JPH0790440A - Metallic material for fused carbonate type fuel cell - Google Patents

Metallic material for fused carbonate type fuel cell

Info

Publication number
JPH0790440A
JPH0790440A JP5257666A JP25766693A JPH0790440A JP H0790440 A JPH0790440 A JP H0790440A JP 5257666 A JP5257666 A JP 5257666A JP 25766693 A JP25766693 A JP 25766693A JP H0790440 A JPH0790440 A JP H0790440A
Authority
JP
Japan
Prior art keywords
less
fuel cell
molten carbonate
metal material
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5257666A
Other languages
Japanese (ja)
Inventor
Masami Ueda
雅己 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP5257666A priority Critical patent/JPH0790440A/en
Publication of JPH0790440A publication Critical patent/JPH0790440A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a material suitable to separator used for fused carbonate type fuel cell by obtaining optimum materials as a cathode side metal and an anode side metal having specified chemical components, respectively, and cladding both materials. CONSTITUTION:The cathode side material for fused carbonate type fuel cell is composed, by wt., <=0.05% C, <=2% Si, <=2% Mn, 15-35% Cr, 1-7% Al, <=3% Ti, and the balance substantially Ni. The anode side material is composed of, by wt., <=0.05% C, <=2% Si, <=2% Mn, <=0.1% Cr, 1-7% Al, <=3% Ti and the balance substantially Ni. Both materials are clad in direct or through the other metal. By this constitution, the material for separator simultaneously satisfying plural conditions opposite with each other, such as acid resistance, reducing resistance and corrosion resistance, is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、第二世代型として開
発されている溶融炭酸塩型燃料電池のセパレータ、マス
ク材および電極材として利用できる金属材料に係り、A
lをはじめ、Ti,Si,Mnなどを含有させた特定組
成のカソード側用の高Cr含有Ni基合金とこれよりC
rを除いたアノード側用Ni基合金とをクラッドして、
耐還元性と耐食性の両方を満足した溶融炭酸塩型燃料電
池用金属材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal material which can be used as a separator, a mask material and an electrode material of a molten carbonate fuel cell developed as a second generation type.
In addition to 1, Ni, Ti, Si, Mn, etc. are contained in the specific composition of the high Cr content Ni-base alloy for the cathode and C
clad with the Ni-based alloy for the anode side excluding r,
The present invention relates to a molten carbonate fuel cell metal material satisfying both reduction resistance and corrosion resistance.

【0002】[0002]

【従来の技術】近年、エネルギー需要の増加に伴い、電
力消費量も増加の一途をたどっており、現状の発電方式
では賄いきれない状況となりつつあり、新たな発電シス
テムの開発が期待されている。新たな発電システムであ
る燃料電池の種類には、電解質にリン酸水溶液を用いる
リン酸型(PAFC)、電解質にジルコニア系のセラミ
ックを用いる固体電解質型(SOFC)、電解質に炭酸
リチウム、炭酸カリウム等を用いる溶融炭酸塩型(MC
FC)がある。
2. Description of the Related Art In recent years, as the demand for energy has increased, the amount of electric power consumption has also increased, and the current power generation system is no longer able to cover the demand. Development of new power generation systems is expected. . Fuel cells, which are new power generation systems, include phosphoric acid type (PAFC) that uses an aqueous phosphoric acid solution as an electrolyte, solid electrolyte type (SOFC) that uses zirconia-based ceramics as an electrolyte, and lithium carbonate, potassium carbonate as an electrolyte. Molten carbonate type (MC
FC).

【0003】ここで、溶融炭酸塩型燃料電池(以下MC
FCという)を例にとって、その原理および基本構造を
簡単に説明する。図3に示すように、MCFCの構成
は、アルカリ金属および/またはアルカリ土類金属の溶
融炭酸塩を電解質としてリチウムアルミネート等の多孔
質物質にしみ込ませた電解質板1の両面を、燃料極(ア
ノード)2と空気極(カソード)3とで挟んだものを単
セル4となし、さらに、実用電力を得るためにセパレー
タ5を介して該単セル4を多層に積層し、前記セパレー
タ5と燃料極(アノード)2の間に形成させる通路空間
6には燃料となるH2とCOが供給され、セパレーター
5と空気極(カソード)3の間に形成させる通路空間7
には空気が供給される構成を基本とする。
Here, a molten carbonate fuel cell (hereinafter referred to as MC
The principle and basic structure will be briefly described by taking FC as an example. As shown in FIG. 3, the MCFC has a structure in which both sides of an electrolyte plate 1 in which a molten carbonate of an alkali metal and / or an alkaline earth metal is impregnated with a porous material such as lithium aluminate as an electrolyte is used as a fuel electrode ( A single cell 4 is sandwiched between an anode 2 and an air electrode (cathode) 3, and further, the single cell 4 is laminated in multiple layers via a separator 5 in order to obtain practical power, and the separator 5 and the fuel are combined. The passage space 6 formed between the electrodes (anode) 2 is supplied with H 2 and CO serving as fuel, and the passage space 7 formed between the separator 5 and the air electrode (cathode) 3.
Basically, it is configured to be supplied with air.

