JPH04180532A - Electrically conductive material - Google Patents

Electrically conductive material

Info

Publication number
JPH04180532A
JPH04180532A JP30602490A JP30602490A JPH04180532A JP H04180532 A JPH04180532 A JP H04180532A JP 30602490 A JP30602490 A JP 30602490A JP 30602490 A JP30602490 A JP 30602490A JP H04180532 A JPH04180532 A JP H04180532A
Authority
JP
Japan
Prior art keywords
alloy
migration
oxygen content
electrically conductive
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30602490A
Other languages
Japanese (ja)
Inventor
Tamio Toe
東江 民夫
Masahiro Tsuji
正博 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP30602490A priority Critical patent/JPH04180532A/en
Publication of JPH04180532A publication Critical patent/JPH04180532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain an electrically conductive material having high electrical conductivity and superior migration resistance by specifying the oxygen content of a Cu alloy contg. prescribed amts. of Si, Ni, Fe, etc., and allowing the added elements to exist as solid soln. CONSTITUTION:The oxygen content of an alloy consisting of 0.05-1.0wt.% Si, 0.05-1.0wt.% one or more among Ni, Fe, Co, Cr and Ti and the balance Cu with inevitable impurities is regulated to <=20ppm and the added elements are allowed to exist as solid soln. to obtain the above-mentioned material. About 0.001-5.0wt.%, in total, of one or more among Zn, Sn, Mg, Mn, Al, B, P, As, Sb, Ag, Pb, Be and Zr as secondary components may further be added to the above-mentioned compsn. as required. The grain size of the obtd. material is preferably about <=30mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、リードフレーム、端子、コネクター、バスバ
ー(ブスバーともいう)間でのマイグレーションの発生
を抑えた電気部品材料用の通電材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a current-carrying material for electrical component materials that suppresses migration between lead frames, terminals, connectors, and bus bars (also referred to as bus bars).

〔従来の技術] 近年、電子、電気機器等の小型軽量化が進み、使用され
るコネクター等の部品も小型化するとともに、部品間の
距離も著しく短くなる傾向にある。
[Prior Art] In recent years, electronic and electrical equipment, etc. have become smaller and lighter, and the parts used, such as connectors, have become smaller and the distances between the parts have also tended to become significantly shorter.

又、回路はますます集積化される傾向にある。すなわち
、従来、個々の電子部品はリード線により接続されて回
路が形成されていたが、部品数が増すに従い回路が複雑
となるので、これらを集積化することにより回路の小型
化が進められている。
Also, circuits are becoming increasingly integrated. In other words, in the past, individual electronic components were connected by lead wires to form a circuit, but as the number of components increases, circuits become more complex, so circuits are becoming smaller by integrating them. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の小型化、集積化された回路において、異なる回路
又は配線が小型化のためにわずがな間隔をおいて隔てら
九でいるが、この間隔内に水などの電解質が介在すると
電気化学的反応が生じ、高電位側の通電部の材料となっ
ている銅合金から溶解した銅イオンが低電位側で析出し
、更にその量が増すと短絡する現象が生じる。この現象
をマイグレーションといい、゛このようなマイグレーシ
ョンが起ると、回路が正常に機能しなくなる。したがっ
て、近年では高い導電率を有し、かつ、マイグレーショ
ンの発生しない材料が強く望まれていた。
In conventional miniaturized and integrated circuits, different circuits or wiring are spaced apart with a slight spacing for miniaturization, but if an electrolyte such as water is present in this spacing, electrochemical reactions occur. A chemical reaction occurs, and copper ions dissolved from the copper alloy that is the material of the current-carrying part on the high potential side precipitate on the low potential side, and when the amount increases further, a short circuit occurs. This phenomenon is called migration, and when such migration occurs, the circuit will no longer function properly. Therefore, in recent years, there has been a strong desire for materials that have high electrical conductivity and do not cause migration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記の問題点に鑑み、マイグレーションの
研究を進め、陽極側に接続さ九た端子、コネクター、バ
スバー等の通電材料として810.05〜1.0wt%
とNi、Fe、Co、Cr、Tiのうち1種又は2種以
上を総量で0.05〜1.0wt%含み、残部Cu及び
不可避的不純物からなる合金の酸素含有量が20ppm
以下であり、添加元素が固溶状態であることを特徴とす
る。
In view of the above problems, the present inventors have conducted research on migration, and have used 810.05 to 1.0 wt% as a conductive material for terminals, connectors, bus bars, etc. connected to the anode side.
The alloy contains one or more of Ni, Fe, Co, Cr, and Ti in a total amount of 0.05 to 1.0 wt%, and the balance is Cu and inevitable impurities, and the oxygen content is 20 ppm.
It is characterized in that the additive element is in a solid solution state.

