JPS62209862A - Thin film semiconductor device - Google Patents

Thin film semiconductor device

Info

Publication number
JPS62209862A
JPS62209862A JP61052310A JP5231086A JPS62209862A JP S62209862 A JPS62209862 A JP S62209862A JP 61052310 A JP61052310 A JP 61052310A JP 5231086 A JP5231086 A JP 5231086A JP S62209862 A JPS62209862 A JP S62209862A
Authority
JP
Japan
Prior art keywords
semiconductor layer
intrinsic semiconductor
film
thin film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61052310A
Other languages
Japanese (ja)
Other versions
JP2865284B2 (en
Inventor
Masaharu Ono
大野 雅晴
Masatoshi Kitagawa
雅俊 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61052310A priority Critical patent/JP2865284B2/en
Publication of JPS62209862A publication Critical patent/JPS62209862A/en
Application granted granted Critical
Publication of JP2865284B2 publication Critical patent/JP2865284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To form a semiconductor element having a plurality of functions on one substrate in less steps by simultaneously forming intrinsic semiconductor layers. CONSTITUTION:A gate electrode 2 is formed on a light transmission substrate 1, and a gate insulating film 3 and a transparent electrode 4 are formed thereon. An intrinsic semiconductor layer 5 of hydrogenated amorphous silicon is formed by optical CVD or plasma CVD thereon, and a drain electrode 6 and a source electrode 7 of a field-effect transistor (FET) and ohmic electrodes 8 of a Schottky diode are simultaneously formed. Then, with the electrodes 7, 6, 8 as masks the intrinsic semiconductor layers are plasma-etched in mixture gas of CF4 and O2 to form an ultrafine thin intrinsic semiconductor layer 9 having 0.2mum or less of thickness on a gate insulating film 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基板上に薄膜半導体素子を集積化した集積回
路、イメージセンサ、表示デバイス、バイオセンサ、温
度センサ、圧力センサなどの薄膜半導体デバイスに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to thin film semiconductor devices such as integrated circuits, image sensors, display devices, biosensors, temperature sensors, pressure sensors, etc. in which thin film semiconductor elements are integrated on a substrate. It is.

従来の技術 基板上に複数種類の薄膜半導体素子を設けて有機的に機
能するデバイスは公知である。たとえば、石英ガラス基
板上に、600’C以上の熱CVDで製膜した多結晶シ
リコンを用いたTPTによる駆動回路とスイッチ素子と
を形成し、さらに、300℃以下のプラズマCVDで製
膜した非晶質シリコンを用いたPINフォトダイオード
アレイを形成し接続した一次元イメージセンサが知られ
ている。
BACKGROUND OF THE INVENTION Devices that function organically by providing a plurality of types of thin film semiconductor elements on a conventional technology substrate are known. For example, a TPT drive circuit and a switch element are formed on a quartz glass substrate using polycrystalline silicon formed by thermal CVD at temperatures of 600°C or higher, and a non-transfer element formed by plasma CVD at temperatures of 300°C or lower. A one-dimensional image sensor is known in which a PIN photodiode array using crystalline silicon is formed and connected.

また、ホウケイ酸ガラス基板上にプラズマCVDで1μ
■以上の膜厚の非晶質シリコンの真性半導体層を持つP
INフォトダイオードアレイを形成した後、0.3μ薦
以下の膜厚の非晶質シリコンの真性半導体層を持つTF
Tアレイをスイッチ素子として形成した一次元イメージ
センサなども知られている。さらにTPTのソース電極
およびドレイン電極とオーミック接触を取るため製膜し
た薄い不純物半導体層を電極形成時のフォトエツチング
工程で除去することは、TPTの作製上必要であるため
、従来より行なわれている。
In addition, 1μ
■P with an intrinsic semiconductor layer of amorphous silicon with a film thickness of
After forming the IN photodiode array, a TF with an amorphous silicon intrinsic semiconductor layer with a film thickness of less than 0.3μ is recommended.
A one-dimensional image sensor in which a T-array is formed as a switch element is also known. Furthermore, removing the thin impurity semiconductor layer formed to make ohmic contact with the source and drain electrodes of the TPT in the photo-etching process when forming the electrodes is necessary for the fabrication of the TPT, so it has been conventionally done. .