【0004】発電の原理は、 (1) 燃料室にH2とCOを供給すると、燃料室に入
ったH2はアノードで1式の反応により電解質中のCO3
2-と反応してH2OとCO2を生成しe-を放出する。 H2+CO3 2- → H2O+CO2+2e- 1式 (2) e-は外部負荷を通ってカソードに戻り、発電
が行なわれる。 (3) 燃料中のCOは2式によりH2O反応して、H2
とCO2を生成する。生成されたH2とCO2は有効利用
される。 CO+H2O → H2+CO2 2式 (4) 空気室に入ったO2と1式、2式のリサイクル
されたCO2はカソードで次式3式の反応によりCO3 2-
を生成し、電解質中にCO3 2-を供給する。 1/2O2+CO2+2e- → CO3 2- 3式 なお、2式は1式で生成されるH2Oの有効利用と、C
2の3式の利用率補充に活用される。上記の反応は、
電解質を溶かした水に、一対の電極を差し込んで電流を
流すと、一方の電極表面に水素が発生し、もう一方の電
極表面に酸素が発生する、いわゆる水の電気分解反応の
逆の反応を応用したものであるといえる。
The principle of power generation is as follows: (1) When H 2 and CO are supplied to the fuel chamber, H 2 that has entered the fuel chamber is the anode and the CO 3 in the electrolyte is caused by the reaction of formula 1.
Reacts with 2- to produce H 2 O and CO 2 and releases e . H 2+ CO 3 2- → H 2 O + CO 2 + 2e - 1 Equation (2) e - back to the cathode through an external load, power generation is performed. (3) CO in the fuel reacts with H 2 O according to the equation 2 to generate H 2
And CO 2 are produced. The generated H 2 and CO 2 are effectively used. CO + H 2 O → H 2+ CO 2 2 formula (4) O 2 in the air chamber and the recycled CO 2 of formula 1 and formula 2 are CO 3 2- by the reaction of formula 3 at the cathode.
To produce CO 3 2− in the electrolyte. 1 / 2O 2 + CO 2 + 2e - → CO 3 2- 3 Formula Incidentally, two equations and effective use of H 2 O generated in one set, C
It is used to supplement the utilization rate of the three formulas of O 2 . The above reaction is
When a pair of electrodes is inserted into water with electrolyte dissolved and an electric current is applied, hydrogen is generated on the surface of one electrode and oxygen is generated on the surface of the other electrode. It can be said that it is an application.

【0005】さて、上述したMCFCの構成において、
特に重要視されるのがセパレータの存在である。セパレ
ータは、炭酸塩に対する耐食性が要求されることから、
その材質に、例えばSUS310系などのステンレス鋼
や、アノード側の耐食性をより高めるために、ステンレ
ス鋼にNiをクラッドしたもの等を用いるのが一般的で
ある。セパレータの具体的な役割は、単セルを積層する
際に各々単セルを仕切る、燃料となるH2や、CO3 2-
補給するためのO2やCO2の供給路を形成する、燃料と
なるH2と、O2やCO2を遮断するなどの機能を有する
が、ほかにも、電解質板を保持するという役目も担う。
Now, in the above-mentioned MCFC configuration,
The presence of a separator is particularly important. Since the separator is required to have corrosion resistance against carbonates,
As the material, for example, stainless steel such as SUS310 series, or stainless steel with Ni clad to improve corrosion resistance on the anode side is generally used. The specific role of the separator is to partition the single cells when stacking the single cells, to form a supply path of O 2 or CO 2 for replenishing H 2 and CO 3 2− serving as fuel, and a fuel. It has a function of blocking H 2 and O 2 and CO 2 which become the other, and also plays a role of holding the electrolyte plate.

