JP2009167486A - Ferritic stainless steel for battery component member - Google Patents

Ferritic stainless steel for battery component member Download PDF

Info

Publication number
JP2009167486A
JP2009167486A JP2008008597A JP2008008597A JP2009167486A JP 2009167486 A JP2009167486 A JP 2009167486A JP 2008008597 A JP2008008597 A JP 2008008597A JP 2008008597 A JP2008008597 A JP 2008008597A JP 2009167486 A JP2009167486 A JP 2009167486A
Authority
JP
Japan
Prior art keywords
stainless steel
battery
corrosion resistance
less
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008008597A
Other languages
Japanese (ja)
Inventor
Wakahiro Harada
和加大 原田
Hiroki Tomimura
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008008597A priority Critical patent/JP2009167486A/en
Publication of JP2009167486A publication Critical patent/JP2009167486A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic material having characteristics for contributing, as an electrode material and an electrode case for a high capacity battery which has been under development for in-vehicle applications etc., toward safety improvement, weight reduction and performance enhancement. <P>SOLUTION: This battery component member is composed of ferritic stainless steel which has a composition (by mass) containing 16.0 to 32.0% Cr, or further containing one or more kinds among 0.5 to 2.0% Mo, ≤2.0% Ni and 2.0% Cu, or further containing one or more kinds among 0.1 to 0.8% Nb, 0.05 to 0.4% Ti, 0.01 to 0.5% Al and ≤0.3% B and also has a passivation film of ≤4 nm thick, having a composition ratio satisfying Cr/(Cr+Fe)>0.2, on the surface layer thereof. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、Liイオン二次電池などの非水系電解液電池およびNi−H水系電解液電池などの構成部品である電池ケースおよび集電体などに適用可能なフェライト系ステンレス鋼に関する。   The present invention relates to a ferritic stainless steel applicable to battery cases and current collectors that are constituent parts of non-aqueous electrolyte batteries such as Li-ion secondary batteries and Ni-H aqueous electrolyte batteries.

近年、環境保護のためにガソリンなど化石燃料に替えて、次世代エネルギーの開発が進められている。
自動車業界においては電気自動車やハイブリッド自動車などの導入はその最たるものであり、モーター駆動用電池の開発が鋭意行われている。さらに携帯やパ−ソナルコンピューターの普及にともない軽量でかつ長時間の電力供給可能なバッテリーの開発が進められている。さらに、家庭用の電気に対しても、災害時の非常用電源として大容量バッテリーの開発が進められている。
In recent years, in order to protect the environment, development of next-generation energy has been promoted in place of fossil fuels such as gasoline.
In the automobile industry, the introduction of electric vehicles, hybrid vehicles, etc. is the best, and development of batteries for driving motors is eagerly underway. Furthermore, with the spread of mobile phones and personal computers, development of lightweight batteries that can supply power for a long time is underway. In addition, for household electricity, development of large-capacity batteries as an emergency power source in the event of a disaster is underway.

これらのバッテリーにおいては高出力でかつ高エネルギー密度のものが望ましく、従来の鉛蓄電池やNi−Hなど水系電解液電池から、Liイオン電池に代表される非水電解液系電池の開発が進められている。
特開平10-116623
These batteries preferably have high output and high energy density, and development of non-aqueous electrolyte batteries typified by Li-ion batteries has been advanced from conventional lead-acid batteries and aqueous electrolyte batteries such as Ni-H. ing.
JP 10-116623 A

これらの高容量バッテリーにおいては安全性、軽量化、高性能化が求められている。しかし、特に非水電解液系電池の場合には、電池内での短絡や外部衝撃が起こると電解液が燃焼し、発火する可能性がある。
従来、電池ケースにはAlやNiめっき鋼板などの金属やラミネート樹脂などが用いられていたが、上記の問題に対応するために金属材料を厚肉化して頑丈にすることは重量が増えるため、本来の軽量化の目的に反する。また樹脂製ケースでは強度不足となる。
These high-capacity batteries are required to have safety, weight reduction and high performance. However, particularly in the case of a non-aqueous electrolyte battery, if a short circuit or an external impact occurs in the battery, the electrolyte may burn and ignite.
Conventionally, metals such as Al and Ni-plated steel sheets and laminate resins have been used for battery cases, but increasing the weight to make metal materials thicker and more rugged to address the above problems increases the weight. Contrary to the original purpose of weight reduction. In addition, the resin case is insufficient in strength.