あるいはSi0.05〜1.0wt%とNi、Fe、G
o、Cr、’Tiうち1種又は2種以上を総量で0.0
5〜1.0wt%含み、さらに副成分としてZnySn
’、Mg、Mn、A!、B、P、As、Sb−Ag、P
b、、Be、Zrからなる1種又は2種以上を総量でO
3O○1〜;)、OW t%を含み、残部Cu及び不可
避的不純物からなる合金の酸素含有量が20ppm以下
であり、添加元素が固溶状態であることを特徴とする。
Or Si0.05~1.0wt% and Ni, Fe, G
Total amount of one or more of o, Cr, 'Ti is 0.0
Contains 5 to 1.0 wt%, and further contains ZnySn as a subcomponent.
', Mg, Mn, A! , B, P, As, Sb-Ag, P
b, Be, Zr in total amount of one or more
The alloy is characterized in that the oxygen content of the alloy is 20 ppm or less, and the additive element is in a solid solution state.

さらに上記合金の結晶粒度が30μm以下であることを
特徴とするものである。
Furthermore, the alloy is characterized in that the crystal grain size is 30 μm or less.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明にしたがってCuに添加される元素のそれぞれの
添加量は次のことを考慮して定められる。
According to the present invention, the amount of each element added to Cu is determined in consideration of the following.

すなわち、まずSiは銅及び銅合金に含有されることに
より、銅及び銅合金のマイグレーション性を抑制する効
果を有する元素である。
That is, first of all, Si is an element that has the effect of suppressing the migration property of copper and copper alloys by being contained in copper and copper alloys.

マイグレーション現象を抑制する機構は明確ではないが
、Siの存在によりCuイオンの溶出量が減少し、Si
の化合物の生成により、析出したCu粒子を介する通電
が妨害されることによって。
Although the mechanism that suppresses the migration phenomenon is not clear, the presence of Si reduces the amount of Cu ions eluted, and
The formation of the compound impedes the conduction of electricity through the deposited Cu particles.

電極間のマイグレーション現象か抑制されると推察され
る。
It is presumed that the migration phenomenon between the electrodes is suppressed.

Si含有量を0.05〜1.0wt%とする理由は、S
i含有量がQ、Q5wt%未満では、マイグレーション
現象を抑制する効果がなく、1.0wt%を超えるとマ
イグレーション現象の抑制効果はあるが、導電率が低下
し、通電時の発熱量が大きくなり、熱放散性も低くなる
ためである。
The reason for setting the Si content to 0.05 to 1.0 wt% is that S
If the i content is less than 5wt%, Q, there is no effect of suppressing the migration phenomenon, and if it exceeds 1.0wt%, there is an effect of suppressing the migration phenomenon, but the conductivity decreases and the amount of heat generated when energized increases. This is because the heat dissipation property is also lowered.

Ni、Fe、Co、Cr、Tiの1種または2種以上の
含有量を0.05〜1.0wt%とする理由は、これら
元素はマイグレーション現象の抑制効果を持つとともに
強度向上にも寄与するものであるが、0.05wt%未
満ではその効果は低く、1.0wt%を超えると導電率
の低下が著しくなるためである。
The reason why the content of one or more of Ni, Fe, Co, Cr, and Ti is set to 0.05 to 1.0 wt% is that these elements have the effect of suppressing the migration phenomenon and also contribute to improving the strength. However, if it is less than 0.05 wt%, the effect will be low, and if it exceeds 1.0 wt%, the conductivity will decrease significantly.