【0006】電解質板を保持するには、予め電解質板の
面積を、燃料極や空気極の面積よりも大きくしておくこ
とにより、容易にセパレータとの積層が可能となって、
電解質板を保持することができる。その際、電解質板は
セパレータ同士の絶縁も兼ねることになるが、セパレー
タが直接溶融炭酸塩に接触する箇所(以下マスク部とい
う、図3の符号8,9参照)では、著しい腐食が起こる
ことが問題となっている。この腐食の原因は、燃料極側
では燃料のH2と反応生成物であるH2Oが、また、空気
極側ではO2とリサイクルされたCO2が、それぞれ電解
質中に面方向に濃淡を生じて、電解質板端部で局部電池
が発生することによる。
In order to hold the electrolyte plate, by making the area of the electrolyte plate larger than the areas of the fuel electrode and the air electrode in advance, it becomes possible to easily stack with the separator.
The electrolyte plate can be held. At that time, the electrolyte plate also serves to insulate the separators from each other, but significant corrosion may occur at a portion where the separator comes into direct contact with the molten carbonate (hereinafter referred to as a mask portion, see reference numerals 8 and 9 in FIG. 3). It's a problem. The cause of this corrosion is that H 2 of the fuel and H 2 O, which is a reaction product, on the fuel electrode side, and O 2 and recycled CO 2 on the air electrode side, respectively, in the plane direction in the electrolyte. This is due to the generation of local batteries at the edges of the electrolyte plate.

【0007】局部電池発生の問題については、現段階で
は解決する手段がないため、従来はセパレータが直接溶
融炭酸塩に接触する箇所、すなわち図3に示すセパレー
タ5のマスク部8,9にアルミナイズ処理を施してマス
ク部の腐食に対処していた。アルミナイズ処理として
は、高温での溶融炭酸塩による腐食が極めて少ないアル
ミ金属間化合物やアルミ酸化物(アルミナ)を溶射法、
浸漬法、溶融メッキ法などにより被覆する方法が採られ
ている。
With respect to the problem of the local battery generation, there is no means for solving it at this stage. Therefore, conventionally, a separator is directly contacted with molten carbonate, that is, the mask portions 8 and 9 of the separator 5 shown in FIG. 3 are aluminized. It was treated to prevent corrosion of the mask. As the aluminizing treatment, the aluminum intermetallic compound and aluminum oxide (alumina), which are hardly corroded by molten carbonate at high temperature, are sprayed,
A coating method such as a dipping method or a hot dipping method is adopted.

【0008】[0008]

【発明が解決しようとする課題】MCFCの遭遇する環
境下において、金属材料は酸化、水素脆化あるいは混合
塩腐食に加えて、熱疲労によって一層過酷な条件下にさ
らされる。Ni3Al相を含有するNi−Al合金膜
は、その優れた高温特性から燃料電池への応用が期待さ
れ、現在、溶射あるいは鍍金法により作成されている。
しかし、現状法では、下地との密着性が悪い、気孔が多
いなどの難点が有り、耐食性が十分でないなどの問題が
ある。また、耐酸性と耐還元性という相反する条件と耐
食性を同時に満たそうとすれば、高合金化して難加工材
になる恐れもあり、高価な材料となる。
In the environment encountered by MCFCs, metallic materials are exposed to more severe conditions due to thermal fatigue in addition to oxidation, hydrogen embrittlement or mixed salt corrosion. A Ni—Al alloy film containing a Ni 3 Al phase is expected to be applied to a fuel cell due to its excellent high temperature characteristics, and is currently prepared by a thermal spraying or plating method.
However, the current method has problems such as poor adhesion to the base and many pores, and insufficient corrosion resistance. Further, if it is attempted to satisfy the contradictory conditions of acid resistance and reduction resistance and corrosion resistance at the same time, there is a risk that the alloy will become highly alloyed and become a difficult-to-process material, resulting in an expensive material.

【0009】この発明は、公知技術において、溶融炭酸
塩に対する耐食性に優れた金属材料がないことに鑑み、
上記セパレータ、マスク材、電極材としてカソード側用
金属材料あるいはアノード側用属材料として最適の材料
の特徴をそれぞれ備えた構成からなる溶融炭酸塩型燃料
電池用金属材料の提供を目的としている。
In view of the fact that there is no metallic material excellent in corrosion resistance against molten carbonate in the known art, the present invention is
An object of the present invention is to provide a metal material for a molten carbonate fuel cell, which is configured to have the characteristics of the above-mentioned separator, mask material, and metal material for the cathode side as the electrode material or the optimum material as the metal material for the anode side.

