JPH04231430A - Electrifying material - Google Patents

Electrifying material

Info

Publication number
JPH04231430A
JPH04231430A JP41777190A JP41777190A JPH04231430A JP H04231430 A JPH04231430 A JP H04231430A JP 41777190 A JP41777190 A JP 41777190A JP 41777190 A JP41777190 A JP 41777190A JP H04231430 A JPH04231430 A JP H04231430A
Authority
JP
Japan
Prior art keywords
migration
less
size
alloy
migration resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41777190A
Other languages
Japanese (ja)
Inventor
Hidehiko So
宗 秀彦
Tamio Toe
東江 民夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP41777190A priority Critical patent/JPH04231430A/en
Publication of JPH04231430A publication Critical patent/JPH04231430A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrifying material having high electric conductivity and excellent in migration resistance by limiting O content in an alloy having a specific composition consisting of Be and Cu and also controlling the size of a precipitate resulting from ageing treatment. CONSTITUTION:In an alloy which has a composition consisting of, by weight, 0.1-3.0% Be and the balance Cu with inevitable impurities and further containing, if necessary, 0.001-5.0% of one or more elements among Ni, Fe, Co, Cr, Ti, Zn, Ag, Pb, Sn, Mg, Mn, Al, B, P, As, and Sb as accessory components, O content is regulated to <=20ppm and also the size of a precipitate due to ageing treatment is regulated to <=2mum. Further, it is preferable to regulate its crystalline grain size to <=30mum. By this method, the electrifying material having high electric conductivity, excellent in migration resistance, and improved in strength owing to the accessory components can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、リードフレーム、端子
、コネクター、バスバー(ブスバーともいう)間でのマ
イグレーションの発生を抑えた電気部品材料用の通電材
料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current-carrying material for electrical parts that suppresses migration between lead frames, terminals, connectors, and bus bars (also referred to as bus bars).

【0002】0002

【従来の技術】近年、電子、電気機器等の小型軽量化が
進み、使用されるコネクター等の部品も小型化するとと
もに、部品間の距離も著しく短くなる傾向にある。又、
回路はますます集積化される傾向にある。すなわち、従
来、個々の電子部品はリード線により接続されて回路が
形成されていたが、部品数が増すに従い回路が複雑とな
るので、これらを集積化することにより回路の小型化が
進められている。
2. Description of the Related Art In recent years, electronic and electrical equipment, etc. have become smaller and lighter, and the parts used, such as connectors, have become smaller and the distances between parts have also tended to become significantly shorter. or,
Circuits are becoming increasingly integrated. In other words, in the past, individual electronic components were connected by lead wires to form a circuit, but as the number of components increases, circuits become more complex, so circuits are becoming smaller by integrating them. There is.

【0003】0003

【発明が解決しようとする課題】従来の小型化、集積化
された回路において、異なる回路又は配線が小型化のた
めにわずかな間隔をおいて隔てられているが、この間隔
内に水などの電解質が介在すると電気化学的反応が生じ
、高電位側の通電部の材料となっている銅合金から溶解
した銅イオンが低電位側で析出し、更にその量が増すと
短絡する現象が生じる。この現象をマイグレーションと
いい、このようなマイグレーションが起ると、回路が正
常に機能しなくなる。したがって、近年では高い導電率
を有し、かつ、マイグレーションの発生しない材料が強
く望まれていた。
[Problems to be Solved by the Invention] In conventional miniaturized and integrated circuits, different circuits or wiring are separated by a small interval for miniaturization, but there is a problem that water, etc. When an electrolyte is present, an electrochemical reaction occurs, and copper ions dissolved from the copper alloy that is the material of the current-carrying part on the high-potential side are deposited on the low-potential side, and when the amount increases further, a short circuit occurs. This phenomenon is called migration, and when such migration occurs, the circuit no longer functions properly. Therefore, in recent years, there has been a strong desire for materials that have high electrical conductivity and do not cause migration.