発明が解決しようとする問題点 従来の技術は、TPTとフォトダイオードのような複数
の種類の素子を同一基板上に形成するのに、それぞれの
素子に対して製膜やフォトエツチングの工程を直列的に
くり返して行なうものであった。したがって工程数が非
常に多くなり、不良率が高く、また製造コストも高くな
る第1の欠点があった。また第2の欠点として、後の製
膜工程で先に形成された素子の半導体薄膜が損傷を受け
Problems to be Solved by the Invention Conventional technology involves forming multiple types of elements such as TPT and photodiodes on the same substrate by serially performing film forming and photoetching processes for each element. It was something I would do over and over again. Therefore, the first disadvantage is that the number of steps is extremely large, the defective rate is high, and the manufacturing cost is also high. A second drawback is that the semiconductor thin film of the previously formed element is damaged in the later film forming process.

特性が劣化するという欠点があった。たとえば。There was a drawback that the characteristics deteriorated. for example.

TPTの半導体膜をプラズマCVDで製膜する時、先に
形成したフォトダイオードの電極金属がプラズマのイオ
ン衝撃によりフォトダイオードの半導体接合部に拡散し
て特性を劣化させていた。
When a TPT semiconductor film is formed by plasma CVD, the previously formed electrode metal of the photodiode is diffused into the semiconductor junction of the photodiode due to the ion bombardment of the plasma, deteriorating its characteristics.

そこで本発明は、このような従来技術における問題点を
解決することを目的とする。
Therefore, the present invention aims to solve the problems in the prior art.

問題点を解決するための手段 上記問題点を解決するため本発明は、基板上に、同時に
製膜した真性半導体層を有するとともに互いに接続され
て機能する複数種類の素子を形成し、前記素子のうち少
なくとも1種類の素子の真性半導体層を部分的に除去し
てその膜厚を小さくしたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention forms on a substrate a plurality of types of elements having intrinsic semiconductor layers formed at the same time and functioning by being connected to each other. The intrinsic semiconductor layer of at least one type of element is partially removed to reduce its film thickness.

作用 このような薄膜半導体デバイスは、複数の種類の素子を
同一基板上に形成するのにすべての素子をいずれも真性
半導体層を主とする素子で構成するとともに、この真性
半導体層を1回の製膜で同時に堆積し、その後、電極な
どの形成の過程で、各素子が最適な膜厚になるよう真性
半導体層をエツチングによって部分的に除去することに
よって得られる。このような製法が可能な素子は、非晶
質半導体薄膜や多結晶シリコン半導体薄膜を用いたPI
N接合ダイオード、シ五ットキー接合型ダイオード、電
界効果型トランジスタや非晶質半導体の光導電素子など
を組み合わせたデバイスであり、真性半導体層としては
1100pp以下の微量のPやBなどを含む弱いN型や
弱いP型のように、1層と実質的に同じように機能する
材料も含まれる。
Function In such a thin film semiconductor device, multiple types of elements are formed on the same substrate, but all the elements are composed of elements mainly consisting of an intrinsic semiconductor layer, and this intrinsic semiconductor layer is formed in one process. The intrinsic semiconductor layer is deposited simultaneously during film formation, and then, during the process of forming electrodes, etc., the intrinsic semiconductor layer is partially removed by etching so that each element has an optimal film thickness. Elements that can be manufactured using this method include PI using an amorphous semiconductor thin film or a polycrystalline silicon semiconductor thin film.
It is a device that combines N-junction diodes, Schottky junction diodes, field-effect transistors, amorphous semiconductor photoconductive elements, etc., and the intrinsic semiconductor layer is made of weak N containing trace amounts of P and B of 1100 pp or less. Also included are materials that function substantially the same as a single layer, such as type and weak P type.

非晶質半導体の中で最も良い素子特性が得られるのは、
光CVDやプラズマCVDで作製した水素化非晶質シリ
コン、水素化非晶質ゲルマニウムなどであり、PINフ
ォトダイオード、電界効果型トランジスタ、光導電素子
の3種類について、いずれも良好な素子を同時に形成す
ることができる。
Among amorphous semiconductors, the best device characteristics can be obtained by
Hydrogenated amorphous silicon, hydrogenated amorphous germanium, etc. produced by photo-CVD or plasma CVD are used to simultaneously form three types of good devices: PIN photodiodes, field-effect transistors, and photoconductive devices. can do.