電池性能向上のために電池全体の容量を大きくしようとすると、電池体積が大きくなるために自動車においては設置スぺースがとられ非効率的となる。さらに車両重量が全体として重くなるために燃費も低下する。また、増えた分だけ電池のコストが増大するという問題も生じる。   If an attempt is made to increase the capacity of the entire battery in order to improve battery performance, the volume of the battery will increase, resulting in an inefficient installation space in an automobile. Furthermore, since the vehicle weight becomes heavier as a whole, fuel consumption is also reduced. There is also a problem that the cost of the battery increases by the increased amount.

集電体としては活物質が塗布された金属箔が用いられ、正極にはAl箔、負極にはCu箔が用いられる。将来的な高出力化に対しては、今後、電池の高電圧化が考えられ、集電体としては高電位環境で耐食性を有する材料が望まれる。現行のAlやCuでは電位付加環境における電解液中で耐食性を維持できないことも考えられる。特に負極のCuについて充電時にCuが溶出し、放電時に再析出すると、スパークなどの問題が生じる。   As the current collector, a metal foil coated with an active material is used, an Al foil is used for the positive electrode, and a Cu foil is used for the negative electrode. For future high output, it is conceivable to increase the voltage of the battery in the future, and a material having corrosion resistance in a high potential environment is desired as a current collector. It is also conceivable that current Al and Cu cannot maintain corrosion resistance in an electrolytic solution in a potential application environment. In particular, when Cu of the negative electrode elutes during charging and re-deposits during discharging, problems such as sparking occur.

そこで、本発明では、これらの問題を解消すべく案出されたものであり、今後の大容量バッテリーの安全性向上、軽量化、高性能化に寄与することが可能な電池構成部材を提供することを目的とする。   Therefore, the present invention has been devised to solve these problems, and provides a battery component that can contribute to improving the safety, weight and performance of future large-capacity batteries. For the purpose.

本発明者らはこれらの電池用部材として耐食性および強度を有するステンレス鋼の適用性を検討した。基材の材質が特定されCrリッチの不働態皮膜が基材表面に形成されているステンレス鋼を使用することにより、それらの問題が解決可能となった。   The present inventors examined the applicability of stainless steel having corrosion resistance and strength as these battery members. These problems can be solved by using stainless steel in which the material of the substrate is specified and a Cr-rich passive film is formed on the surface of the substrate.

本発明はその目的を達成するために、質量%においてCr:16.0〜32.0%、C:0.015%以下、Si:0.5 %以下、Mn:2.0%以下を有し、あるいはさらにMo:0.5〜2.0%、Ni:2.0%以下、Cu:
2.0%の1種又は2種以上、あるいはさらにNb:0.1〜0.8%、Ti:0.05〜0.4%、Al:0.01〜0.5%,B:0.3%以下の1種又は2種以上を含有するフェライト系ステンレス鋼であり、表層に組成比でCr/(Cr+Fe)>0.2でかつ4nm以下の不動態皮膜を有する電池構成部材を提供する。
In order to achieve the object, the present invention has Cr: 16.0 to 32.0%, C: 0.015% or less, Si: 0.5% or less, and Mn: 2.0% or less in mass%. Or Mo: 0.5 to 2.0%, Ni: 2.0% or less, Cu:
One or more of 2.0%, or Nb: 0.1 to 0.8%, Ti: 0.05 to 0.4%, Al: 0.01 to 0.5%, B: 0 Provided is a battery constituent member which is a ferritic stainless steel containing one or more of 3% or less, and has a passive film with a composition ratio of Cr / (Cr + Fe)> 0.2 and 4 nm or less on the surface layer. To do.

本発明によれば、今後の大容量バッテリーの安全性向上、軽量化、高性能化に寄与することが可能な電池構成部材を提供することを目的とする。   According to the present invention, it is an object to provide a battery constituent member that can contribute to the improvement of safety, weight reduction, and high performance of future large-capacity batteries.

ステンレス鋼は表面の不動態皮膜によって優れた耐食性が維持できる。特に電位がかかった状態で不動態を維持できるのはステンレス鋼の特徴である。非水溶液環境においては腐食に対して必要な酸素が供給されないことからより一層の耐食性が期待される。ステンレス鋼の耐食性は構成成分の影響を受けるとともに、表面の不動態皮膜の組成および厚みにより異なる。本発明の組成および不動態皮膜を有するものは電池構成部材として適切な耐食性を有することができる。   Stainless steel can maintain excellent corrosion resistance due to the passive film on the surface. In particular, it is a characteristic of stainless steel that it can maintain a passive state when an electric potential is applied. In a non-aqueous solution environment, oxygen required for corrosion is not supplied, so that further corrosion resistance is expected. The corrosion resistance of stainless steel is affected by the components and varies depending on the composition and thickness of the passive film on the surface. Those having the composition and passive film of the present invention can have appropriate corrosion resistance as a battery component.

