JPS62247041A - Copper alloy having superior migration resistance - Google Patents

Copper alloy having superior migration resistance

Info

Publication number
JPS62247041A
JPS62247041A JP8968886A JP8968886A JPS62247041A JP S62247041 A JPS62247041 A JP S62247041A JP 8968886 A JP8968886 A JP 8968886A JP 8968886 A JP8968886 A JP 8968886A JP S62247041 A JPS62247041 A JP S62247041A
Authority
JP
Japan
Prior art keywords
alloy
migration resistance
copper alloy
migration
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8968886A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
宮藤 元久
Isao Hosokawa
功 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8968886A priority Critical patent/JPS62247041A/en
Publication of JPS62247041A publication Critical patent/JPS62247041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To prevent the migration phenomenon that Cu ions leach out of the water stuck part of a Cu alloy, deposit on the cathode and reach the anode by specifying the amounts of Sn, Ni, Zn and Cu. CONSTITUTION:This Cu alloy having superior migration resistance consists of 0.5-6wt% Sn, 3-15wt% Ni, 1.5-5wt% Zn and the balance Cu. When the alloy is used, a short circuit between the cathode and anode is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐マイグレーション性に優れた銅合金に係り、
特に 高密度実装化が要求される個別半導体(ダイオー
ド、トランジスタ、FET等)用リードフレーム、集積
回路用リードフレーム、抵抗器リード、コンデンサーリ
ード及び機構部品(端子、コネクター)材料に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a copper alloy with excellent migration resistance.
In particular, it relates to lead frames for individual semiconductors (diodes, transistors, FETs, etc.) that require high-density packaging, lead frames for integrated circuits, resistor leads, capacitor leads, and materials for mechanical parts (terminals, connectors).

[従来の技術] ゛ 近年、電気・電子部品は軽薄短小化のニーズに伴ない、
急速に小型化、高密度実装化が進み、!j8積回路、抵
抗器、端子及びコネクター等は電極数が増加し、しかも
その電極間ピッチも1/lOインチ(,2、54mm)
から1720インチ(1,27mm)、1/30インチ
(0,847mm)へと小さくなりつつある。
[Conventional technology] In recent years, electric and electronic components have become lighter, thinner, and smaller.
Rapid miniaturization and high-density packaging are progressing! The number of electrodes has increased for j8 product circuits, resistors, terminals, connectors, etc., and the pitch between the electrodes has also increased to 1/10 inch (2, 54 mm).
It is becoming smaller from 1,720 inches (1,27 mm) to 1/30 inch (0,847 mm).

電気・電子部品の電極間ピッチが小さくなると、湿気の
結露や水分の侵入によって電極間に水分が付着すること
があり、マイグレーシコンを生じることが少なくない。
When the pitch between the electrodes of electrical/electronic components becomes smaller, moisture may adhere between the electrodes due to condensation or intrusion of moisture, often resulting in migration migration.

この「マイグレーション」とは、水分の付着した部分に
銅イオンが溶出し、この溶出した銅イオンが電極間電位
で還元されて金Emとして析出することになり、更にか
かる溶出・還元・析出という現象が綴り返えして生じる
ことによって結果的に析出銅全屈の部品が陰極から成長
して陽極まで達する現象をいう。
This "migration" is a phenomenon in which copper ions are eluted into areas where moisture has adhered, and the eluted copper ions are reduced at the potential between the electrodes and precipitated as gold Em, and further elution, reduction, and precipitation occur. This refers to a phenomenon in which a precipitated copper component grows from the cathode and reaches the anode as a result of the reversal of the precipitated copper.

そして、マイグレーションが生じると陰極と陽極が短絡
して、′i!気・電子回路が正常に作動しないこととな
り、更に部品を破損することもある。
When migration occurs, the cathode and anode are short-circuited, and 'i! The air/electronic circuits will not work properly and may even damage parts.

従って、個別半導体用リードフレーム等の素材として耐
マイグレーション性の優れた銅合金が要望されている。
Therefore, a copper alloy with excellent migration resistance is desired as a material for lead frames for individual semiconductors and the like.

[発明が解決しようとする問題点] ところで、前記の個別半導体用リードフレーム等にはC
u−9%N i −2、3% S nを代表とするCu
−Ni−Sn合金が使用されることが多いが、結露する
環境下ではマイグレーションを生じる恐れがある。
[Problems to be solved by the invention] By the way, the above-mentioned lead frames for individual semiconductors, etc.
Cu represented by u-9%Ni-2, 3%Sn
-Ni-Sn alloy is often used, but there is a risk of migration occurring in an environment with dew condensation.