このように本発明によると、真性半導体層を同時に製膜
することにより膜質の劣化や接合部の劣化の無い半導体
素子が同一基板上に形成され、膜厚を最適化するため真
性半導体層を部分的に除去していわゆる超薄膜化した電
界効果型トランジスタや光導電素子は、それぞれ電圧パ
ルス応答と光パルス応答が速くなり、イメージセンサな
どに最適な薄膜半導体デバイスとして機能する。
As described above, according to the present invention, by simultaneously forming the intrinsic semiconductor layer, a semiconductor element without deterioration of film quality or bonding parts can be formed on the same substrate, and in order to optimize the film thickness, the intrinsic semiconductor layer can be partially removed. Field-effect transistors and photoconductive elements that have been made into so-called ultra-thin films have faster voltage and light pulse responses, respectively, and function as thin-film semiconductor devices ideal for image sensors and the like.

実施例 本発明の代表的な実施例の構造断面図を第1図に示す。Example A structural sectional view of a typical embodiment of the present invention is shown in FIG.

ホウケイ酸ガラスなどの透光性基板1の上に蒸着後フォ
トエツチングしたCr、NlCr*Moなどのゲート電
極2を設け、その上にsi、N4+5un2などのゲー
ト絶縁膜3を設け、このゲート絶縁膜3の近くに別にI
n2O,、SnO,t  IT○(インジウム・スズ・
オキサイド)などの透明電極4を形成する。この上に光
CVDやプラズマCVDによって厚さ0.6μm〜2μ
曙の水素化非晶質シリコンの真性半導体層5を製膜し、
次に、この真性半導体層5とオーミック接触するAll
、 Mg。
A gate electrode 2 made of Cr, NlCr*Mo, etc. is provided on a transparent substrate 1 made of borosilicate glass or the like, which is photo-etched after vapor deposition, and a gate insulating film 3 made of Si, N4+5un2, etc. is provided thereon. There is another I near 3.
n2O,, SnO,t IT○ (indium tin,
A transparent electrode 4 such as oxide) is formed. On top of this, a thickness of 0.6 μm to 2 μm is applied by optical CVD or plasma CVD.
Forming an intrinsic semiconductor layer 5 of Akebono's hydrogenated amorphous silicon,
Next, the alloy that makes ohmic contact with this intrinsic semiconductor layer 5 is
, Mg.

A11−Mg合金などを真空蒸着した後フォトエツチン
グして同時に形成した電界効果型トランジスタ(FET
)のドレイン電極6およびソース電極7と、ソース電極
7に連続したショットキー型フォトダイオードのオーミ
ック電極8とを設ける。フォトエツチングの工程を減ら
すため、ソース電極7、ドレイン電極6、およびオーミ
ック電極8をマスクとして真性半導体層をCF4とo2
の混合ガス中でプラズマエツチングし、厚さ0.2μm
以下の超薄膜化真性半導体層9をゲート絶縁膜3の上に
形成する。さらにプラズマCVDやスパッタリングでS
in、、Si、N4,5in2とSi、N4の多層膜、
シリコンオキシナイトライドなどの絶縁保護膜10を全
面に着け、Ail配線用のコンタクトホール11を設け
る。
Field-effect transistors (FETs) are formed by vacuum-depositing A11-Mg alloy, etc., and then photo-etching.
), and an ohmic electrode 8 of a Schottky photodiode continuous to the source electrode 7 are provided. In order to reduce the number of photo-etching steps, the intrinsic semiconductor layer is coated with CF4 and O2 using the source electrode 7, drain electrode 6, and ohmic electrode 8 as masks.
Plasma etched in a mixed gas of 0.2 μm thick.
The following ultra-thin intrinsic semiconductor layer 9 is formed on the gate insulating film 3. In addition, plasma CVD and sputtering
in, Si, N4, 5in2 and Si, N4 multilayer film,
An insulating protective film 10 made of silicon oxynitride or the like is applied to the entire surface, and a contact hole 11 for Ail wiring is provided.

FETの活性層となる超薄膜化真性半導体層9は、製膜
の初期の高品質の半導体膜からなるため、キャリアの移
動度が大きく、ドレイン電流の大きいFETが得られる
。また初期の製膜速度を小さくして高品質化することも
できる。しかし、層9の厚さが0.02μm以下に薄く
なると、エツチングにより発生した界面準位によるキャ
リアの再結合により移動度が減少するため、この超薄膜
化真性半導体層9の膜厚は0.02μm〜0.2μmが
望ましい。
Since the ultra-thin intrinsic semiconductor layer 9, which becomes the active layer of the FET, is made of a high-quality semiconductor film in the early stage of film formation, an FET with high carrier mobility and a large drain current can be obtained. It is also possible to increase the quality by reducing the initial film forming speed. However, when the thickness of the layer 9 is reduced to 0.02 μm or less, the mobility decreases due to the recombination of carriers by the interface states generated by etching. 02 μm to 0.2 μm is desirable.