【0010】[0010]

【課題を解決するための手段】この発明は、溶融炭酸塩
に対する耐食性に優れた金属材料がないことを解決すべ
く、Ni基合金にAlまたはAlおよびTiを添加し、
金属間化合物を有することで溶融炭酸塩に対する耐食性
が改善されることを知見し、そこでさらにNi基合金に
Alをはじめ、Ti,Si,Mnなどを含有させ、使用
環境に適した高温特性を有する金属間化合物を均一に分
散させるようにし、さらに酸化および還元雰囲気を分離
するための部材、すなわちセパレータ材については異な
る高温特性を有するNi基合金をクラッドすることで、
耐酸性と耐還元性という相反する条件と耐食性を同時に
満たした材料が得られることを知見し、この発明を完成
した。
In order to solve the problem that there is no metallic material excellent in corrosion resistance against molten carbonate, the present invention adds Al or Al and Ti to a Ni-based alloy,
It has been found that the corrosion resistance to molten carbonate is improved by having an intermetallic compound, and therefore, Ni-based alloy further contains Al, Ti, Si, Mn, etc., and has high temperature characteristics suitable for use environment. A member for separating the intermetallic compound uniformly and further separating the oxidizing and reducing atmospheres, that is, by clad Ni-based alloys having different high temperature characteristics for the separator material,
The present inventors have completed the present invention by finding that a material satisfying the contradictory conditions of acid resistance and reduction resistance and corrosion resistance can be obtained at the same time.

【0011】すなわち、この発明は、C 0.05wt
%以下、Si 2wt%以下、Mn 2wt%以下、C
r 15〜35wt%、Al 1〜7wt%、Ti 3
wt%以下を含有し、残部がNiおよび不可避的不純物
からなる溶融炭酸塩型燃料電池用のカソード側用金属材
料である。また、この発明は、C 0.05wt%以
下、Si 2wt%以下、Mn 2wt%以下、Cr
0.1wt%以下、Al 1〜7wt%、Ti 3wt
%以下を含有し、残部がNiおよび不可避的不純物から
なる溶融炭酸塩型燃料電池用のアノード側用金属材料で
ある。
That is, the present invention provides C 0.05 wt.
% Or less, Si 2 wt% or less, Mn 2 wt% or less, C
r 15-35 wt%, Al 1-7 wt%, Ti 3
It is a metal material for the cathode side for a molten carbonate fuel cell, which contains less than wt% and the balance is Ni and inevitable impurities. In addition, this invention is C 0.05 wt% or less, Si 2 wt% or less, Mn 2 wt% or less, Cr
0.1wt% or less, Al 1-7wt%, Ti 3wt
% Or less, and the balance being Ni and unavoidable impurities, which is a metal material for the anode side for a molten carbonate fuel cell.

【0012】さらに、この発明は、C 0.05wt%
以下、Si 2wt%以下、Mn 2wt%以下、Cr
15〜35wt%、Al 1〜7wt%、Ti 3w
t%以下を含有し、残部がNiおよび不可避的不純物か
らなるカソード側用金属材料と、C 0.05wt%以
下、Si 2wt%以下、Mn 2wt%以下、Cr
0.1wt%以下、Al 1〜7wt%、Ti 3wt
%以下を含有し、残部がNiおよび不可避的不純物から
なるアノード側用金属材料とが、直接あるいは他金属、
合金材料を介在してクラッドされている溶融炭酸塩型燃
料電池用金属材料を併せて提案する。
Furthermore, the present invention provides C 0.05 wt%
Below, Si 2 wt% or less, Mn 2 wt% or less, Cr
15-35 wt%, Al 1-7 wt%, Ti 3w
a metal material for the cathode side containing t% or less and the balance being Ni and unavoidable impurities, C 0.05 wt% or less, Si 2 wt% or less, Mn 2 wt% or less, Cr
0.1wt% or less, Al 1-7wt%, Ti 3wt
% Or less, with the balance being Ni and unavoidable impurities, the metal material for the anode side is a direct or other metal,
We also propose a metal material for molten carbonate fuel cells that is clad with an alloy material interposed.