不動態皮膜の自己生成が行なわれない非水溶液環境で良好な耐食性を得るためには、ステンレス鋼の表層に組成比でCr/(Cr+Fe)>0.2でかつ厚さ4nm以下の不動態皮膜を生成させることが必要である。
ステンレス鋼表面の不動態皮膜は非晶質のCrの酸化物および水和物よりなる。Crの組成比が高いほどFeの溶出にともなう腐食が起こりにくく耐食性には有利であることから、電池環境における耐食性を維持するための組成としてCr/(Cr+Fe)>0.2とした。
また不動態皮膜の耐食性は薄くて緻密なものほど優れることから、その不動態皮膜厚みを4nm以下とした。
不動態皮膜は通常の腐食環境においてもステンレス鋼の表面に自然に生成するものであるが、空気中の酸素をとりこむと厚く、ポーラスな皮膜が形成されやすい。したがって、酸化性の酸による酸洗処理によって、Cr組成比が高く、緻密な皮膜が得られる。
光輝焼鈍などの還元雰囲気下での焼鈍では、Cr組成比は高くなるものの粗で欠陥の多い皮膜となり、電池内部のような過酷な腐食環境では十分な耐食性は得られない。また、酸洗に使用する酸が塩酸など非酸化性で再不動態化性のない酸である場合には、Crの低い皮膜となるため、耐食性は劣る。
In order to obtain good corrosion resistance in a non-aqueous solution environment in which a passive film is not self-generated, a passive film having a composition ratio of Cr / (Cr + Fe)> 0.2 and a thickness of 4 nm or less is formed on a stainless steel surface layer. Must be generated.
The passive film on the stainless steel surface consists of amorphous Cr oxide and hydrate. Since the higher the Cr composition ratio, the less likely the corrosion due to elution of Fe is, and the better the corrosion resistance, Cr / (Cr + Fe)> 0.2 is set as the composition for maintaining the corrosion resistance in the battery environment.
Further, since the thinner and more precise the corrosion resistance of the passive film is, the thickness of the passive film is set to 4 nm or less.
The passive film is naturally formed on the surface of the stainless steel even in a normal corrosive environment, but is thick and easily forms a porous film when oxygen in the air is taken in. Therefore, a pickling treatment with an oxidizing acid provides a dense film with a high Cr composition ratio.
In annealing under a reducing atmosphere such as bright annealing, although the Cr composition ratio is high, the film is rough and has many defects, and sufficient corrosion resistance cannot be obtained in a severe corrosive environment such as the inside of the battery. In addition, when the acid used for pickling is a non-oxidizing acid such as hydrochloric acid and has no repassivation property, the corrosion resistance is inferior because the film is low in Cr.

電池ケースにAlを用いる場合には負極端子と接続される場合があり、ケース自身にも充放電の電位がかかる。したがって、電解液に対する耐食性はもちろん高電位環境における耐食性が要求される。本発明のフェライト系ステンレス鋼はそれらの腐食環境に耐えうる。   When Al is used for the battery case, it may be connected to a negative electrode terminal, and the case itself is charged and discharged. Therefore, not only the corrosion resistance to the electrolytic solution but also the corrosion resistance in a high potential environment is required. The ferritic stainless steel of the present invention can withstand these corrosive environments.

正極集電体においても貴な電位がかかる環境に曝されるが本発明のフェライト系ステンレス鋼はそれらの腐食環境に耐えることができる。   Although the positive electrode current collector is also exposed to an environment in which a noble potential is applied, the ferritic stainless steel of the present invention can withstand such a corrosive environment.

一方、負極集電体においては耐食性に劣る金属であれば充電時に金属が溶出し、放電時に集電体表面に析出する問題が生じるが、本発明のフェライト系ステンレス鋼は耐食性に優れるためにそれらの問題がない。   On the other hand, in the negative electrode current collector, if the metal is inferior in corrosion resistance, there will be a problem that the metal elutes during charging and precipitates on the surface of the current collector during discharging, but the ferritic stainless steel of the present invention is excellent in corrosion resistance. There is no problem.