更に副成分としてZn、Sn、Mgx Mn、A1、B
、P−As、Sb、Ag、Pb、Be、Zrからなる1
種又は2種以上をO,001wt%以上5.Ow t%
以下添加するのは、強度を向上させるためであるが、0
.001wt%未満ではその効果はなく、5.0wt%
を超えると導電率が低下するためである。
Furthermore, Zn, Sn, Mgx Mn, A1, B as subcomponents
, P-As, Sb, Ag, Pb, Be, Zr 1
5. O,001wt% or more of the species or two or more species. Owt%
The following additions are to improve strength, but 0
.. There is no effect at less than 0.001 wt%, and 5.0 wt%
This is because the conductivity decreases if the value exceeds .

Si、Ni、Fe、Co、Cr、Tiを固溶状態とする
理由は、Ni、Fe、Co、Cr、TiはSiと析出物
を生成し易いが、析出物がある大きさを超えると急激に
マイグレーション現象が発生し易くなるため、固溶状態
として耐マイグレーション性を維持するためである。
The reason why Si, Ni, Fe, Co, Cr, and Ti are in a solid solution state is that Ni, Fe, Co, Cr, and Ti tend to form precipitates with Si, but when the precipitates exceed a certain size, they rapidly This is to maintain migration resistance in a solid solution state, since migration tends to occur easily.

酸素含有量を20ppm以下とした理由は。What is the reason for setting the oxygen content to 20 ppm or less?

Siが酸化物として合金中にとらえられているとマイグ
レーション性の改善には寄与しない事が判明したためで
ある。すなわち、酸素含有量が20ppmを超える合金
中ではSiは酸化物としてとらえられ易く、Si酸化物
が生成されるとさらにそこにSiの濃化が起こり易いた
め、マイグレーション性が急激に低下するためである。
This is because it has been found that if Si is captured as an oxide in the alloy, it does not contribute to improving migration properties. In other words, in alloys with an oxygen content exceeding 20 ppm, Si is likely to be treated as an oxide, and when Si oxide is generated, Si concentration is likely to occur there, resulting in a rapid decrease in migration properties. be.

結晶粒度を30μm以下とした理由は、結晶粒度が30
μmを超えて粗大化してくると、加工性が低下するとと
もに、マイグレーション性も低下する傾向が見られるた
めである。
The reason why the crystal grain size is 30 μm or less is that the crystal grain size is 30 μm or less.
This is because when the grain size exceeds μm, there is a tendency for workability to decrease and migration performance to decrease as well.

〔実施例〕〔Example〕

以下に本発明の具体例を示す。 Specific examples of the present invention are shown below.

まず、第1表に示す組成の本発明合金及び比較合金を不
活性雰囲気中で溶解鋳造し、固剤後熱間圧延し、その後
冷間圧延、焼鈍酸洗をくり返し、400〜900℃で一
定時間の最終焼鈍により結晶粒度を調整し、酸洗後加工
度20%で冷間圧延した0、6wnの厚さの板を得た。
First, the alloys of the present invention and comparative alloys having the compositions shown in Table 1 were melted and cast in an inert atmosphere, hot rolled after being solidified, and then cold rolled, annealed and pickled repeatedly to maintain a constant temperature of 400 to 900°C. The grain size was adjusted by final annealing for 3 hours, and after pickling, a plate with a thickness of 0.6 wn was obtained which was cold rolled at a workability of 20%.

そして120゜エメリー紙で表面を研磨した。Then, the surface was polished with 120° emery paper.

これらの供試材について引張強さ、伸び、導電率、耐マ
イグレーション性を評価した。耐マイグレーション性は
供試材を10+nX100++oに切断し、2枚1組と
して、第1図に示すようにセットした供試材を第2図に
示すようにして水道水中(300cc)中に浸漬した。
These test materials were evaluated for tensile strength, elongation, electrical conductivity, and migration resistance. To test the migration resistance, the test material was cut into pieces of 10+n x 100++o, set in pairs as shown in FIG. 1, and immersed in tap water (300 cc) as shown in FIG. 2.