【0013】この発明のカソード側用金属材料の組成の
限定理由について説明する。Cは、0.05%を超えて
含有すると炭化クロムを形成し、耐酸化性を低下させる
ので0.05%以下とする。また、Tiと結び付き、有
効Ti量を減少させる。Siは、耐食性および耐酸化性
を改善する効果を有するが、過度に存在するとオーステ
ナイト組織を不安定化し、熱間加工性を害するので2%
以下とする。Mnは、オーステナイト形成元素であると
ともに、熱間加工性を改善する効果を有するが、耐酸化
性をやや悪くするので少ないほうが好ましく、通常のス
テンレス鋼に含有されている程度で良く、2%以下とす
る。Crは、耐酸化性の基本成分であり、最小15%の
含有を必要とし、しかし35%を超えて添加しても効果
が飽和すること、および溶融炭酸塩に対する耐食性が劣
化するので、15〜35wt%とする。Alは、金属間
化合物形成の基本成分であり、最小1%の含有を必要と
し、しかし、7%を超えて添加すると加工性が劣化する
ので1〜7%とする。また、この発明の合金が鉄をベー
スとしないのは、鉄−Cr合金に数%のAlが含有され
ると加工性が劣化し、かえってコストアップになるため
である。Tiは、Alとともに金属間化合物形成の基本
成分である。本合金はAl濃度が高いために粗大なAl
Nの生成は抑制される。しかし、3%を超え添加しても
効果が飽和するので3%以下とする。Niは、この発明
の金属材料の基幹をなす成分であり、上記の各種成分の
含有残余を占める。
The reasons for limiting the composition of the metal material for the cathode side of the present invention will be described. When C is contained in excess of 0.05%, it forms chromium carbide and reduces the oxidation resistance, so the content is made 0.05% or less. It also binds to Ti and reduces the amount of effective Ti. Si has the effect of improving corrosion resistance and oxidation resistance, but if present in excess, it destabilizes the austenite structure and impairs hot workability, so it is 2%.
Below. Mn is an austenite-forming element and also has an effect of improving hot workability, but it is preferable that it is small because it slightly deteriorates the oxidation resistance. It may be contained in ordinary stainless steel and may be 2% or less. And Cr is a basic component of oxidation resistance and requires a minimum content of 15%. However, even if added in excess of 35%, the effect is saturated and the corrosion resistance to molten carbonate deteriorates. 35 wt%. Al is a basic component for forming an intermetallic compound, and it is necessary to contain Al in a minimum amount of 1%. However, if it is added in excess of 7%, the workability deteriorates, so it is set to 1 to 7%. Further, the alloy of the present invention is not based on iron because the workability is deteriorated when the iron-Cr alloy contains a few% of Al and the cost is increased. Ti is a basic component for forming an intermetallic compound together with Al. This alloy has a high Al concentration, and
Generation of N is suppressed. However, the effect is saturated even if added in excess of 3%, so the content is made 3% or less. Ni is a component that forms the basis of the metal material of the present invention, and occupies the remaining content of the above various components.

【0014】この発明のアノード側用金属材料の組成の
限定理由について説明する。Cは0.05%を超えて含
有するとTiと結び付き有効Ti量を減少させる。S
i、Mn、AlおよびTiは前記カソード側金属材料と
同じ理由による。また、Crを含有すると耐還元性が劣
化するため、0.1%以下とする。
The reasons for limiting the composition of the metal material for the anode side of the present invention will be described. When C exceeds 0.05%, it binds to Ti and reduces the amount of effective Ti. S
i, Mn, Al and Ti are for the same reason as the metal material on the cathode side. Further, if Cr is contained, the reduction resistance deteriorates, so the content is made 0.1% or less.

【0015】[0015]