一方、黄銅はマイグレーションを生じ難いことが判明し
ているが、応力腐食割れを生じるという致命的な欠陥を
有しているためその用途には不適当である。
On the other hand, although it has been found that brass is less likely to cause migration, it is unsuitable for this use because it has a fatal defect of causing stress corrosion cracking.

そこで、本発明はCu−Ni−Sn合金の特性を劣化さ
せることなく、黄銅と同等の耐マイグレーション性を備
えた合金を得ることを目的として創作された。
Therefore, the present invention was created with the aim of obtaining an alloy having migration resistance equivalent to that of brass without deteriorating the properties of the Cu-Ni-Sn alloy.

[問題点を解決するための手段] 本発明は、ffi量%で、Sn:0.5〜6.0%、N
i:3.O〜15.0%、Zn:1.5〜5.0%を含
有し、残部が実質的にCu及び不純物からなることを特
徴とする耐マイグレーション性に優れた銅合金に係る。
[Means for solving the problems] The present invention provides ffi amount% of Sn: 0.5 to 6.0%, N
i:3. The present invention relates to a copper alloy having excellent migration resistance, which is characterized by containing O~15.0%, Zn: 1.5~5.0%, and the remainder consisting essentially of Cu and impurities.

[作用] 本発明の銅合金の含有成分及びその成分割合を限定した
理由について説明する。
[Function] The components contained in the copper alloy of the present invention and the reason for limiting the component ratio will be explained.

Sn: この元素は強度、ばね特性及び伸び等を同時に向上させ
るために必須であり、0.5%未満ではその効果が少な
く、一方、6.0%を越えると効果的ではあるが、従来
の連鋳技術では造塊が困難になり、更に熱間割れを生じ
やすくなる。電磁攪拌装置を備えた連n装置を適用する
と熱間加工性も向上するが、この場合のSn含有料の上
限も6.0%である。従って、Snの含有割合は0.5
〜6.0%とした。
Sn: This element is essential for simultaneously improving strength, spring properties, elongation, etc. If it is less than 0.5%, the effect is small, while if it exceeds 6.0%, it is effective, but Continuous casting technology makes it difficult to form ingots and also makes hot cracking more likely. Hot workability is also improved when a continuous device equipped with an electromagnetic stirring device is used, but the upper limit of the Sn content in this case is also 6.0%. Therefore, the content ratio of Sn is 0.5
~6.0%.

Nl: この元素はCuに固溶し、Snと共に強度。Nl: This element dissolves in Cu and provides strength along with Sn.

伸び及び耐熱性を向上させる効果を有する。It has the effect of improving elongation and heat resistance.

3.0%未満ではこれらの特性の向上効果が少なぐ、一
方、15.0%を越えるとこれらの特性の向上効果はあ
るが、Snと同様に熱間加工性を低下させることになる
。従って、Niの含有割合は3.0〜15.0%とした
If it is less than 3.0%, the effect of improving these properties will be small, while if it exceeds 15.0%, there will be an effect of improving these properties, but like Sn, it will reduce hot workability. Therefore, the Ni content was set to 3.0 to 15.0%.

Zn: この元素は電圧が印加されたCu−ML−Sn合金の電
極間に水が侵入した場合のCuのマイグレーションの形
成を抑え、漏洩電流を抑制するために必須であり、Zn
が1.5%未満では効果が少なく、一方、5.0%を越
えると耐マイグレーション性は向上するが、はんだ付は
性が劣化する。応力腐食割れを生じやすくなる等の性質
が現われ、Cu−Ni−Sn合金の本来的長所が失われ
ることになる。従って、Znの含*側合は1.5〜5.
0%とした。
Zn: This element is essential for suppressing the formation of Cu migration and suppressing leakage current when water enters between the electrodes of the Cu-ML-Sn alloy to which a voltage is applied.
If it is less than 1.5%, the effect will be small, while if it exceeds 5.0%, the migration resistance will improve, but the soldering properties will deteriorate. Properties such as stress corrosion cracking are likely to occur, and the original advantages of the Cu-Ni-Sn alloy are lost. Therefore, the * side combination of Zn is 1.5 to 5.
It was set to 0%.

その他: 上記の必須成分元素の他にBe、B、Mg。others: In addition to the above essential elements, Be, B, and Mg.