界面準位を減少させる方法として、プラズマエツチング
した超薄膜化真性半導体層9の表面を空気中にさらすこ
となく、同じプラズマCVD装置で連続して5in2.
SL、N4などの絶縁保護膜10を形成することも有効
である。原料ガスはS io。
As a method for reducing the interface state, the surface of the plasma-etched ultra-thin intrinsic semiconductor layer 9 is continuously etched at 5 in 2.
It is also effective to form an insulating protective film 10 of SL, N4, or the like. The raw material gas is Sio.

の場合はN、OとS i H、の混合ガスを用い。In this case, use a mixed gas of N, O, and SiH.

Si、N4の場合はNH,やN2とS i H4の混合
ガスを用いる。すると、RFグロー放電によりいずれも
水素化された良質の絶縁保護膜10が得られる。
In the case of Si and N4, NH or a mixed gas of N2 and SiH4 is used. Then, a good quality insulating protective film 10 is obtained which is hydrogenated by RF glow discharge.

またプラズマエツチングした表面をN2中の放電により
水素プラズマ処理すれば1表面のSi原子の未結合手が
励起したH、[子と結合して安定化し。
Furthermore, if the plasma-etched surface is treated with hydrogen plasma by discharge in N2, the dangling bonds of the Si atoms on one surface combine with the excited H and [ atoms and become stable.

界面準位を減少させることができる。また、このような
水素プラズマ処理は、真性半導体層5のプラズマエツチ
ングと連続して行なうことができる。
Interface states can be reduced. Further, such hydrogen plasma treatment can be performed continuously with plasma etching of the intrinsic semiconductor layer 5.

非晶質シリコンからなる超薄膜化真性半導体層9にAr
レーザやエキシマレーザを照射してレーザアニールする
と、結晶化により約1a1/v−3ecの移動度が10
〜200aJ/ V−seeに向上するほか、エツチン
グによって発生した歪と界面準位を除去できる効果が得
られる。以上のような、水素プラズマ処理、レーザアニ
ール、連続した絶縁膜の形成プロセスなどは、いずれも
本発明による真性半導体層5の部分的除去と組み合わせ
たときに効果が大きい。
Ar is applied to the ultra-thin intrinsic semiconductor layer 9 made of amorphous silicon.
When laser annealing is performed by irradiating with laser or excimer laser, the mobility of about 1a1/v-3ec decreases to 10 due to crystallization.
In addition to being improved to ~200 aJ/V-see, it is also possible to remove the strain and interface states caused by etching. The above hydrogen plasma treatment, laser annealing, continuous insulating film formation process, etc. are all highly effective when combined with partial removal of the intrinsic semiconductor layer 5 according to the present invention.

オーミック電極8は透明電極4とともに真性半導体M5
をはさむサンドインチ型のフォトダイオードを構成して
いる。すなわち、透明電極4と真性半導体層5の間のシ
ゴットキバリアによる内部電界が発生する。透明電極4
を通して真性半導体層5に入射した光によって励起した
電子は、オーミック電極8からソース電極7にたまり、
FETのスイッチ素子のオン・オフにより信号電流とし
て読み出しができる。このため、第1図の実施例の素子
を複数個直線状に配列すれば、画像情報を時系列で読み
出す一次元イメージセンサとして機能する。本実施例に
示す薄膜のFETは飽和ドレイン電圧が大きいため、5
〜10vの逆バイアス電圧をフォトダイオードに印加す
る必要がある。また、安定な耐圧を得るため、真性半導
体Jl15は0.6μIl〜2μIの厚さが必要である
。そこで超薄膜化真性半導体層9の望ましい膜厚0.0
2μ−〜0.1μmと著しく膜厚が異なるため、独立し
て膜厚を最適化できる本発明が有効となる。多結晶Si
薄膜を用いる場合も、はぼ同様の効果が得られる。
The ohmic electrode 8 is an intrinsic semiconductor M5 together with the transparent electrode 4.
It constitutes a sandwich-type photodiode sandwiching the . That is, an internal electric field is generated due to the barrier between the transparent electrode 4 and the intrinsic semiconductor layer 5. Transparent electrode 4
Electrons excited by the light incident on the intrinsic semiconductor layer 5 through the ohmic electrode 8 accumulate in the source electrode 7,
It can be read out as a signal current by turning on and off the switch element of the FET. Therefore, if a plurality of elements of the embodiment shown in FIG. 1 are arranged in a straight line, it will function as a one-dimensional image sensor that reads out image information in time series. Since the thin film FET shown in this example has a large saturation drain voltage,
A reverse bias voltage of ~10v needs to be applied to the photodiode. Further, in order to obtain a stable breakdown voltage, the intrinsic semiconductor Jl15 needs to have a thickness of 0.6 μI to 2 μI. Therefore, the desirable thickness of the ultra-thin intrinsic semiconductor layer 9 is 0.0.
Since the film thickness is significantly different from 2 μm to 0.1 μm, the present invention, which can independently optimize the film thickness, is effective. Polycrystalline Si
Even when using a thin film, similar effects can be obtained.