Crは電池環境におけるステンレス鋼としての耐食性を維持するために最も重要な元素である。耐食性を備えるためには16.0%の含有が必要であるが、Cr量が高くなると、靭性や加工性の低下を招くためCr含有量の上限を32.0%とする。   Cr is the most important element for maintaining the corrosion resistance as stainless steel in the battery environment. In order to provide corrosion resistance, the content of 16.0% is necessary. However, if the Cr content is increased, the toughness and workability are reduced, so the upper limit of the Cr content is 32.0%.

Cは炭化物を形成し、それが最終焼鈍での再結晶フェライトのランダム化の再結晶核として働く。しかしCは冷延焼鈍後の強度を上昇させる元素であり、あまり高いと延性の低下を招くため、0.015%以下とした。 C forms carbides, which serve as recrystallization nuclei for randomization of recrystallized ferrite in the final annealing. However, C is an element that increases the strength after cold rolling annealing, and if it is too high, the ductility is lowered.

Siは通常脱酸の目的のために使用するが、固溶強化能が高く、あまりその含有量が多いと材質が硬化し延性の低下を招くので、0.5%以下とした。  Si is usually used for the purpose of deoxidation, but its solid solution strengthening ability is high, and if its content is too large, the material is hardened and the ductility is lowered, so the content was made 0.5% or less.

Mnはオーステナイト形成元素であり、固溶強化能が小さく材質への悪影響が少ない。しかし、含有量が多いと溶製時にMnヒュームが生成する等、製造性が低下するので、望ましくは成分範囲を2.0%以下とした。 Mn is an austenite-forming element, has a low solid solution strengthening ability and has little adverse effect on the material. However, if the content is large, Mn fumes are generated during melting, and the manufacturability is lowered. Therefore, the component range is desirably set to 2.0% or less.

Moは耐食性を改善するのに有効な元素である。0.5%以上でその作用は認められる。しかし、過度の添加は高温での固溶強化や動的再結晶の遅滞により、熱間加工性の低下をもたらすとともにコストの上昇を招くので0.5〜2.0%とした。   Mo is an element effective for improving the corrosion resistance. The effect is recognized at 0.5% or more. However, excessive addition causes a reduction in hot workability and an increase in cost due to solid solution strengthening at a high temperature and delay of dynamic recrystallization, so the content is set to 0.5 to 2.0%.

Niはオーステナイト形成元素であり、2.0%を越える添加は硬質化やコスト上昇を招くため、2.0%を上限とした。   Ni is an austenite forming element, and addition over 2.0% leads to hardening and cost increase, so 2.0% was made the upper limit.

Cuはステンレス鋼の耐食性を向上させるのに有効な元素であるが、過度の添加は熱間加工性や耐食性を低下させるので2.0%以下とした。   Cu is an element effective for improving the corrosion resistance of stainless steel, but excessive addition reduces the hot workability and corrosion resistance, so it was made 2.0% or less.

NbはC,Nを固定し、耐衝撃特性や二次加工性を向上させる元素であり、電池ケースなどの加工に対しては加工性を向上させる効果がある。しかし、添加しすぎると材料が硬化し逆に加工性に悪影響をもたらす。また、再結晶温度を上げることから、0.10〜0.80%とした。   Nb is an element that fixes C and N and improves impact resistance and secondary workability, and has an effect of improving workability for battery case processing. However, if it is added too much, the material will be hardened and adversely affect the workability. Further, since the recrystallization temperature is raised, the content is made 0.10 to 0.80%.

TiはC,Nを固定し、加工性および耐食性を向上させる元素である。しかし、添加しすぎると絞り加工における割れの原因となるTi系介在物などの表面欠陥が存在することから、添加する場合は0.05〜0.40%とする。   Ti is an element that fixes C and N and improves workability and corrosion resistance. However, if too much is added, surface defects such as Ti-based inclusions that cause cracks in drawing work exist, so 0.05% to 0.40% when added.

Alは脱酸や耐酸化性のために有効な元素であるが、過剰な添加は表面欠陥の原因となるため、添加する場合は0.01〜0.50%とした。   Al is an effective element for deoxidation and oxidation resistance, but excessive addition causes surface defects, so when added, the content was made 0.01 to 0.50%.

Bは、Nを固定し、耐食性や加工性を改善する作用をもつ合金成分であり、必要に応じて添加される。上記作用を発揮させるためには0.005%以上添加することが望ましい。しかし、過剰に添加すると熟間加工性の低下や溶接性の低下を招くため、0.3%以下とした。   B is an alloy component that has the effect of fixing N and improving the corrosion resistance and workability, and is added as necessary. In order to exert the above action, it is desirable to add 0.005% or more. However, if added in excess, it causes a decrease in maturing workability and a decrease in weldability, so the content was made 0.3% or less.