AI  、P、St  、Ti  、Cr、Mn、Go
、Zr、Ag、In及びsbの内の一種または二種以上
を総量で0.1%以下で添加しても耐マイグレーション
性を劣化することがないため、これを許容することがで
きる。
AI, P, St, Ti, Cr, Mn, Go
, Zr, Ag, In, and sb in a total amount of 0.1% or less, the migration resistance is not deteriorated, so this can be tolerated.

[実施例] 次に本発明の耐マイグレーション性に優れた銅合金の実
施例について図面及び表を用いて説明する。
[Example] Next, an example of the copper alloy having excellent migration resistance of the present invention will be described using drawings and tables.

第1表に示す含有成分及び成分割合の銅合金をクリプト
ル炉において大気中で木炭被覆下に溶解し、傾注式の鋳
鉄製ブックモールドに鋳込み、厚さ80mm、幅60 
m m 、長さ180mmの鋳塊を製造した。
A copper alloy having the components and proportions shown in Table 1 was melted in the air in a Kryptor furnace under charcoal coating, and cast into a tilting cast iron book mold to a thickness of 80 mm and a width of 60 mm.
An ingot with a length of 180 mm and a length of 180 mm was produced.

そして、これらの鋳塊の表面及び裏面を各々2−5mm
面削し、黄銅は750℃1本発明合金及び比較合金は8
80℃の温度で熱間圧延を行ない、厚さ10mmの板材
とした。
Then, the front and back sides of these ingots were each 2-5 mm thick.
Face milled at 750°C for brass and 8°C for alloys of the present invention and comparative alloys.
Hot rolling was performed at a temperature of 80° C. to obtain a plate material with a thickness of 10 mm.

これら熱間圧延材の表面の酸化スケールを除去した後、
冷間にて厚さ1.11mmまで圧延し、黄銅は430″
0X2Hr、本発明合金及び比較合金は600℃X2H
rの焼鈍を行ない。
After removing the oxide scale on the surface of these hot rolled materials,
Cold rolled to a thickness of 1.11mm, brass is 430"
0X2Hr, the invention alloy and comparative alloy are 600℃X2H
Perform r annealing.

スケールを酸洗により除去後、1.0mmまで冷間で圧
延した。
After removing scale by pickling, it was cold rolled to a thickness of 1.0 mm.

そして、これらの板材を用いて以下の試験を行なった。Then, the following tests were conducted using these plate materials.

尚、第1表においてNo、1−No、3は本発明の実施
例に係る合金であり。
In Table 1, No., 1-No., and 3 are alloys according to Examples of the present invention.

No、4〜N006は比較例に係る合金である。No. 4 to No. 006 are alloys according to comparative examples.

(耐マイグレーシヨン試験) 耐マイグレーシヨン試験については% 14Vの直流電
圧を印加した時の最大漏洩電流値をもって判断基準とし
た。
(Migration Resistance Test) For the migration resistance test, the maximum leakage current value when a DC voltage of 14 V was applied was used as the criterion.

以下にその詳細を述べる。The details are described below.

第1図及び第2図に示すように、二枚の板状の試験片1
a、lb (平行部tv@ 5 m m) tl)間に
1mm厚のABS樹脂板2を介装し、試験片la、lb
の両端をそれぞれ二枚の押え板3で挟装し、更に6押え
板3をクリップ4で押圧して積層状懲を固定した。但し
、ABS樹脂板2の中央部には孔2aが設けられており
、a層状態において孔2aを介して二枚の試験片1a。
As shown in Figures 1 and 2, two plate-shaped test pieces 1
a, lb (parallel part tv @ 5 mm) tl) A 1 mm thick ABS resin plate 2 was inserted between the specimens la, lb.
Both ends of the laminate were sandwiched between two holding plates 3, and the six holding plates 3 were further pressed with clips 4 to fix the laminated structure. However, a hole 2a is provided in the center of the ABS resin plate 2, and two test pieces 1a are inserted through the hole 2a in the A-layer state.

1bの面が対向するようになっている。そして、バッテ
リー5から試験片1aが陰極に、試験片1bが陽極にな
るように14Vの直流電圧を印加するように結線した。
The surfaces of 1b are arranged to face each other. Then, the battery 5 was connected to the battery 5 so that a DC voltage of 14 V was applied to the test piece 1a as a cathode and the test piece 1b as an anode.