第2図は、IP接合またはIN接合を持つフォトダイオ
ードとFETを同時に形成した実施例を示すものである
。ここでは、ゲート電極2と同じCr M oなどの金
属蒸着膜でフォトダイオードの下部電極12を形成して
工程を減らすとともに、フォトダイオードの窓側の透明
電極13とFETのソースまたはドレインとなる透明電
極14.15を同時に形成し、透明電極13.14.1
5と真性半導体層5との間に、安定な拡散電位を得るた
め薄いP型またはN型の不純物半導体層16.17を設
けたものである。この不純物半導体yIm16.17の
ゲート部分は。
FIG. 2 shows an embodiment in which a photodiode having an IP junction or an IN junction and a FET are formed at the same time. Here, the lower electrode 12 of the photodiode is formed with a metal vapor deposition film such as CrMo, which is the same as the gate electrode 2, to reduce the number of steps, and the transparent electrode 13 on the window side of the photodiode and the transparent electrode that becomes the source or drain of the FET are formed. 14.15 is formed at the same time, transparent electrode 13.14.1
5 and the intrinsic semiconductor layer 5, a thin P-type or N-type impurity semiconductor layer 16, 17 is provided in order to obtain a stable diffusion potential. The gate portion of this impurity semiconductor yIm16.17 is as follows.

真性半導体層5の一部を除去するときに同時に除かれる
It is removed at the same time as part of the intrinsic semiconductor layer 5 is removed.

本実施例のものは、素子側から光を入射するため原稿に
接近して用いる完全密着型イメージセンサに応用でき、
FET部の真性半導体層5の超薄膜化によって、しや光
膜が無い場合でもFETが入射光の影響を受けないよう
にすることができる。
This example can be applied to a fully contact type image sensor that is used close to the original because the light enters from the element side.
By making the intrinsic semiconductor layer 5 in the FET part ultra-thin, it is possible to prevent the FET from being affected by incident light even when there is no optical film.

また、不純物半導体層16.17と透明電極13.14
゜15のような拡散しやすい原子を持つ層とを、真性半
導体層5の製膜の後の工程で形成するため、拡散が起き
ず、真性半導体層5の膜質が改善され、フォトダイオー
ドの暗電流の低減にも効果がある。
In addition, the impurity semiconductor layer 16.17 and the transparent electrode 13.14
Since the layer containing easily diffusible atoms such as 15 is formed in the process after forming the intrinsic semiconductor layer 5, diffusion does not occur, the film quality of the intrinsic semiconductor layer 5 is improved, and the darkness of the photodiode is improved. It is also effective in reducing current.

下部電極12にCrを用い、かつ真性半導体層5に水素
化非晶質シリコンを用いる場合は、その間の電位障壁は
比較的小さく、良好である。
When Cr is used for the lower electrode 12 and hydrogenated amorphous silicon is used for the intrinsic semiconductor layer 5, the potential barrier therebetween is relatively small and good.

第3図は、フォトダイオードの下部電極とFETのゲー
ト電極を共通膜にして接続した実施例を示すものである
。本例によると、フォトダイオードの光電流をゲートに
蓄積し、これを増巾して信号処理することができる。こ
こで18はゲート電極、19はソース電極、20はドレ
イン電極、21は透明電極、22.23.24は不純物
半導体層、25は下部電極、26は絶縁膜、27は絶縁
保護膜である。
FIG. 3 shows an embodiment in which the lower electrode of the photodiode and the gate electrode of the FET are connected by using a common film. According to this example, the photocurrent of the photodiode can be accumulated in the gate and amplified to perform signal processing. Here, 18 is a gate electrode, 19 is a source electrode, 20 is a drain electrode, 21 is a transparent electrode, 22, 23, and 24 are impurity semiconductor layers, 25 is a lower electrode, 26 is an insulating film, and 27 is an insulating protective film.