【0004】0004

【課題を解決するための手段】本発明者らは上記の問題
点に鑑み、マイグレーションの研究を進め、陽極側に接
続された端子、コネクター、バスバー等の通電材料とし
てBe0.1〜3.0wt%を含み、あるいは、さらに
副成分としてNi、Fe、Co、Cr、Ti、Zn、A
g、Pb、Sn、Mg、Mn、Al、B、P、As、S
bからなる群から1種又は2種以上を総量で0.001
〜5.0wt%含み、残部Cu及び不可避的不純物から
なる合金の酸素含有量が20ppm以下であり、かつ、
時効処理による析出物が存在し、その析出物の大きさが
2μm以下であること、さらに、上記合金の結晶粒度が
30μm以下であることを特徴とするものである。
[Means for Solving the Problems] In view of the above-mentioned problems, the present inventors have conducted research on migration, and have developed Be0.1 to 3.0 wt. %, or further subcomponents such as Ni, Fe, Co, Cr, Ti, Zn, A
g, Pb, Sn, Mg, Mn, Al, B, P, As, S
The total amount of one or more types from the group consisting of b is 0.001
The oxygen content of the alloy consisting of ~5.0 wt% and the balance Cu and unavoidable impurities is 20 ppm or less, and
The alloy is characterized in that precipitates due to aging treatment are present, the size of the precipitates is 2 μm or less, and the crystal grain size of the alloy is 30 μm or less.

【0005】本発明にしたがってCuに添加される元素
のそれぞれの添加量は次のことを考慮して定められる。 すなわち、まずBeは銅及び銅合金に含有されることに
より、銅及び銅合金のマイグレーション性を抑制する効
果を有する元素である。
According to the present invention, the amount of each element added to Cu is determined in consideration of the following. That is, first, Be is an element that, when contained in copper and copper alloys, has the effect of suppressing the migration properties of copper and copper alloys.

【0006】マイグレーション現象を抑制する機構は明
確ではないが、Beの存在によりCuイオンの溶出量が
減少し、Beの化合物の生成により、析出したCu粒子
を介する通電が妨害されることによって、電極間のマイ
グレーション現象が抑制されると推察される。
Although the mechanism for suppressing the migration phenomenon is not clear, the presence of Be reduces the amount of Cu ions eluted, and the formation of Be compounds obstructs the conduction of electricity through the deposited Cu particles, thereby preventing the electrode from flowing. It is inferred that the migration phenomenon between them is suppressed.

【0007】Be含有量を0.1〜3.0wt%とする
理由はBe含有量が0.1wt%未満では、マイグレー
ション現象を抑制する効果がなく、3.0wt%を超え
るとマイグレーション現象の抑制効果はあるが、導電率
が低下し、通電時の発熱量が大きくなり、熱放散性も低
くなるためである。
[0007] The reason why the Be content is set to 0.1 to 3.0 wt% is that if the Be content is less than 0.1 wt%, there is no effect of suppressing the migration phenomenon, and if it exceeds 3.0 wt%, the migration phenomenon is suppressed. This is because although it is effective, the conductivity decreases, the amount of heat generated when electricity is applied increases, and the heat dissipation performance also decreases.

【0008】副成分としてNi、Fe、Co、Cr、T
i、Zn、Ag、Pb、Sn、Mg、Mn、Al、B、
P、As、Sbからなる群から1種又は2種以上を総量
で0.001〜5.0wt%含む理由は、マイグレーシ
ョン性の向上、析出強化、固溶強化による強度の向上、
結晶粒微細化を目的として添加するものであり、マイグ
レーション性の向上にはNi、Fe、Co、Cr、Ti
、Znの添加が期待でき、強度向上には全元素、細晶粒
微細化にはNi、Fe、Coが期待できる。
Ni, Fe, Co, Cr, T as subcomponents
i, Zn, Ag, Pb, Sn, Mg, Mn, Al, B,
The reason for including one or more types from the group consisting of P, As, and Sb in a total amount of 0.001 to 5.0 wt% is to improve migration properties, improve strength by precipitation strengthening, solid solution strengthening,
It is added for the purpose of grain refinement, and Ni, Fe, Co, Cr, and Ti are added to improve migration performance.
, Zn can be expected to be added, all elements can be expected to improve strength, and Ni, Fe, and Co can be expected to refine fine grains.

【0009】しかしこれらの元素の添加量が0.001
wt%未満ではそれらの効果がほとんどなく、逆に5.
0wt%を超えると加工性が劣化し導電性が著しく低下
するためである。
However, if the amount of these elements added is 0.001
If it is less than wt%, there is almost no effect, and on the contrary, if it is less than 5.
This is because if it exceeds 0 wt%, workability deteriorates and electrical conductivity decreases significantly.