次にこの2枚の供試材に14Vの直流電圧を加え、経過
時間に対する電流値の変化を記録計にて測定した。この
結果の代表例を第3図に示す。又、各供試材における電
流値が1.OAになるまでの時間(第3図中矢印)を第
1表に示す。
Next, a DC voltage of 14 V was applied to these two test materials, and the change in current value with respect to elapsed time was measured using a recorder. A typical example of this result is shown in FIG. Also, the current value in each sample material is 1. Table 1 shows the time until OA (arrow in Figure 3).

第1表より、本発明合金Nα1〜8はいt判も導電率が
34%lAC3以上でかつと耐マイクレージョン性に優
れ、IJ −トフレームや自動車の端子、コネクター、
バスバー等の耐マイクレージョン性の求められる通電材
料として最適な合金であることがわかる。
From Table 1, it can be seen that the present invention alloys Nα1 to 8 in T size also have a conductivity of 34%lAC3 or higher and excellent micration resistance, and are suitable for use in IJ-frames, automobile terminals, connectors, etc.
It can be seen that this alloy is most suitable as a current-carrying material that requires micration resistance such as bus bars.

また、比較合金Na 9は本発明合金Nolに比へSl
含有量が少ないため耐マイグレーション性が悪い、比較
合金Nα10はSi含有量が多すぎるため、導電率が低
い。比較合金NQIIは本発明合金Nα3に比べ酸素含
有量が多いため耐マイクレージョン性が悪い。比較台金
Nα12は本発明合金Nα4に比へ添加元素が析出物と
なり完全に固溶していないため耐マイグレーション性が
悪い。比較合金No13は本発明合金Na 5に比べ結
晶粒が大きすぎるため、耐マイグレーション性が悪い。
In addition, the comparison alloy Na 9 had a lower Sl than the invention alloy No.
Comparative alloy Nα10, which has poor migration resistance because of its low Si content, has low conductivity because it has too much Si content. Comparative alloy NQII has a higher oxygen content than inventive alloy Nα3, and therefore has poorer micromagnetic resistance. Comparison base metal Nα12 has poor migration resistance because elements added to the alloy Nα4 of the present invention become precipitates and are not completely dissolved in solid solution. Comparative alloy No. 13 has crystal grains that are too large compared to the present invention alloy Na 5, and therefore has poor migration resistance.

比較合金Nα14は従来自動車のバスバー等に用いられ
ている黄銅1種で耐マイグレーション性は高いが、導電
率が低い。
Comparative alloy Nα14 is a type of brass conventionally used in automobile bus bars and the like, and has high migration resistance but low electrical conductivity.

比較合金Nn15は無酸素銅で導電率は高いが耐マイグ
レーション性が低い。
Comparative alloy Nn15 is oxygen-free copper and has high electrical conductivity but low migration resistance.

〔発明の効果〕〔Effect of the invention〕

本発明の通電材料は高い導電率を有し、かつ、耐マイグ
レーション性の優れた材料である。
The current-carrying material of the present invention has high electrical conductivity and is a material with excellent migration resistance.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐マイグレーション性のテストのための供試材
の斜視図、第2図は同テストの説明図、第3図は測定結
果を示すグラフである。
FIG. 1 is a perspective view of a sample material for a migration resistance test, FIG. 2 is an explanatory diagram of the test, and FIG. 3 is a graph showing the measurement results.

Claims (3)