【作用】この発明は、溶融炭酸塩に対する耐食性に優れ
た金属材料として、Ni基合金にAlまたはAlおよび
Tiを添加し、金属間化合物を有することで溶融炭酸塩
に対する耐食性を改善すると共に、高温強度も向上さ
せ、さらに所定量のCrを含有させて溶融炭酸塩による
酸化性雰囲気に対する耐食性を向上させ、Ti,Si,
Mnなどを含有させ、使用環境に適した高温特性を付与
したことにより、カソード側金属材料として最適の特性
を得ている。また、アノード側金属材料として耐還元性
を満足させるため、Crを含有しない上記のAlまたは
AlおよびTiを添加したNi基合金が最適である。上
記のカソード側またはアノード側金属材料はマスク材と
してのみならず、当該合金を粉末化して粉末冶金的製法
にてカソード側またはアノード側電極材としてもそれぞ
れ最適である。さらに、従来セパレータ材としては、N
i/オーステナイト系ステンレスクラッド材やNiメッ
キオーステナイト系ステンレスが用いられているが、耐
食性や高温強度の面で満足する結果が得られていない
が、この発明では、上記の異なる高温特性を有するNi
基合金をクラッドすることで、耐酸性と耐還元性という
相反する条件と溶融炭酸塩に対する耐食性を同時に満た
しており、各金属材料の製造性も良く、両材料のクラッ
ド化並びに加工性も良好でセパレータ材として最適であ
る。
The present invention improves the corrosion resistance to molten carbonate by adding Al or Al and Ti to a Ni-based alloy as a metal material having excellent corrosion resistance to molten carbonate and improving the corrosion resistance to molten carbonate by having an intermetallic compound. Strength is also improved, and further, a predetermined amount of Cr is added to improve the corrosion resistance against the oxidizing atmosphere by the molten carbonate, and Ti, Si,
By containing Mn and the like and imparting high temperature characteristics suitable for the use environment, optimum characteristics as a cathode side metal material are obtained. Further, in order to satisfy the reduction resistance as the metal material on the anode side, the above-mentioned Al containing no Cr or the Ni-based alloy to which Al and Ti are added is optimal. The above-mentioned cathode-side or anode-side metal material is most suitable not only as a mask material, but also as a cathode-side or anode-side electrode material by powder metallurgical production of the alloy. Furthermore, as a conventional separator material, N
Although the i / austenitic stainless clad material and the Ni-plated austenitic stainless are used, satisfactory results have not been obtained in terms of corrosion resistance and high temperature strength.
By clad with a base alloy, the contradictory conditions of acid resistance and reduction resistance and corrosion resistance against molten carbonate are satisfied at the same time, the manufacturability of each metal material is good, and the cladding and workability of both materials are good. Most suitable as a separator material.

【0016】[0016]

【実施例】【Example】

実施例1 表1にこの発明の効果を実証するために作成した本発明
材料および比較材料の試料の化学組成を示す。腐食試験
は炭酸塩としてLi2CO3:K2CO3=62:38(モ
ル比)を使用し、温度680℃で上記炭酸塩を溶融し、
試料合金に塗布し、雰囲気ガスとして、空気(試料N
o.1,4,5)あるいはH2ガス(試料2,3)を使
用、200時間にわたって試験した。その結果を図1に
示し、横軸の試験時間と縦軸の腐食による減肉厚さとの
関係を示す。本発明材料の減肉厚さは約5μm以下に減
少し、耐食性が大幅に向上することを示している。図2
に本発明材料No.1の時効硬化特性を示す。650〜
700℃で硬さが最大になっており、機械的特性の面か
らも溶融炭酸塩型燃料電池用金属材料として適している
ことが分かる。
Example 1 Table 1 shows the chemical compositions of samples of the material of the present invention and a comparative material prepared for demonstrating the effect of the present invention. In the corrosion test, Li 2 CO 3 : K 2 CO 3 = 62: 38 (molar ratio) was used as a carbonate, and the carbonate was melted at a temperature of 680 ° C.
It is applied to the sample alloy, and as the atmosphere gas, air (Sample N
o. 1, 4, 5) or H 2 gas (Samples 2, 3) were used and tested for 200 hours. The results are shown in FIG. 1, and the relationship between the test time on the horizontal axis and the thickness reduction due to corrosion on the vertical axis is shown. The reduced thickness of the material of the present invention is reduced to about 5 μm or less, showing that the corrosion resistance is significantly improved. Figure 2
Inventive material No. 1 shows the age hardening characteristic of 1. 650
The hardness is maximum at 700 ° C., and it is understood that it is suitable as a metal material for molten carbonate fuel cells from the viewpoint of mechanical properties.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】セパレータ材として、耐酸性と耐還元性
という相反する条件と溶融炭酸塩に対する耐食性を同時
に満たそうとすれば、高合金化して難加工材になり、高
価な材料となり、また、Ni/オーステナイト系ステン
レスクラッド材やNiメッキオーステナイト系ステンレ
スでは耐食性や高温強度の面で満足する結果が得られて
いない。ところが、この発明によるAlをはじめ、T
i,Si,Mnなどを含有させた特定組成のカソード側
用の高Cr含有Ni基合金と、これよりCrを除いたア
ノード側用Ni基合金の異なる高温特性を有するNi基
合金をクラッドすることで、耐酸性と耐還元性という相
反する条件と耐食性を同時に満たしており、各金属材料
の製造性も良く、両材料のクラッド化並びに加工性も良
好でセパレータ材として最適である。又、材料の耐食性
が向上したことにより、燃料電池の長寿命化が期待で
き、マスク部の従来のアルミナイズ処理が不要となり、
電池を安価に提供できる。
As a separator material, if it is attempted to simultaneously satisfy the contradictory conditions of acid resistance and reduction resistance and the corrosion resistance to molten carbonate, it becomes a highly alloyed material which becomes a difficult-to-process material and an expensive material. Ni / austenitic stainless clad materials and Ni-plated austenitic stainless steels have not provided satisfactory results in terms of corrosion resistance and high temperature strength. However, including Al according to the present invention, T
Cladding a Ni-based alloy having a high temperature characteristic of a high-Cr-containing Ni-based alloy containing i, Si, Mn, etc. for the cathode side and a Ni-based alloy for the anode side with Cr removed therefrom. In addition, the contradictory conditions of acid resistance and reduction resistance and corrosion resistance are satisfied at the same time, the manufacturability of each metal material is good, and the cladability and workability of both materials are good, which makes it an optimal separator material. In addition, the improved corrosion resistance of the material can be expected to extend the life of the fuel cell, eliminating the need for conventional aluminizing treatment on the mask,
Batteries can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】試験時間と減肉厚さとの関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between test time and thickness reduction.