この状態におかれたものを水道水に10分間浸漬した後
、10分間乾燥するという乾湿試験を行ない、50サイ
クルに至るまでの0.2秒間当りの最大漏洩電流値をメ
モリーハイコーダー8802 (日量電機製)(図示せ
ず)で測定した。即ち、孔2aにおけるマイグレーショ
ンの発生状況を前記電流値を比較検討することによって
調べることとした。
A dry-wet test was carried out by immersing the device in this state in tap water for 10 minutes and then drying it for 10 minutes. (manufactured by Ryōdenki Co., Ltd.) (not shown). That is, it was decided to investigate the occurrence of migration in the hole 2a by comparing and examining the above-mentioned current values.

この結果は第2表に示される。The results are shown in Table 2.

同表から明らかなように、本発明の実施例である合金(
No 、1〜No −3)は、Zn含有量の少ない比較
合金(No、5及びNo、6)に比較して漏洩電流が0
.1〜0.2Aとなり、黄銅(比較合金No、7)なみ
であり、耐マイグレーション性に優れている。
As is clear from the table, alloys (
No. 1 to No.-3) have a leakage current of 0 compared to comparative alloys with low Zn content (No. 5 and No. 6).
.. 1 to 0.2 A, which is comparable to that of brass (comparative alloy No. 7), and has excellent migration resistance.

尚、木実゛°施例では漏洩電流測定用の印加電圧を14
Vとしたが、一般の100Vの交流電圧を印加しても同
様の定性的結果を示し、交流回路に適用することも可能
である。
In addition, in the Kinomi Example, the applied voltage for leakage current measurement was set to 14
Although the voltage is set to V, similar qualitative results are obtained even when a general AC voltage of 100 V is applied, and it is also possible to apply it to an AC circuit.

(はんだ濡れ性) 第1表に示す組成の合金により、厚さ1mm1幅25 
mm、長さ50mmの試験片を製造し、230℃の60
Sn−40Pbの共晶はんだ中にMIL−5TD−20
2Eの208Cに基づき1、弱活性のフラックスMIL
−F−14256HMAタイプではんだの濡れ性を調べ
た。
(Solder wettability) The alloy with the composition shown in Table 1 has a thickness of 1 mm and a width of 25 mm.
A test piece with a length of 50 mm and a length of 50 mm was manufactured and
MIL-5TD-20 in Sn-40Pb eutectic solder
1, weakly active flux MIL based on 2E's 208C
- Solder wettability was investigated using the F-14256HMA type.

その結果は前記の(耐マイグレーシヨン試験)と並列さ
せて第2表に示される。
The results are shown in Table 2 in parallel with the above (migration resistance test).

同表から、本発明の実施例に係る合金は、Sn及びNl
の含有量が同程度で、Zn含有量が異なる比較合金N0
06に比較してはんだ濡れ性が優れていることが理解で
きる。
From the same table, the alloys according to the examples of the present invention are Sn and Nl.
Comparative alloys N0 with similar Zn contents and different Zn contents
It can be seen that the solder wettability is superior to that of 06.

[発明の効果] 以上のように、従来a) C、u −9%Ni−2゜3
%Snを代表組成とするCu−Ni−Sn合金が結露し
た場合にマイグレーションによる不具合を生じる状況に
あるのに対し、本発明の銅合金は結露してもマイグレー
ションを生じ難い。
[Effect of the invention] As described above, conventional a) C, u -9%Ni-2゜3
While a Cu-Ni-Sn alloy having a typical composition of %Sn is in a situation where problems due to migration occur when dew condenses, the copper alloy of the present invention hardly causes migration even when dew condenses.

従って、本発明は、ばね特性、はんだ濡れ性等のCu−
Ni−Sn合金特有の特性を劣化させることなく、黄銅
と同等の耐マイグレーション性を具有したC u −N
 I −S n合金を得ることを可能とした。
Therefore, the present invention improves the spring properties, solder wettability, etc. of Cu-
Cu-N has migration resistance equivalent to brass without deteriorating the characteristics unique to Ni-Sn alloy.
This made it possible to obtain an I-S n alloy.

本発明の耐マイグレーション性に優れた銅合金は1個別
半導体用リードフレーム、集積回路用リードフレーム、
抵抗器リード、コンデンサーリード及び機構部品の材料
として最適であり、その他の民生用、産業用または自動
車等の電気・電子部品材料としても好適のものである。
The copper alloy with excellent migration resistance of the present invention can be used for lead frames for individual semiconductors, lead frames for integrated circuits,
It is most suitable as a material for resistor leads, capacitor leads, and mechanical parts, and is also suitable as a material for other electrical and electronic parts for consumer use, industrial use, and automobiles.