以下の元素は請求項の中では記載していないが、不可避的に含まれるP,S以外に下記の元素を含有してもさしつかえない。   Although the following elements are not described in the claims, they may contain the following elements in addition to P and S which are inevitably included.

V、Zr:固溶Cを炭化物として析出させる効果による加工性向上、Zrは鋼中の酸素を酸化物として捕えることによる加工性や靭性向上の面から有用な元素である。しかしながら、多量に添加すると製造性が低下するので、V、Zrの適正含有量は0.01〜0.30%である。
これら以外にもCa、Mg、Co、REMなどは、溶製中に原料であるスクラップ中より含まれることもあるが、とりたてて多量に含まれる場合を除き、耐食性や加工性には影響ない。
V, Zr: Workability improvement by the effect of precipitating solute C as carbide, Zr is a useful element from the viewpoint of workability and toughness improvement by capturing oxygen in steel as an oxide. However, since the manufacturability decreases when added in a large amount, the appropriate content of V and Zr is 0.01 to 0.30%.
In addition to these, Ca, Mg, Co, REM, and the like may be contained in the scrap, which is a raw material, during melting, but do not affect the corrosion resistance and workability unless they are contained in large amounts.

表1の成分組成をもつステンレス鋼板を実験室的に真空溶解し、圧延、焼鈍により1.0mmtの冷延焼鈍板を作製した。表1中の鋼No.A〜Jは化学成分値が本発明の範囲内にある本発明鋼である。それらのステンレス鋼に酸洗および熱処理を施し不動態皮膜を制御した。Cr濃度を上げるには再不動態化能の強30%硝酸で酸洗し、不動態皮膜を厚くするためには大気中で400℃の焼鈍を行なった。不動態皮膜の組成解析はESCAにより行った。最表層の金属濃度よりCr/(Fe+Cr)を算出した。不動態皮膜の厚みはESCAによる。ピークの半価値より算出した。   A stainless steel plate having the composition shown in Table 1 was melted in a laboratory vacuum, and a 1.0 mmt cold-rolled annealed plate was produced by rolling and annealing. Steel No. in Table 1 A to J are steels of the present invention whose chemical component values are within the scope of the present invention. These stainless steels were pickled and heat treated to control the passive film. In order to increase the Cr concentration, pickling with 30% nitric acid having strong repassivation ability was performed, and in order to increase the thickness of the passivation film, annealing was performed at 400 ° C. in the atmosphere. The composition analysis of the passive film was performed by ESCA. Cr / (Fe + Cr) was calculated from the metal concentration of the outermost layer. The thickness of the passive film depends on ESCA. Calculated from the half value of the peak.

Figure 2009167486
Figure 2009167486

これらの供試材において、Li電池の電解液として用いられる1MのLiCl0/PC中で参照電極および対極にLi板を用いて、ポテンショスタットによりLi電極に対する分極曲線を測定した。測定は20℃で実施し、自然電位より20mV/minの走査速度で分極した。3.6VvsLiおよび4.5VvsLiの電位における電流の大小で各供試材の電解液に対する耐食性を評価した。表2に測定結果を示す。比較に普通鋼、CuおよびAlの測定結果も示す。 In these test materials, a polarization curve with respect to the Li electrode was measured by a potentiostat using a Li plate as a reference electrode and a counter electrode in 1M LiCl0 4 / PC used as an electrolyte for a Li battery. Measurement was performed at 20 ° C., and polarization was performed at a scanning rate of 20 mV / min from the natural potential. The corrosion resistance of each sample material to the electrolyte was evaluated based on the magnitude of current at potentials of 3.6 V vs Li and 4.5 V vs Li. Table 2 shows the measurement results. The measurement results of ordinary steel, Cu and Al are also shown for comparison.