【0010】析出物の大きさを2μm以下に限定した理
由は析出物が2μmを超えるような粗大なものになると
、急激にマイグレーション現象が発生し易くなるためで
ある。  酸素含有量を20ppm以下とした理由は、
Beが酸化物として合金中にとらえられているとマイグ
レーション性の改善には寄与しない事が判明したためで
ある。すなわち、酸素含有量が20ppmを超える合金
中ではBeは酸化物としてとらえられ易く、Be酸化物
が生成されるとさらにそこにBeの濃化が起り易いため
、マイグレーション性が急激に低下するためである。
The reason why the size of the precipitates is limited to 2 μm or less is that if the precipitates become coarse and larger than 2 μm, the migration phenomenon is likely to occur rapidly. The reason why the oxygen content was set to 20 ppm or less was
This is because it has been found that if Be is captured as an oxide in the alloy, it does not contribute to improving migration properties. In other words, in alloys with an oxygen content exceeding 20 ppm, Be is likely to be treated as an oxide, and when Be oxide is generated, Be is likely to be further concentrated there, resulting in a rapid decrease in migration properties. be.

【0011】結晶粒度を30μm以下とした理由は、結
晶粒度が30μmを超えて粗大化してくると、加工性が
低下するとともに、マイグレーション性も低下する傾向
が見られるためである。
The reason why the crystal grain size is set to 30 μm or less is that when the crystal grain size becomes coarser than 30 μm, there is a tendency for workability to decrease and migration property to decrease as well.

【0012】0012

【実施例】以下に本発明の具体例を示す。[Example] Specific examples of the present invention are shown below.

【0013】まず表1に示す組成のうちNo.17、1
8を除いた本発明合金及び比較合金を大気中又は不活性
雰囲気中で溶解鋳造し、面削後熱間圧延し、スケール除
去後、冷却圧延と焼鈍をくり返し、最終圧延加工度20
%の厚さ0.6mmの冷間圧延板を得た。この材料を適
宣時効処理した後、#1200エメリー紙で表面研摩し
た。
First, among the compositions shown in Table 1, No. 17, 1
The alloys of the present invention and comparative alloys except No. 8 were melted and cast in the air or in an inert atmosphere, face-faced and then hot-rolled. After descaling, cooling rolling and annealing were repeated to obtain a final rolling degree of 20.
A cold rolled plate with a thickness of 0.6 mm was obtained. After aging the material appropriately, the surface was polished with #1200 emery paper.

【0014】[0014]

【表1】 こうして得られた供試材及び市販の黄銅、りん青銅(N
o.17、18)の0.6mmの板について引張強さ、
伸び、導電率、耐マイグレーション性を評価した。結果
を表2に示す。耐マイグレーション性は供試材を10m
m×100mmに切断し、2枚1組として、図1に示す
ようにセットした供試材を図2に示すようにして水道水
中(300cc)中に浸漬した。次にこの2枚の供試材
に14Vの直流電圧を加え、経過時間に対する電流値の
変化を記録計にて測定した。この結果の代表例を図3に
示す。又、各供試材における電流値が1.0Aになるま
での時間(図3中矢印)を表2に示す。
[Table 1] The test materials thus obtained and commercially available brass and phosphor bronze (N
o. 17, 18) tensile strength for the 0.6 mm plate,
Elongation, electrical conductivity, and migration resistance were evaluated. The results are shown in Table 2. Migration resistance test material is 10m long.
The test material was cut into pieces of m×100 mm and set as a set of two pieces as shown in FIG. 1, and then immersed in tap water (300 cc) as shown in FIG. Next, a DC voltage of 14 V was applied to these two test materials, and the change in current value with respect to elapsed time was measured using a recorder. A representative example of this result is shown in FIG. Further, Table 2 shows the time required for the current value to reach 1.0 A (arrow in FIG. 3) for each sample material.

【0015】[0015]

【表2】 なお、析出物の大きさは供試材断面を1000倍で2m
m2 検鏡し、最大の析出物の大きさにより求めた。
[Table 2] The size of the precipitates is 2 m when the cross section of the sample material is multiplied by 1000.
m2 was determined by examining the size of the largest precipitate.