【図2】時効温度と硬さとの関係を示すグラフである。FIG. 2 is a graph showing the relationship between aging temperature and hardness.

【図3】溶融炭酸塩型燃料電池の積層構造を示す説明図
である。
FIG. 3 is an explanatory view showing a laminated structure of a molten carbonate fuel cell.

【符号の説明】[Explanation of symbols]

1 電解質板 2 燃料極 3 空気極 4 単セル 5 セパレータ 6,7 通路空間 8,9 マスク部 1 Electrolyte plate 2 Fuel electrode 3 Air electrode 4 Single cell 5 Separator 6,7 Passage space 8,9 Mask part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C 0.05wt%以下、Si 2wt
%以下、Mn 2wt%以下、Cr 15〜35wt
%、Al 1〜7wt%、Ti 3wt%以下を含有
し、残部がNiおよび不可避的不純物からなる溶融炭酸
塩型燃料電池用のカソード側用金属材料。
1. C 0.05 wt% or less, Si 2 wt
% Or less, Mn 2 wt% or less, Cr 15 to 35 wt
%, Al 1 to 7 wt%, Ti 3 wt% or less, and the balance being Ni and inevitable impurities, the cathode side metal material for a molten carbonate fuel cell.
【請求項2】 C 0.05wt%以下、Si 2wt
%以下、Mn 2wt%以下、Cr 0.1wt%以
下、Al 1〜7wt%、Ti 3wt%以下を含有
し、残部がNiおよび不可避的不純物からなる溶融炭酸
塩型燃料電池用のアノード側用金属材料。
2. C: 0.05 wt% or less, Si: 2 wt
%, Mn 2 wt% or less, Cr 0.1 wt% or less, Al 1 to 7 wt%, Ti 3 wt% or less, and the balance consisting of Ni and unavoidable impurities, the anode side metal for a molten carbonate fuel cell. material.
【請求項3】 C 0.05wt%以下、Si 2wt
%以下、Mn 2wt%以下、Cr 15〜35wt
%、Al 1〜7wt%、Ti 3wt%以下を含有
し、残部がNiおよび不可避的不純物からなるカソード
側用金属材料と、C 0.05wt%以下、Si 2w
t%以下、Mn 2wt%以下、Cr 0.1wt%以
下、Al 1〜7wt%、Ti 3wt%以下を含有
し、残部がNiおよび不可避的不純物からなるアノード
側用金属材料とが、直接あるいは他金属、合金材料を介
在してクラッドされている溶融炭酸塩型燃料電池用金属
材料。
3. C 0.05 wt% or less, Si 2 wt
% Or less, Mn 2 wt% or less, Cr 15 to 35 wt
%, Al 1 to 7 wt%, Ti 3 wt% or less, and the balance of Ni and inevitable impurities for the cathode side metal material, C 0.05 wt% or less, Si 2w
t% or less, Mn 2 wt% or less, Cr 0.1 wt% or less, Al 1 to 7 wt%, Ti 3 wt% or less, the balance being Ni and unavoidable impurities, and the anode side metal material, directly or other A metal material for a molten carbonate fuel cell, which is clad with a metal or alloy material interposed.
JP5257666A 1993-09-20 1993-09-20 Metallic material for fused carbonate type fuel cell Pending JPH0790440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5257666A JPH0790440A (en) 1993-09-20 1993-09-20 Metallic material for fused carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5257666A JPH0790440A (en) 1993-09-20 1993-09-20 Metallic material for fused carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPH0790440A true JPH0790440A (en) 1995-04-04