Figure 2009167486
Figure 2009167486

本発明鋼であるA〜J鋼は3.6VvsLi時には溶解電流が検出されずに、4.5VvsLi時に微小な溶解電流が観察されるのみであった。Li電池の電極材、ケース材として使用されているAl同等の耐食性を示した。一方、本発明よりCrの成分が外れるE鋼は発明鋼と比較すると高い電流値を示し、Alよりも腐食電流が高かった。したがって、本発明成分および不動態皮膜のCr比率を有さなければ電解液環境で耐食性を維持できないことがわかった。さらに本発明のC鋼を熱処理することにより不動態皮膜厚みを厚くしたF鋼は3.6VvsLi時には腐食電流が検出されなかったが、4.5VvsLi時にはAlより高い腐食電流が検出された。したがって、本電解液環境においては不動態皮膜厚みを本発明技術内に制御する必要があることがわかった。   In the steels A to J, which are the steels of the present invention, no melting current was detected at 3.6 V vs Li, and only a minute melting current was observed at 4.5 V vs Li. Corrosion resistance equivalent to Al used as an electrode material and a case material of a Li battery was shown. On the other hand, E steel from which the Cr component was removed from the present invention showed a higher current value than the inventive steel, and the corrosion current was higher than that of Al. Therefore, it was found that the corrosion resistance cannot be maintained in the electrolyte environment unless the Cr ratio of the component of the present invention and the passive film is provided. Furthermore, although the corrosion current was not detected at the time of 3.6VvsLi, F steel which thickened the passive film thickness by heat-treating C steel of the present invention detected the corrosion current higher than Al at 4.5VvsLi. Therefore, it was found that the passive film thickness needs to be controlled within the technique of the present invention in the present electrolytic solution environment.

本発明のステンレス鋼を電極材および電極ケースに用いることにより、自動車搭載用などに開発が進められている大容量バッテリーの安全性向上、軽量化、高性能化に寄与することが可能となった。本発明は自動車用以外にも設置型の大容量電池に適用可能で、さらにLi電池に限らず非水系の電解液を有する電池には全般的に適用可能である。   By using the stainless steel of the present invention for the electrode material and the electrode case, it has become possible to contribute to the improvement of safety, weight reduction, and high performance of a large-capacity battery being developed for use in automobiles. . The present invention can be applied not only to automobiles but also to installed large-capacity batteries, and not only to Li batteries but also to batteries having non-aqueous electrolytes in general.

Claims (3)

質量%においてCr:16.0〜32.0%、C:0.015%以下、Si:0.5 %以下、Mn:2.0%以下を含有し、残部が鉄および不可避的不純物よりなる表層に組成比でCr/(Cr+Fe)>0.2でかつ4nm以下の不動態皮膜を有することを特徴とする電池構成部材用フェライト系ステンレス鋼。 In mass%, Cr: 16.0 to 32.0%, C: 0.015% or less, Si: 0.5% or less, Mn: 2.0% or less, with the balance being iron and inevitable impurities A ferritic stainless steel for battery constituent members, characterized in that the surface layer has a passive film with a composition ratio of Cr / (Cr + Fe)> 0.2 and 4 nm or less. 請求項1記載の組成にさらにMo=0.5〜2.0%、Ni:2.0%以下、Cu:2.0%以下の1種又は2種以上を含有することを特徴とする電池構成部材用フェライト系ステンレス鋼。 The battery according to claim 1, further comprising one or more of Mo = 0.5 to 2.0%, Ni: 2.0% or less, and Cu: 2.0% or less. Ferritic stainless steel for components. 請求項1又は2記載の組成に加え、さらにNb:0.10〜0.80%、Ti:0.05〜0.40%、Al:0.01〜0.50%、B:0.3%以下の1種又は2種以上を含有することを特徴とする電池構成部材用フェライト系ステンレス鋼。 In addition to the composition according to claim 1 or 2, Nb: 0.10 to 0.80%, Ti: 0.05 to 0.40%, Al: 0.01 to 0.50%, B: 0.3 % Ferritic stainless steel for battery constituent members, comprising 1% or 2% or less.
JP2008008597A 2008-01-18 2008-01-18 Ferritic stainless steel for battery component member Pending JP2009167486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008597A JP2009167486A (en) 2008-01-18 2008-01-18 Ferritic stainless steel for battery component member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008597A JP2009167486A (en) 2008-01-18 2008-01-18 Ferritic stainless steel for battery component member

Publications (1)

Publication Number Publication Date
JP2009167486A true JP2009167486A (en) 2009-07-30

Family

ID=40969002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008597A Pending JP2009167486A (en) 2008-01-18 2008-01-18 Ferritic stainless steel for battery component member

Country Status (1)