第4図に示す実施例は、第1図のFETのソース電極7
に、電極30を対向させてギャップセルを形成し、超薄
膜化真性半導体層29を用いた高速光応答の光導電素子
と、超薄膜化真性半導体層28を用いたFETを、一つ
の基板上に同時に形成し接続したデバイスに関するもの
である。ここで、超薄膜化真性半導体層29の膜厚が0
.1μm以下になると0.3μ■の場合の約10倍に光
応答を速くできる。
In the embodiment shown in FIG. 4, the source electrode 7 of the FET shown in FIG.
A gap cell is formed by making the electrodes 30 face each other, and a photoconductive element with high-speed photoresponse using the ultra-thin intrinsic semiconductor layer 29 and an FET using the ultra-thin intrinsic semiconductor layer 28 are mounted on one substrate. It relates to devices simultaneously formed and connected to. Here, the thickness of the ultra-thinned intrinsic semiconductor layer 29 is 0.
.. When the thickness is less than 1 μm, the optical response can be made about 10 times faster than when the thickness is 0.3 μm.

本例によると、最も単純な工程で製造でき、受光素子の
シミートもほとんど発生しない。また先は基板側と素子
側のどちら側からでも入射でき、読み取る原稿に受光素
子を近接させた2次元密着型イメージセンサなどにも応
用することが容易である。また超薄膜化真性半導体層2
9の絶縁保護膜10として多孔質でじゃ光性の薄膜を用
いれば、表面吸着した水分により暗電流の変化する湿度
センサを実現することができるほかに、絶縁保護膜10
として熱伝導率が良くしや光性の薄膜を用れば、温度上
昇による暗電流の増加を応用した温度センサアレイを実
現できるなどの利点がある。
According to this example, it can be manufactured using the simplest process, and there is almost no shimmy of the light-receiving element. In addition, the light can enter from either the substrate side or the element side, and can be easily applied to two-dimensional contact type image sensors in which the light receiving element is placed close to the original to be read. In addition, ultra-thin intrinsic semiconductor layer 2
If a porous, light-absorbing thin film is used as the insulating protective film 10 of 9, it is possible to realize a humidity sensor in which the dark current changes due to moisture adsorbed on the surface.
If a thin film with good thermal conductivity and optical properties is used as a material, there are advantages such as the ability to realize a temperature sensor array that takes advantage of the increase in dark current caused by temperature rise.

発明の効果 以上のように本発明によれば、従来技術の欠点をすべて
解決し、一つの基板上に複数の機能を持つ半導体素子を
少ない工程で形成できる。また、それぞれの半導体素子
の高耐圧化や高速応答などの性能を独立して高めること
ができる。さらに、素子形成過程での特性劣化を除くこ
とができる。
Effects of the Invention As described above, according to the present invention, all the drawbacks of the prior art can be solved and a semiconductor element having a plurality of functions can be formed on one substrate with a small number of steps. Furthermore, the performance of each semiconductor element, such as high breakdown voltage and high-speed response, can be independently improved. Furthermore, characteristic deterioration during the element formation process can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、本発明の第1〜第4の実施例を示す
構造断面図である。 l・・・透光性基板、5・・・真性半導体層、9.28
゜29・・・超薄膜化真性半導体層、10・・・絶縁保
護膜、13゜14、15.21・・・透明電極、 16
.17.24・・・不純物半導体層 代理人   森  本  義  弘 第1図 第2図 = /J、/4./r−*efJ@fi /j、/7−−得#3物科絹 第う図 27−透B8%持 24−m−不才も才句半尊体層 第4図
1 to 4 are structural sectional views showing first to fourth embodiments of the present invention. l... Transparent substrate, 5... Intrinsic semiconductor layer, 9.28
゜29...Ultra-thin intrinsic semiconductor layer, 10...Insulating protective film, 13゜14, 15.21...Transparent electrode, 16
.. 17.24... Impurity semiconductor layer agent Yoshihiro Morimoto Figure 1 Figure 2 = /J, /4. /r-*efJ@fi /j, /7--Profit #3 Materials silk diagram 27-Toru B8% holding 24-m-Untalented and talented half-venerable body layer Figure 4

Claims (1)