Family

ID=17309422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5257666A Pending JPH0790440A (en) 1993-09-20 1993-09-20 Metallic material for fused carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPH0790440A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249050A1 (en) * 1999-11-30 2002-10-16 Fuelcell Energy, Inc. Bipolar separator plate with improved wet seals
EP1595963A1 (en) * 2003-02-21 2005-11-16 Mitsubishi Materials Corporation Ni BASE ALLOY
US7485199B2 (en) 2002-01-08 2009-02-03 Mitsubishi Materials Corporation Ni based alloy with excellent corrosion resistance to supercritical water environments containing inorganic acids
WO2014181385A1 (en) * 2013-05-09 2014-11-13 Jfeスチール株式会社 Ni ALLOY CLAD STEEL HAVING EXCELLENT GRAIN BOUNDARY CORROSION RESISTANCE PROPERTIES, AND METHOD FOR PRODUCING SAME
CN115595578A (en) * 2022-10-27 2023-01-13 江阴市珞珈绿碳科技有限公司(Cn) Electrolytic cell material for molten carbonate electrolytic system and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249050A1 (en) * 1999-11-30 2002-10-16 Fuelcell Energy, Inc. Bipolar separator plate with improved wet seals
EP1249050A4 (en) * 1999-11-30 2003-04-09 Fuelcell Energy Inc Bipolar separator plate with improved wet seals
US7485199B2 (en) 2002-01-08 2009-02-03 Mitsubishi Materials Corporation Ni based alloy with excellent corrosion resistance to supercritical water environments containing inorganic acids
EP1595963A1 (en) * 2003-02-21 2005-11-16 Mitsubishi Materials Corporation Ni BASE ALLOY
EP1595963A4 (en) * 2003-02-21 2006-06-14 Mitsubishi Materials Corp Ni BASE ALLOY
EP1908854A1 (en) * 2003-02-21 2008-04-09 Mitsubishi Materials Corporation Nickel-base alloys
WO2014181385A1 (en) * 2013-05-09 2014-11-13 Jfeスチール株式会社 Ni ALLOY CLAD STEEL HAVING EXCELLENT GRAIN BOUNDARY CORROSION RESISTANCE PROPERTIES, AND METHOD FOR PRODUCING SAME
CN105164290A (en) * 2013-05-09 2015-12-16 杰富意钢铁株式会社 Ni alloy clad steel having excellent grain boundary corrosion resistance properties, and method for producing same
JP6032354B2 (en) * 2013-05-09 2016-11-24 Jfeスチール株式会社 Ni alloy clad steel excellent in intergranular corrosion resistance and method for producing the same
CN115595578A (en) * 2022-10-27 2023-01-13 江阴市珞珈绿碳科技有限公司(Cn) Electrolytic cell material for molten carbonate electrolytic system and preparation method thereof

Similar Documents

Publication Publication Date Title
US7842434B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US7981561B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US8158057B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
JP3070038B2 (en) Current collector for fuel cell and method of manufacturing the same
JP2004520479A (en) High temperature material
CN101454932B (en) Interconnector for a fuel cell stack, and method for production
US20050249999A1 (en) Press separator for fuel cell
JP3097690B1 (en) Polymer electrolyte fuel cell
JP3236755B2 (en) Oxidation resistant metal material
JP3888051B2 (en) Polymer electrolyte fuel cell
JP3097689B1 (en) Polymer electrolyte fuel cell
JP5573039B2 (en) Stainless steel for polymer electrolyte fuel cell separator and method for producing the same
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
US20040253501A1 (en) Separator for fuel cell and method for preparation thereof
JP4930222B2 (en) Austenitic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP4967831B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP3238812B2 (en) Metal materials for solid oxide fuel cells
JP3126925B2 (en) Metallic materials for molten carbonate fuel cells
US20050202302A1 (en) Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing fuel cell separator
JP3433435B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
JP3245304B2 (en) Metal material
JP2932211B2 (en) Corrosion resistant stainless steel for molten carbonate fuel cells
JP2004071502A (en) Separator for fuel cell and fuel cell equipped with the same
JP5625902B2 (en) Stainless steel for polymer electrolyte fuel cell separator and method for producing the same
JPH0992306A (en) Molten carbonate type fuel cell