Country Link
JP (1) JP2009167486A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095071A (en) 2011-10-30 2014-07-31 가부시키가이샤 니혼 마이크로닉스 Repeatedly chargeable and dischargeable quantum battery
CN104094443A (en) * 2012-05-22 2014-10-08 株式会社杰士汤浅国际 Electricity storage element
JP2015086470A (en) * 2013-09-26 2015-05-07 日新製鋼株式会社 Stainless steel sheet having reduced elution amount in nonaqueous electrolyte, method for producing the same, and exterior member of nonaqueous electrolyte
JP6016987B1 (en) * 2015-05-29 2016-10-26 日新製鋼株式会社 Stainless steel foil for battery exterior and manufacturing method thereof
JP6016988B1 (en) * 2015-05-29 2016-10-26 日新製鋼株式会社 Stainless steel foil for battery exterior and manufacturing method thereof
WO2021005919A1 (en) 2019-07-09 2021-01-14 Jfeスチール株式会社 Chromium-containing steel sheet for collectors of nonaqueous electrolyte secondary batteries and method for producing same
JP2021011620A (en) * 2019-07-09 2021-02-04 Jfeスチール株式会社 Ferritic stainless steel sheet for collectors of sulfide-based solid-state batteries
JPWO2020004595A1 (en) * 2018-06-27 2021-03-25 日鉄ケミカル&マテリアル株式会社 Secondary battery Stainless steel foil current collector for positive electrode and secondary battery
JP2022509863A (en) * 2018-11-29 2022-01-24 ポスコ Ferritic stainless steel with improved corrosion resistance and its manufacturing method
WO2022131189A1 (en) 2020-12-15 2022-06-23 Jfeスチール株式会社 Chromium-containing steel sheet for current collectors for nonaqueous electrolyte secondary batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257384A (en) * 2002-02-28 2003-09-12 Nisshin Steel Co Ltd Ferritic stainless steel for button type lithium secondary battery case and battery case
JP2004149920A (en) * 2002-10-07 2004-05-27 Jfe Steel Kk Stainless steel for separator of solid polymer fuel cell and its manufacturing method, and solid polymer fuel cell using that stainless steel
JP2005298939A (en) * 2004-04-15 2005-10-27 Jfe Steel Kk Stainless steel sheet having superior corrosion resistance and electroconductivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257384A (en) * 2002-02-28 2003-09-12 Nisshin Steel Co Ltd Ferritic stainless steel for button type lithium secondary battery case and battery case
JP2004149920A (en) * 2002-10-07 2004-05-27 Jfe Steel Kk Stainless steel for separator of solid polymer fuel cell and its manufacturing method, and solid polymer fuel cell using that stainless steel
JP2005298939A (en) * 2004-04-15 2005-10-27 Jfe Steel Kk Stainless steel sheet having superior corrosion resistance and electroconductivity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012048852; Heli Wang、John A.Turner: 'Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells' Journal of Power Sources Vol.128 No.2, 20040405, Page.193-200 *
JPN6012048855; Zhenguo Yang、他5名: 'Structure and Conductivity of Thermally Grown Scales on Ferritic Fe-Cr-Mn Steel for SOFC Interconnec' Journal of The Electrochemical Society Vol.151 No.11, 2004, Page.A1825-A1831 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859596B2 (en) 2011-10-30 2018-01-02 Kabushiki Kaisha Nihon Micronics Repeatedly chargeable and dischargeable quantum battery
KR20140095071A (en) 2011-10-30 2014-07-31 가부시키가이샤 니혼 마이크로닉스 Repeatedly chargeable and dischargeable quantum battery
CN104094443A (en) * 2012-05-22 2014-10-08 株式会社杰士汤浅国际 Electricity storage element
JP2015086470A (en) * 2013-09-26 2015-05-07 日新製鋼株式会社 Stainless steel sheet having reduced elution amount in nonaqueous electrolyte, method for producing the same, and exterior member of nonaqueous electrolyte
US10903461B2 (en) 2015-05-29 2021-01-26 Nisshin Steel Co., Ltd. Battery armoring stainless steel foil, and method of producing same
WO2016194660A1 (en) * 2015-05-29 2016-12-08 日新製鋼株式会社 Stainless steel foil for battery outer packaging
JP2016225134A (en) * 2015-05-29 2016-12-28 日新製鋼株式会社 Stainless foil for battery outer packaging and manufacturing method of same
JP2016225133A (en) * 2015-05-29 2016-12-28 日新製鋼株式会社 Stainless foil for battery outer packaging and manufacturing method of same
JP6016988B1 (en) * 2015-05-29 2016-10-26 日新製鋼株式会社 Stainless steel foil for battery exterior and manufacturing method thereof
US10087498B2 (en) 2015-05-29 2018-10-02 Nisshin Steel Co., Ltd. Battery armoring stainless steel foil, and method of producing same
JP6016987B1 (en) * 2015-05-29 2016-10-26 日新製鋼株式会社 Stainless steel foil for battery exterior and manufacturing method thereof
WO2016194661A1 (en) * 2015-05-29 2016-12-08 日新製鋼株式会社 Stainless steel foil for battery outer packaging