【特許請求の範囲】 1、基板上に、同時に製膜した真性半導体層を有すると
ともに互いに接続されて機能する複数種類の素子を形成
し、前記素子のうち少なくとも1種類の素子の真性半導
体層を部分的に除去してその膜厚を小さくしたことを特
徴とする薄膜半導体デバイス。 2、電界効果型トランジスタの真性半導体層を部分的に
除去して膜厚を小さくしたことを特徴とする特許請求の
範囲第1項記載の薄膜半導体デバイス。 3、プレーナ型光導電素子の真性半導体層を部分的に除
去して膜厚を小さくしたことを特徴とする特許請求の範
囲第1項記載の薄膜半導体デバイス。 4、部分的に除去された真性半導体層の表面が水素プラ
ズマ中で処理されてなることを特徴とする特許請求の範
囲第1項記載の薄膜半導体デバイス。 5、プラズマエッチングによって部分的に除去した真性
半導体層の表面を大気中にさらすこと無く、その上にプ
ラズマCVDで製膜した絶縁保護膜を形成したことを特
徴とする特許請求の範囲第1項記載の薄膜半導体デバイ
ス。 6、部分的に除去して膜厚を小さくした真性半導体層が
、レーザ光を照射して結晶化処理されてなることを特徴
とする特許請求の範囲第1項記載の薄膜半導体デバイス
。 7、真性半導体層の上部電極を透明導電膜にて構成し、
この透明導電膜と真性半導体層の間に薄い不純物半導体
層を設けたことを特徴とする特許請求の範囲第1項記載
の薄膜半導体デバイス。
[Claims] 1. A plurality of types of elements having intrinsic semiconductor layers formed simultaneously and functioning by being connected to each other are formed on a substrate, and the intrinsic semiconductor layer of at least one type of the elements is formed on a substrate. A thin film semiconductor device characterized in that the film thickness is reduced by partially removing the film. 2. The thin film semiconductor device according to claim 1, wherein the intrinsic semiconductor layer of the field effect transistor is partially removed to reduce the film thickness. 3. The thin film semiconductor device according to claim 1, wherein the intrinsic semiconductor layer of the planar photoconductive element is partially removed to reduce the film thickness. 4. The thin film semiconductor device according to claim 1, wherein the surface of the partially removed intrinsic semiconductor layer is treated in hydrogen plasma. 5. Claim 1, characterized in that an insulating protective film formed by plasma CVD is formed on the surface of the intrinsic semiconductor layer partially removed by plasma etching without exposing it to the atmosphere. The thin film semiconductor device described. 6. The thin film semiconductor device according to claim 1, wherein the intrinsic semiconductor layer whose thickness has been reduced by partially removing the film is crystallized by irradiation with laser light. 7. The upper electrode of the intrinsic semiconductor layer is made of a transparent conductive film,
The thin film semiconductor device according to claim 1, characterized in that a thin impurity semiconductor layer is provided between the transparent conductive film and the intrinsic semiconductor layer.
JP61052310A 1986-03-10 1986-03-10 Thin-film semiconductor devices Expired - Lifetime JP2865284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61052310A JP2865284B2 (en) 1986-03-10 1986-03-10 Thin-film semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61052310A JP2865284B2 (en) 1986-03-10 1986-03-10 Thin-film semiconductor devices

Publications (2)

Publication Number Publication Date
JPS62209862A true JPS62209862A (en) 1987-09-16
JP2865284B2 JP2865284B2 (en) 1999-03-08

Family

ID=12911208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61052310A Expired - Lifetime JP2865284B2 (en) 1986-03-10 1986-03-10 Thin-film semiconductor devices

Country Status (1)

