JP2814319B2 - Liquid crystal display device and method of manufacturing the same - Google Patents

Liquid crystal display device and method of manufacturing the same

Info

Publication number
JP2814319B2
JP2814319B2 JP21869091A JP21869091A JP2814319B2 JP 2814319 B2 JP2814319 B2 JP 2814319B2 JP 21869091 A JP21869091 A JP 21869091A JP 21869091 A JP21869091 A JP 21869091A JP 2814319 B2 JP2814319 B2 JP 2814319B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
amorphous semiconductor
thin film
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21869091A
Other languages
Japanese (ja)
Other versions
JPH0555570A (en
Inventor
三郎 及川
康弘 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21869091A priority Critical patent/JP2814319B2/en
Publication of JPH0555570A publication Critical patent/JPH0555570A/en
Application granted granted Critical
Publication of JP2814319B2 publication Critical patent/JP2814319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1229Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with different crystal properties within a device or between different devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置(以下、
適宜、液晶ディスプレイ又は薄膜半導体装置という。)
及びその製造方法に係り、特に薄膜トランジスタを形成
してなるアクティブマトリクス基板及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display (hereinafter, referred to as a liquid crystal display).
It is called a liquid crystal display or a thin film semiconductor device as appropriate. )
And a method of manufacturing the same, particularly forming a thin film transistor
Active matrix substrate and method of manufacturing the same
Related.

【0002】[0002]

【従来の技術】液晶ディスプレイ用アクティブマトリッ
クス基板としては、画素駆動用の薄膜トランジスタと、
それらを駆動させる走査回路や信号回路の周辺駆動回路
用の薄膜トランジスタを同一基板上に形成させたものが
知られている。
2. Description of the Related Art As an active matrix substrate for a liquid crystal display, a thin film transistor for driving a pixel,
It is known that a thin film transistor for a peripheral driving circuit of a scanning circuit or a signal circuit for driving them is formed on the same substrate.

【0003】画素駆動用及び周辺回路用の両者の薄膜ト
ランジスタをいずれも単結晶又多結晶シリコンの同一種
類で形成したもの、画素駆動用薄膜トランジスタを非晶
質シリコンの単層若しくは積層で、周辺回路用薄膜トラ
ンジスタを多結晶シリコンで形成したもの等がある。
[0003] The thin film transistor for driving both the pixel and the peripheral circuit is formed of the same kind of single crystal or polycrystalline silicon. There is a thin film transistor formed of polycrystalline silicon.

【0004】前者の例としては、特開平1−19435
1号公報があり、後者の例としては、特開昭64−20
88号公報、アイ・イー・イー・イー・トランザクショ
ンオン エレクトロン デバイス 第36巻第2868
頁〜第2872頁(IEEETransactions on Electron Dev
ices, Vol .36,pp2868〜2872(1989))等がある。
An example of the former is disclosed in Japanese Patent Laid-Open Publication No.
Japanese Patent Application Laid-open No. Sho 64-20 discloses an example of the latter.
No. 88, IEE Transaction on Electron Device, Vol. 36, No. 2868
Page to 2872 (IEEETransactions on Electron Dev
ices, Vol. 36, pp. 2868-2872 (1989)).

【0005】また、特開平2−27320号公報には画
素駆動用薄膜トランジスタのチャンネル領域を非晶質シ
リコン、ソース、ドレン領域を多結晶シリコンで形成
し、周辺回路用薄膜トランジスタのチャンネル領域及び
ソース、ドレン領域を多結晶シリコンで形成した例が開
示されている。
Japanese Patent Application Laid-Open No. Hei 2-27320 discloses that a channel region of a pixel driving thin film transistor is formed of amorphous silicon, a source and a drain region are formed of polycrystalline silicon, and a channel region and a source and drain of a peripheral circuit thin film transistor are formed. An example in which the region is formed of polycrystalline silicon is disclosed.

【0006】[0006]

【発明が解決しようとする課題】周辺駆動回路を内蔵し
たアクティブマトリックス基板の薄膜トランジスタとし
ては、次の特性が要求される。画素駆動用薄膜トランジ
スタは、オフ電流が小さく、製法上は大面積基板内に形
成するためプロセスの均一性が得られやすいことが望ま
れる。一方、周辺駆動回路用薄膜トランジスタは、オン
電流を大きくするため電界効果移動度が大きいことが望
まれる。また両者の薄膜トランジスタを同一基板上に形
成するためには、両者の製造プロセスのマッチングが重
要課題である。
The following characteristics are required for a thin film transistor on an active matrix substrate having a built-in peripheral driving circuit. It is desired that the thin film transistor for driving a pixel has a small off-current and is easily formed in a large-area substrate in a manufacturing method, so that uniformity of the process can be easily obtained. On the other hand, a thin film transistor for a peripheral driver circuit is desired to have high field-effect mobility in order to increase on-current. Further, in order to form both thin film transistors on the same substrate, matching of both manufacturing processes is an important issue.