第1表 m2表 良好:95〜100%濡れ やや不良:50〜95%濡れ 不良=50%未満の濡れTable 1 m2 table Good: 95-100% wet Slightly poor: 50-95% wet Poor = less than 50% wet

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は耐マイグレーシヨン試験における試
験片の積層状態及び電気的結線状態を示す平面図及び側
面図である。(但し、第2図は第1図におけるx−x矢
視断面を含む、)la、lb・・・試験片 2・・・A
BS樹脂板 2a孔 3・・・押え板 4・・・クリッ
プ 5・・・バッテリー
FIGS. 1 and 2 are a plan view and a side view showing the laminated state and electrical connection state of test pieces in a migration resistance test. (However, FIG. 2 includes the cross section taken along the line xx in FIG. 1.) la, lb...Test piece 2...A
BS resin plate 2a hole 3... Holding plate 4... Clip 5... Battery

Claims (1)

【特許請求の範囲】 重量%で、Sn:0.5〜6.0% Ni:3.0〜15.0% Zn:1.5〜5.0% を含有し、残部が実質的にCu及び不純物からなること
を特徴とする耐マイグレーション性に優れた銅合金。
[Claims] Contains Sn: 0.5 to 6.0%, Ni: 3.0 to 15.0%, Zn: 1.5 to 5.0%, and the balance is substantially Cu. A copper alloy with excellent migration resistance characterized by consisting of impurities and impurities.
JP8968886A 1986-04-18 1986-04-18 Copper alloy having superior migration resistance Pending JPS62247041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8968886A JPS62247041A (en) 1986-04-18 1986-04-18 Copper alloy having superior migration resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8968886A JPS62247041A (en) 1986-04-18 1986-04-18 Copper alloy having superior migration resistance

Publications (1)

Publication Number Publication Date
JPS62247041A true JPS62247041A (en) 1987-10-28

Family

ID=13977703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8968886A Pending JPS62247041A (en) 1986-04-18 1986-04-18 Copper alloy having superior migration resistance

Country Status (1)

Country Link
JP (1) JPS62247041A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108796297A (en) * 2017-07-28 2018-11-13 中南大学 A kind of high-intensity and high-tenacity adonic raw material and its preparation method and application being directly used in 3D printing
CN111826547A (en) * 2020-07-13 2020-10-27 苏州金江铜业有限公司 Copper-nickel-tin-silver-boron alloy and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108796297A (en) * 2017-07-28 2018-11-13 中南大学 A kind of high-intensity and high-tenacity adonic raw material and its preparation method and application being directly used in 3D printing
CN108796297B (en) * 2017-07-28 2020-09-29 中南大学 High-strength high-toughness copper-nickel-tin alloy raw material directly used for 3D printing and preparation method and application thereof
CN111826547A (en) * 2020-07-13 2020-10-27 苏州金江铜业有限公司 Copper-nickel-tin-silver-boron alloy and preparation method thereof
CN111826547B (en) * 2020-07-13 2021-09-17 苏州金江铜业有限公司 Copper-nickel-tin-silver-boron alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS60245753A (en) High strength copper alloy having high electric conductivity
JPS6314056B2 (en)
JP2516623B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH0653901B2 (en) Copper alloy for electronic and electrical equipment
JPH04311544A (en) Electrically conductive material
JPS62247041A (en) Copper alloy having superior migration resistance
JPH04180531A (en) Electrically conductive material
JPS6256937B2 (en)
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPH0440417B2 (en)
JPH1081926A (en) Copper alloy for electronic device
JPH04231432A (en) Electrifying material
JPH02190431A (en) Copper alloy for connecting apparatus
JPH04231430A (en) Electrifying material
JPH04231433A (en) Electrifying material
JPS6365038A (en) Copper alloy for electronic and electrical equipment
JPH1081927A (en) Terminal-connector material made of cu alloy
JPS59222543A (en) Copper alloy for lead frame
JPH0331776B2 (en)
JPS6311417B2 (en)
JPS62130247A (en) Copper alloy for electronic appliance
JPH0499838A (en) Conductive material
JPH04180532A (en) Electrically conductive material
JPH01316432A (en) Copper alloy for electric conducting material having excellent weather resistance of solder
JPS63310935A (en) High electroconductive copper alloy having excellent migration resistance