【0016】表2から本発明合金はBe量の高いものは
高強度、Be量の低いものは高導電の材料が得られ、と
もにマイグレーション性が良好であることがわかる。ま
たNo.3、4の比較から結晶粒径の依存性もわかる。
From Table 2, it can be seen that in the alloys of the present invention, those with a high Be content provide high strength, those with a low Be content provide a highly conductive material, and both have good migration properties. Also No. The dependence on the crystal grain size can also be seen from the comparison of 3 and 4.

【0017】又、No.4とNo.1そしてNo.5と
No.2の比較から副成分としてNi、Fe、Co、T
i、Znの耐マイグレーション性への効果がわかる。
[0017] Also, No. 4 and no. 1 and no. 5 and no. From the comparison of 2, Ni, Fe, Co, T as subcomponents.
The effect of i, Zn on migration resistance can be seen.

【0018】そして比較合金については、No.13は
Be量が高すぎるため、高強度で耐マイグレーション性
も良好であるが、供試材を作製するにあたり、冷却圧延
時に耳割れが発生し、導電率もあまり高くない。No.
14は析出物径の大きなものであり、耐マイグレーショ
ン性が悪い。No.15は副成分が多すぎるため、導電
率が低い。No.16は0量が高いため、耐マイグレー
ション性が悪い。No.17は従来から耐マイグレーシ
ョン性が良好と言われている黄銅であるが、耐マイグレ
ーション性は良好であるものの、強度が低く、導電率も
あまり高くない。No.18はりん青銅であるが、強度
、導電性、耐マイグレーション性ともにあまり良好では
ない。
As for the comparative alloy, No. Since No. 13 has too high a Be content, it has high strength and good migration resistance, but when producing a sample material, edge cracking occurs during cooling rolling and the conductivity is not very high. No.
No. 14 has a large precipitate diameter and has poor migration resistance. No. No. 15 has too many subcomponents and therefore has low conductivity. No. No. 16 had a high amount of 0, so it had poor migration resistance. No. Brass No. 17 is conventionally said to have good migration resistance, and although it has good migration resistance, its strength is low and its conductivity is not very high. No. No. 18 is phosphor bronze, but its strength, conductivity, and migration resistance are not very good.

【0019】[0019]

【発明の効果】本発明の通電材料は高強度で高い導電性
を有し、かつ耐マイグレーション性の優れた材料であり
、リードフレームや自動車の端子・コネクター・バスバ
ー等耐マイグレーション性の要求される通電材料に適用
される。
[Effects of the Invention] The current-carrying material of the present invention has high strength, high conductivity, and excellent migration resistance, and is used for lead frames, automobile terminals, connectors, bus bars, etc. that require migration resistance. Applicable to electrically conductive materials.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】耐マイグレーション性のテストのための供試材
の斜視図である。
FIG. 1 is a perspective view of a sample material for a migration resistance test.

【図2】同テストの説明図である。FIG. 2 is an explanatory diagram of the test.

【図3】耐マイグレーションテスト結果を示すグラフで
ある。
FIG. 3 is a graph showing migration resistance test results.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  Be0.1〜3.0wt%を含有し、
残部Cuおよび不可避的不純物からなる合金の0含有量
が20ppm以下であり、かつ時効処理による析出物が
存在し、その析出物の大きさが2μm以下であることを
特徴とする通電材料。
Claim 1: Contains 0.1 to 3.0 wt% of Be,
A current-carrying material characterized in that the zero content of an alloy consisting of the balance Cu and unavoidable impurities is 20 ppm or less, and there are precipitates due to aging treatment, and the size of the precipitates is 2 μm or less.
【請求項2】  Be0.1〜3.0wt%を含有し、
副成分としてNi,Fe,Co,Cr,Ti,Zn,A
g,Pb,Sn,Mg,Mn,Al,B,P,As,S
bからなる群から1種又は2種以上を総量で0.001
〜5.0wt%含み、残部Cuおよび不可避的不純物か
らなる合金の0含有量が20ppm以下であり、かつ時
効処理による析出物が存在し、その析出物の大きさが2
μm以下であることを特徴とする通電材料。
[Claim 2] Contains 0.1 to 3.0 wt% of Be,
Ni, Fe, Co, Cr, Ti, Zn, A as subcomponents
g, Pb, Sn, Mg, Mn, Al, B, P, As, S
The total amount of one or more types from the group consisting of b is 0.001
-5.0 wt%, the balance is Cu and unavoidable impurities, the zero content of the alloy is 20 ppm or less, and there are precipitates due to aging treatment, and the size of the precipitates is 2
An electrically conductive material characterized by having a diameter of μm or less.
【請求項3】  結晶粒度が30μm以下である請求項
(1)または(2)項記載の通電材料。
3. The electrically conductive material according to claim 1 or 2, wherein the crystal grain size is 30 μm or less.
JP41777190A 1990-12-27 1990-12-27 Electrifying material Pending JPH04231430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41777190A JPH04231430A (en) 1990-12-27 1990-12-27 Electrifying material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41777190A JPH04231430A (en) 1990-12-27 1990-12-27 Electrifying material