Country Link
JP (1) JP2865284B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331168A (en) * 1986-07-25 1988-02-09 Hitachi Ltd Manufacture of thin-film transistor
JPH02250037A (en) * 1989-03-23 1990-10-05 Matsushita Electric Ind Co Ltd Production of active matrix substrate and production of display device
US4997262A (en) * 1987-08-26 1991-03-05 Sharp Kabushiki Kaisha Liquid crystal display element
US5065202A (en) * 1988-02-26 1991-11-12 Seikosha Co., Ltd. Amorphous silicon thin film transistor array substrate and method for producing the same
US5075746A (en) * 1988-07-19 1991-12-24 Agency Of Industrial Science And Technology Thin film field effect transistor and a method of manufacturing the same
WO1992006490A1 (en) * 1990-10-05 1992-04-16 General Electric Company Device self-alignment by propagation of a reference structure's topography
JP2006245045A (en) * 2005-02-28 2006-09-14 Fuji Photo Film Co Ltd Solid imaging element of photoelectric conversion film stacked type and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130883A (en) * 1978-04-01 1979-10-11 Agency Of Ind Science & Technol Production of semiconductor device
JPS5791517A (en) * 1980-11-28 1982-06-07 Toshiba Corp Manufacture of semiconductor device
JPS58178564A (en) * 1982-04-13 1983-10-19 Seiko Epson Corp Thin film transistor
JPS59204275A (en) * 1983-05-06 1984-11-19 Seiko Epson Corp Manufacture of thin film transistor
JPS60136259A (en) * 1983-12-24 1985-07-19 Sony Corp Manufacture of fet
JPS6142961A (en) * 1984-08-07 1986-03-01 Matsushita Electric Ind Co Ltd Thin film field effect transistor and manufacture thereof
JPS62171155A (en) * 1986-01-24 1987-07-28 Canon Inc Manufacture of photosensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130883A (en) * 1978-04-01 1979-10-11 Agency Of Ind Science & Technol Production of semiconductor device
JPS5791517A (en) * 1980-11-28 1982-06-07 Toshiba Corp Manufacture of semiconductor device
JPS58178564A (en) * 1982-04-13 1983-10-19 Seiko Epson Corp Thin film transistor
JPS59204275A (en) * 1983-05-06 1984-11-19 Seiko Epson Corp Manufacture of thin film transistor
JPS60136259A (en) * 1983-12-24 1985-07-19 Sony Corp Manufacture of fet
JPS6142961A (en) * 1984-08-07 1986-03-01 Matsushita Electric Ind Co Ltd Thin film field effect transistor and manufacture thereof
JPS62171155A (en) * 1986-01-24 1987-07-28 Canon Inc Manufacture of photosensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331168A (en) * 1986-07-25 1988-02-09 Hitachi Ltd Manufacture of thin-film transistor
US4997262A (en) * 1987-08-26 1991-03-05 Sharp Kabushiki Kaisha Liquid crystal display element
US5065202A (en) * 1988-02-26 1991-11-12 Seikosha Co., Ltd. Amorphous silicon thin film transistor array substrate and method for producing the same
US5075746A (en) * 1988-07-19 1991-12-24 Agency Of Industrial Science And Technology Thin film field effect transistor and a method of manufacturing the same
JPH02250037A (en) * 1989-03-23 1990-10-05 Matsushita Electric Ind Co Ltd Production of active matrix substrate and production of display device
WO1992006490A1 (en) * 1990-10-05 1992-04-16 General Electric Company Device self-alignment by propagation of a reference structure's topography
GB2253742A (en) * 1990-10-05 1992-09-16 Gen Electric Device self-alignment by propagation of a reference structure's topography
US5340758A (en) * 1990-10-05 1994-08-23 General Electric Company Device self-alignment by propagation of a reference structure's topography
JP2006245045A (en) * 2005-02-28 2006-09-14 Fuji Photo Film Co Ltd Solid imaging element of photoelectric conversion film stacked type and its manufacturing method

Also Published As

Publication number Publication date
JP2865284B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
US6146927A (en) Semiconductor device, manufacturing method therefor and liquid crystal driving apparatus comprising the semiconductor device
JP2923700B2 (en) Semiconductor device and manufacturing method thereof
USRE39393E1 (en) Device for reading an image having a common semiconductor layer
US5889291A (en) Semiconductor integrated circuit
KR0128724B1 (en) Thin film insulated gate semiconductor device and manufacturing thereof
US5705413A (en) Method of manufacturing an electronic device using thermally stable mask
JP2814319B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0563196A (en) Thin film semiconductor device, manufacture thereof and liquid crystal display device
JPS62209862A (en) Thin film semiconductor device
JP3514891B2 (en) Semiconductor device and manufacturing method thereof
JPH07162003A (en) Manufacture of thin-film transistor
JP2572379B2 (en) Method for manufacturing thin film transistor
JP2776820B2 (en) Method for manufacturing semiconductor device
JP2916524B2 (en) Thin film semiconductor device
JPH0564862B2 (en)
KR100815894B1 (en) Method of fabricating CMOS Poly Silicon TFT having LDD structure
JP2698182B2 (en) Thin film transistor
JPH01248668A (en) Thin-film transistor
JPH0575125A (en) Thin-film transistor
KR100194677B1 (en) Inverter and its fabrication method
JPH03114234A (en) Thin film transistor and its manufacture
JP3336274B2 (en) Method for manufacturing semiconductor device
JPH09326495A (en) Thin film transistor and its manufacturing method
JPH09102627A (en) Photoelectric conversion device
JP2867457B2 (en) Method of manufacturing thin film transistor matrix

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term