【0007】上記従来構造においては、いずれも製造工
程が繁雑で、このため歩留りの低下、コスト高、大面積
基板内及び製造ロット間の不均一性の問題が有る。
[0007] In the above-mentioned conventional structures, the manufacturing process is complicated, and therefore, there are problems such as a decrease in yield, a high cost, and non-uniformity in a large-area substrate and between manufacturing lots.

【0008】例えば、多結晶シリコン薄膜トランジスタ
は製造工程の処理温度が高いため、使用可能な耐熱ガラ
ス基板が高価となる。
For example, since a polycrystalline silicon thin film transistor has a high processing temperature in a manufacturing process, a usable heat-resistant glass substrate becomes expensive.

【0009】単結晶シリコンをガラス基板に貼合せる方
法は、特性的には優れた周辺駆動回路が得られるが、製
造工程で繁雑で高価となる。
The method of bonding single crystal silicon to a glass substrate can provide a peripheral drive circuit excellent in characteristics, but is complicated and expensive in the manufacturing process.

【0010】非晶質シリコン層をレーザアニールして多
結晶層とした正スタガ構造の薄膜トランジスタは、製法
が比較的簡単で、かつ特性的にも優れているが、液晶デ
ィスプレイ用アクティブマトリックスとしては遮光が必
要となり、この点でトータルプロセス工程数が増加す
る。
[0010] A thin film transistor having a positive staggered structure in which an amorphous silicon layer is laser-annealed into a polycrystalline layer is relatively simple in manufacturing method and excellent in characteristics, but is shielded from light as an active matrix for a liquid crystal display. Is required, and the number of total process steps increases in this respect.

【0011】また、画素駆動用薄膜トランジスタを非晶
質シリコンで積層する構成は、非晶質層と非晶質層の接
合において、プラズマCVD時の形成条件、例えば高周
波出力、基板温度等のわずかな差異により、新たなトラ
ップ準位が形成され、特性のばらつきを生じやすい。
In addition, the structure in which the pixel driving thin film transistor is laminated with amorphous silicon is characterized in that, when the amorphous layer is bonded to the amorphous layer, the formation conditions at the time of plasma CVD, for example, slight changes in high-frequency output, substrate temperature, etc. Due to the difference, a new trap level is formed, and the characteristic tends to vary.

【0012】本発明の目的は、製品の均一性・再現性が
優れたアクティブマトリクス基板を有する液晶表示装置
及びその製造方法を提供することにある。
An object of the present invention is to provide a liquid crystal display device <br/> and a manufacturing method thereof having an active matrix substrate uniformity and reproducibility of the product was excellent.

【0013】[0013]

【課題を解決するための手段】上記目的は、同一の絶縁
基板上にゲート電極、ゲート絶縁層、単層の非晶質半導
体層チャンネル領域、ソース電極及びドレイン電極を順
次形成した第1の逆スタガ構造の電界効果型薄膜トラン
ジスタと、ゲート電極、ゲート絶縁層、結晶質と非晶質
の積層の半導体層のチャンネル領域、ソース電極及びド
レイン電極を順次形成した第2の逆スタガ構造の電界効
果型薄膜トランジスタとを有することにより達成され
る。
The object of the present invention is to provide a first reverse type in which a gate electrode, a gate insulating layer, a single-layer amorphous semiconductor layer channel region, a source electrode and a drain electrode are sequentially formed on the same insulating substrate. A field effect type thin film transistor having a staggered structure and a field effect type thin film transistor having a second inverted staggered structure in which a gate electrode, a gate insulating layer, a channel region of a semiconductor layer of crystalline and amorphous layers, a source electrode and a drain electrode are sequentially formed. This is achieved by having a thin film transistor.

【0014】上記目的は、同一の絶縁基板上にゲート電
極、ゲート絶縁層、を順次形成し、該ゲート絶縁層上の
選択された領域に多結晶半導体層を形成し、該多結晶半
導体層上に非晶質半導体層、ソース電極及びドレイン電
極を形成することにより達成される。
[0014] The object is to form a gate electrode and a gate insulating layer sequentially on the same insulating substrate, form a polycrystalline semiconductor layer in a selected region on the gate insulating layer, and form a polycrystalline semiconductor layer on the polycrystalline semiconductor layer. This is achieved by forming an amorphous semiconductor layer, a source electrode and a drain electrode on the substrate.

