * 2018-11-29 2020-06-08 주식회사 포스코 Ferritic stainless steel improved in corrosion resistance and manufacturing method thereof
CN113166868A (en) * 2019-11-14 2021-07-23 日立金属株式会社 Foil for negative electrode collector of secondary battery
JP2023507624A (en) * 2019-12-19 2023-02-24 ポスコホールディングス インコーポレーティッド Stainless steel for fuel cell separator with excellent surface electrical conductivity and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256808A (en) * 1999-03-10 2000-09-19 Nippon Steel Corp Stainless steel for solid high polymer type fuel battery
JP2004149920A (en) * 2002-10-07 2004-05-27 Jfe Steel Kk Stainless steel for separator of solid polymer fuel cell and its manufacturing method, and solid polymer fuel cell using that stainless steel
WO2005073423A1 (en) * 2004-01-28 2005-08-11 Nisshin Steel Co., Ltd. Ferritic stainless steel for solid polymer fuel cell separator and solid polymer fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256808A (en) * 1999-03-10 2000-09-19 Nippon Steel Corp Stainless steel for solid high polymer type fuel battery
JP2004149920A (en) * 2002-10-07 2004-05-27 Jfe Steel Kk Stainless steel for separator of solid polymer fuel cell and its manufacturing method, and solid polymer fuel cell using that stainless steel
WO2005073423A1 (en) * 2004-01-28 2005-08-11 Nisshin Steel Co., Ltd. Ferritic stainless steel for solid polymer fuel cell separator and solid polymer fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149308A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp Stainless-clad steel excellent in corrosion resistance
JP2016151038A (en) * 2015-02-17 2016-08-22 日新製鋼株式会社 Ferritic stainless steel made plant member for plant application, excellent in corrosion resistance in environment containing sulfuric acid ion and chloride ion
JP2018534416A (en) * 2015-09-22 2018-11-22 ポスコPosco Stainless steel for fuel cell separator and manufacturing method thereof
KR20200064658A (en) * 2018-11-29 2020-06-08 주식회사 포스코 Ferritic stainless steel improved in corrosion resistance and manufacturing method thereof
KR102146317B1 (en) 2018-11-29 2020-08-20 주식회사 포스코 Ferritic stainless steel improved in corrosion resistance and manufacturing method thereof
CN113166868A (en) * 2019-11-14 2021-07-23 日立金属株式会社 Foil for negative electrode collector of secondary battery
CN113166868B (en) * 2019-11-14 2022-03-22 日立金属株式会社 Foil for negative electrode collector of secondary battery
JP2023507624A (en) * 2019-12-19 2023-02-24 ポスコホールディングス インコーポレーティッド Stainless steel for fuel cell separator with excellent surface electrical conductivity and its manufacturing method
JP7421649B2 (en) 2019-12-19 2024-01-24 ポスコホールディングス インコーポレーティッド Stainless steel for fuel cell separator plate with excellent surface electrical conductivity and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR101558276B1 (en) Ferritic stainless steel excellent in corrosion resistance and conductivity and method for manufacturing the same, separator of proton-exchange membrane fuel cell and proton-exchange membrane fuel cell
JP5396487B2 (en) Stainless steel for polymer fuel cell separator and its manufacturing method
JP6323623B1 (en) Stainless steel plate for fuel cell separator and method for producing the same
JP6726735B2 (en) Stainless steel for fuel cell separator and method of manufacturing the same
US9130199B2 (en) Stainless steel for fuel cell having good corrosion resistance and method for producing the same
JP6418364B1 (en) Stainless steel plate for fuel cell separator and method for producing the same
JP2008285731A (en) Stainless steel sheet having excellent surface electrical conductivity, and method for producing the same
JPWO2017212905A1 (en) Stainless steel plate for fuel cell separator and method for producing the same
JP2010106305A (en) Stainless steel for cell composing member and method for producing the same
WO2019058409A1 (en) Stainless steel sheet and production method therefor, separator for solid polymer fuel battery, solid polymer fuel battery cell and solid polymer fuel battery
WO2013018320A1 (en) Stainless steel for fuel cell separator
JP2009167486A (en) Ferritic stainless steel for battery component member
KR20170063900A (en) Ferritic stainless steel material, separator for solid polymer fuel cells which uses same, and solid polymer fuel cell
JP2012067391A (en) Stainless steel sheet for conductive member, excellent in surface electric conductivity
KR20190096434A (en) Base material stainless steel sheet of steel sheet for separator of fuel cell, and its manufacturing method
KR102638365B1 (en) Ferrite-based stainless steel sheet for current collectors in sulfide-based solid-state batteries
JPWO2016129598A1 (en) Ferritic stainless steel material, separator, polymer electrolyte fuel cell, and separator manufacturing method
CN114080457A (en) Ferritic stainless steel sheet for current collector of sulfide-based solid battery and method for producing same
KR20120101552A (en) Stainless steel for current-carrying member having low electrical contact resistance, and process for production thereof
JP2011149041A (en) Stainless steel for conductive component having low contact electric resistance, and method for producing the same
JP2023507779A (en) Stainless steel for fuel cell separator with excellent surface electrical conductivity and its manufacturing method
JP2006253107A (en) Separator made of stainless steel for polymer electrolyte fuel cell
KR102662463B1 (en) Ferritic stainless steel sheet for current collector of sulfide-based solid battery and manufacturing method thereof
JP2009019228A (en) Metal separator material for polymer electrolyte fuel cell
JP2023507624A (en) Stainless steel for fuel cell separator with excellent surface electrical conductivity and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203