【特許請求の範囲】[Claims] (1)Si0.05〜1.0wt%とNi、Fe、Co
、Cr、Tiのうちの1種または2種以上を0.05〜
1.0wt%含み、残部Cu及び不可避不純物からなる
合金の酸素含有量が20ppmであり、添加元素が固溶
状態であることを特徴とする通電材料。
(1) Si0.05-1.0wt% and Ni, Fe, Co
, Cr, and Ti or more from 0.05 to
1.0 wt% of the alloy, the balance being Cu and unavoidable impurities, the oxygen content of the alloy is 20 ppm, and the additive element is in a solid solution state.
(2)Si0.05〜1.0wt%とNi、Fe、Co
、Cr、Tiのうちの1種または2種以上を0.05〜
1.0wt%とさらに副成分としてZn、Sn、Mg、
Mn、Al、B、P、As、Sb、Ag、Pb、Be、
Zrからなる1種または2種以上を総量で0.001〜
5.0wt%を含み、残部Cu及び不可避不純物からな
る合金の酸素含有量が20ppmであり、添加元素が固
溶状態であることを特徴とする通電材料。
(2) Si0.05-1.0wt% and Ni, Fe, Co
, Cr, and Ti or more from 0.05 to
1.0wt% and further subcomponents such as Zn, Sn, Mg,
Mn, Al, B, P, As, Sb, Ag, Pb, Be,
One or more types consisting of Zr in a total amount of 0.001~
5.0 wt%, the balance being Cu and unavoidable impurities, the oxygen content of the alloy is 20 ppm, and the additive element is in a solid solution state.
(3)結晶粒度が30μm以下であることを特徴とする
(1)ないし(2)項記載の通電材料。
(3) The electrically conductive material according to items (1) or (2), characterized in that the crystal grain size is 30 μm or less.
JP30602490A 1990-11-14 1990-11-14 Electrically conductive material Pending JPH04180532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30602490A JPH04180532A (en) 1990-11-14 1990-11-14 Electrically conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30602490A JPH04180532A (en) 1990-11-14 1990-11-14 Electrically conductive material

Publications (1)

Publication Number Publication Date
JPH04180532A true JPH04180532A (en) 1992-06-26

Family

ID=17952160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30602490A Pending JPH04180532A (en) 1990-11-14 1990-11-14 Electrically conductive material

Country Status (1)

Country Link
JP (1) JPH04180532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344171B1 (en) * 1999-08-25 2002-02-05 Kobe Steel, Ltd. Copper alloy for electrical or electronic parts
JP2005213611A (en) * 2004-01-30 2005-08-11 Nikko Metal Manufacturing Co Ltd Material for electronic parts with excellent press blanking property
WO2007066697A1 (en) * 2005-12-07 2007-06-14 The Furukawa Electric Co., Ltd. Electrical wire conductor for wiring, electrical wire for wiring, and their production methods

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344171B1 (en) * 1999-08-25 2002-02-05 Kobe Steel, Ltd. Copper alloy for electrical or electronic parts
JP2005213611A (en) * 2004-01-30 2005-08-11 Nikko Metal Manufacturing Co Ltd Material for electronic parts with excellent press blanking property
WO2007066697A1 (en) * 2005-12-07 2007-06-14 The Furukawa Electric Co., Ltd. Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
JP2007305566A (en) * 2005-12-07 2007-11-22 Furukawa Electric Co Ltd:The Electric wire conductor for cabling, electric wire for cabling, and manufacturing method of the same
EP1973120A1 (en) * 2005-12-07 2008-09-24 The Furukawa Electric Co., Ltd. Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
US7560649B2 (en) 2005-12-07 2009-07-14 The Furukawa Electric Co., Ltd. Conductor of electric cable for wiring, electric cable for wiring, and methods of producing them
EP1973120A4 (en) * 2005-12-07 2009-07-15 Furukawa Electric Co Ltd Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
KR101336352B1 (en) * 2005-12-07 2013-12-04 후루카와 덴키 고교 가부시키가이샤 Electrical wire conductor for wiring, electrical wire for wiring, and their production methods

Similar Documents

Publication Publication Date Title
KR950004935B1 (en) Copper alloy for electronic instruments
JPH0784631B2 (en) Copper alloy for electronic devices
JPH04180531A (en) Electrically conductive material
JP2516623B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPS62182240A (en) Conductive high-tensile copper alloy
JPH04311544A (en) Electrically conductive material
JPH04231447A (en) Conductive material
JPH04231443A (en) Electrifying material
JPH04231430A (en) Electrifying material
JPH04180532A (en) Electrically conductive material
JP2020002439A (en) Copper alloy for fuse
JPH04231446A (en) Conductive material
JPH04231432A (en) Electrifying material
JPH04231433A (en) Electrifying material
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPH04231445A (en) Production of electrifying material
JPH04231444A (en) Production of electrifying material
JPH0499839A (en) Conductive material
JPH0499838A (en) Conductive material
JPS61266540A (en) Copper alloy
JPH0499837A (en) Conductive material
JPH01168831A (en) Electric conductive material
JPH04180533A (en) Electrically conductive material
JPH0356294B2 (en)
JPH10298679A (en) High strength and high conductivity copper alloy