JP7148608B2 (en) 2018-06-27 2022-10-05 日鉄ケミカル&マテリアル株式会社 Stainless foil current collector for secondary battery positive electrode and secondary battery
JPWO2020004595A1 (en) * 2018-06-27 2021-03-25 日鉄ケミカル&マテリアル株式会社 Secondary battery Stainless steel foil current collector for positive electrode and secondary battery
JP2022509863A (en) * 2018-11-29 2022-01-24 ポスコ Ferritic stainless steel with improved corrosion resistance and its manufacturing method
JP7427669B2 (en) 2018-11-29 2024-02-05 ポスコ カンパニー リミテッド Ferritic stainless steel with improved corrosion resistance and its manufacturing method
KR20220008900A (en) * 2019-07-09 2022-01-21 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet for current collector of sulfide-based solid battery
CN113994020A (en) * 2019-07-09 2022-01-28 杰富意钢铁株式会社 Ferritic stainless steel sheet for current collector of sulfide-based solid battery
JP7014754B2 (en) 2019-07-09 2022-02-01 Jfeスチール株式会社 Ferritic stainless steel sheet for collectors of sulfide-based solid-state batteries
KR20220017484A (en) 2019-07-09 2022-02-11 제이에프이 스틸 가부시키가이샤 Chromium-containing steel sheet for current collector of nonaqueous electrolyte secondary battery and manufacturing method thereof
EP3998367A4 (en) * 2019-07-09 2022-09-21 JFE Steel Corporation Ferritic stainless steel sheet for collectors of sulfide-based solid-state batteries
JP2021011620A (en) * 2019-07-09 2021-02-04 Jfeスチール株式会社 Ferritic stainless steel sheet for collectors of sulfide-based solid-state batteries
WO2021005919A1 (en) 2019-07-09 2021-01-14 Jfeスチール株式会社 Chromium-containing steel sheet for collectors of nonaqueous electrolyte secondary batteries and method for producing same
KR102638365B1 (en) * 2019-07-09 2024-02-19 제이에프이 스틸 가부시키가이샤 Ferrite-based stainless steel sheet for current collectors in sulfide-based solid-state batteries
WO2022131189A1 (en) 2020-12-15 2022-06-23 Jfeスチール株式会社 Chromium-containing steel sheet for current collectors for nonaqueous electrolyte secondary batteries
KR20230098873A (en) 2020-12-15 2023-07-04 제이에프이 스틸 가부시키가이샤 Chromium-containing steel sheet for current collector of non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2009167486A (en) Ferritic stainless steel for battery component member
TWI437104B (en) Ferritic stainless steel having excellent corrosion resistance and conductivity and method of the same, separator of proton-exchange membrane fuel cell and proton-exchange membrane fuel cell
JP6726735B2 (en) Stainless steel for fuel cell separator and method of manufacturing the same
JP6315158B1 (en) Stainless steel sheet and method for producing the same, separator for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP5334485B2 (en) Current collector and negative electrode material for lithium ion secondary battery
JP5218612B2 (en) Stainless steel for fuel cell separator
JP5971446B1 (en) Ferritic stainless steel material, polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP2000328200A (en) Austenitic stainless steel for conductive electric parts and fuel battery
WO2013018322A1 (en) Stainless steel for fuel cell separator
JP4437036B2 (en) Case material for storage cells
KR102638365B1 (en) Ferrite-based stainless steel sheet for current collectors in sulfide-based solid-state batteries
JP2010106305A (en) Stainless steel for cell composing member and method for producing the same
JP3269479B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator
WO2016129598A1 (en) Ferritic stainless steel material, separator, solid polymer fuel cell, and method for producing separator
JP2000309854A (en) Austenitic stainless steel for current-carrying electric parts, and fuel cell
JP2014191941A (en) Current collector for aqueous solution-based lithium ion battery
CN112262225B (en) Stainless steel foil collector for secondary battery positive electrode
JP2020506499A (en) Stainless steel for polymer fuel cell separator having excellent contact resistance and method for producing the same
JP2020111806A (en) Stainless steel sheet and method for producing the same, separator for fuel battery, fuel battery cell, and fuel battery stack
JP3433435B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
JP7305890B2 (en) Manufacturing method of stainless steel for polymer fuel cell separator
JP7257793B2 (en) Stainless steel plate, fuel cell separator, fuel cell, and fuel cell stack
KR20240028470A (en) Stainless steel plates, separators for fuel cells, fuel cell cells, and fuel cell stacks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709