Publications (1)

Publication Number Publication Date
JPH04231430A true JPH04231430A (en) 1992-08-20

Family

ID=18525814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41777190A Pending JPH04231430A (en) 1990-12-27 1990-12-27 Electrifying material

Country Status (1)

Country Link
JP (1) JPH04231430A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
US5882442A (en) * 1995-10-20 1999-03-16 Olin Corporation Iron modified phosphor-bronze
WO2000029632A1 (en) * 1998-11-16 2000-05-25 Olin Corporation Stress relaxation resistant brass
US6132528A (en) * 1997-04-18 2000-10-17 Olin Corporation Iron modified tin brass
WO2001068928A1 (en) * 2000-03-14 2001-09-20 Brush Wellman, Inc. Improved crimpable electrical connector
US6783611B2 (en) * 2001-03-13 2004-08-31 Mitsubishi Materials Corporation Phosphorized copper anode for electroplating
CN110106391A (en) * 2019-05-13 2019-08-09 浙江力博实业股份有限公司 A kind of preparation method of the effective beallon of photomultiplier transit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882442A (en) * 1995-10-20 1999-03-16 Olin Corporation Iron modified phosphor-bronze
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
US6132528A (en) * 1997-04-18 2000-10-17 Olin Corporation Iron modified tin brass
WO2000029632A1 (en) * 1998-11-16 2000-05-25 Olin Corporation Stress relaxation resistant brass
US6471792B1 (en) * 1998-11-16 2002-10-29 Olin Corporation Stress relaxation resistant brass
WO2001068928A1 (en) * 2000-03-14 2001-09-20 Brush Wellman, Inc. Improved crimpable electrical connector
US6585833B1 (en) * 2000-03-14 2003-07-01 Brush Wellman, Inc. Crimpable electrical connector
US6783611B2 (en) * 2001-03-13 2004-08-31 Mitsubishi Materials Corporation Phosphorized copper anode for electroplating
KR100815141B1 (en) * 2001-03-13 2008-03-19 미츠비시 마테리알 가부시키가이샤 Phosphorized copper anode for electroplating
CN110106391A (en) * 2019-05-13 2019-08-09 浙江力博实业股份有限公司 A kind of preparation method of the effective beallon of photomultiplier transit

Similar Documents

Publication Publication Date Title
JP4756197B2 (en) Cu-Mg-P-based copper alloy and method for producing the same
JP2007169765A (en) Copper alloy and its production method
JP2001207229A (en) Copper alloy for electronic material
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JPH0784631B2 (en) Copper alloy for electronic devices
JPH04180531A (en) Electrically conductive material
JPH04231430A (en) Electrifying material
JPH04311544A (en) Electrically conductive material
JPH04231447A (en) Conductive material
JPH04231443A (en) Electrifying material
JPS62182240A (en) Conductive high-tensile copper alloy
JPH04231446A (en) Conductive material
JPH04231432A (en) Electrifying material
JPH04231433A (en) Electrifying material
JPH04231444A (en) Production of electrifying material
JPH04231445A (en) Production of electrifying material
JPH04180532A (en) Electrically conductive material
JPH0499839A (en) Conductive material
JPH0499838A (en) Conductive material
JP2001064740A (en) Copper alloy for electrical and electronic parts
JPH05311291A (en) Conductive material
JPH01168830A (en) Electric conductive material
JPH01168831A (en) Electric conductive material
JPH0499837A (en) Conductive material
JPH02129323A (en) Electrical conductivity material