【0015】上記目的は、同一の絶縁基板上にゲート電
極、ゲート絶縁層、第1の非晶質半導体層を順次形成
し、該第1の非晶質半導体層上の選択された領域にレー
ザアニールし、該第1の非晶質半導体層の不要領域をエ
ッチング除去して多結晶半導体層を形成し、該多結晶半
導体層上に第2の非晶質半導体層、ソース電極及びドレ
イン電極を形成することにより達成される。
An object of the present invention is to form a gate electrode, a gate insulating layer, and a first amorphous semiconductor layer sequentially on the same insulating substrate, and to form a laser on a selected region on the first amorphous semiconductor layer. Annealing is performed to remove unnecessary regions of the first amorphous semiconductor layer by etching to form a polycrystalline semiconductor layer, and a second amorphous semiconductor layer, a source electrode, and a drain electrode are formed on the polycrystalline semiconductor layer. It is achieved by forming.

【0016】上記目的は、同一の絶縁基板上にゲート電
極、ゲート絶縁層、第1の非晶質半導体層を順次形成
し、該第1の非晶質半導体層上の選択された領域にレー
ザアニールし、該第1の非晶質半導体層の不要領域をエ
ッチング除去して多結晶半導体層を形成し、該多結晶半
導体層及び前記ゲート絶縁層を水素主体のプラズマ雰囲
気中で処理し続いてプラズマCVD法で第2の非晶質半
導体層を形成し、次にソース電極及びドレイン電極を形
成することにより達成される。
An object of the present invention is to form a gate electrode, a gate insulating layer, and a first amorphous semiconductor layer sequentially on the same insulating substrate, and to form a laser on a selected region on the first amorphous semiconductor layer. Annealing, removing unnecessary regions of the first amorphous semiconductor layer by etching to form a polycrystalline semiconductor layer, and treating the polycrystalline semiconductor layer and the gate insulating layer in a hydrogen-based plasma atmosphere. This is achieved by forming a second amorphous semiconductor layer by a plasma CVD method, and then forming a source electrode and a drain electrode.

【0017】[0017]

【作用】上記構成によれば、同一の絶縁基板上に第1、
第2の逆スタガ構造の電界効果型薄膜トランジスタが形
成され、第2の逆スタガ構造の電界効果型薄膜トランジ
スタのオン電流はソース電極から多結晶質半導体層チャ
ンネル領域を通ってドレイン電極へと流れる。非晶質層
に比べて結晶性が優れた多結晶層ではトラップ密度が著
しく低いため、高い電界効果移動度が得られる。また、
半導体層における非晶質層と多結晶層の接合は、新規な
トラップ準位や界面準位の形成は無く、清浄にのみ注意
すれば良好な接合が再現性良く得られる。一方、第1の
逆スタガ構造の電界効果型薄膜トランジスタは、単層の
非晶質半導体層チャンネル領域とゲート絶縁層との界面
の清浄に注意すれば、通常のプラズマCVD法による形
成で大面積均一性が得られる。
According to the above arrangement, the first and the second are arranged on the same insulating substrate.
A second inverted staggered field effect thin film transistor is formed, and an on-current of the second inverted staggered field effect thin film transistor flows from the source electrode to the drain electrode through the polycrystalline semiconductor layer channel region. In a polycrystalline layer having better crystallinity than an amorphous layer, the trap density is extremely low, so that high field-effect mobility can be obtained. Also,
In the junction between the amorphous layer and the polycrystalline layer in the semiconductor layer, no new trap level or interface level is formed, and a good junction can be obtained with good reproducibility if attention is paid only to cleaning. On the other hand, the first field effect thin film transistor having an inverted staggered structure has a large area uniformity by a normal plasma CVD method, if care is taken to clean the interface between the single-layer amorphous semiconductor layer channel region and the gate insulating layer. Property is obtained.

【0018】そして、第1、第2の逆スタガ構造の電界
効果型薄膜トランジスタの形成は、同一の絶縁基板上に
ゲート電極、ゲート絶縁層、を順次双方同時に形成し、
第2の逆スタガ構造の電界効果型薄膜トランジスタのゲ
ート絶縁層上の選択された領域に多結晶半導体層を形成
し、その多結晶半導体層以外の領域の非晶質膜を除去す
るプロセスだけが異なり、プロセスをほぼ同時進行させ
ることが可能であるからプロセスのマッチングがとれ第
1、第2の逆スタガ構造の電界効果型薄膜トランジスタ
を同一絶縁基板上に形成することが出来る。また、製造
プロセスが簡単であり、均一性・再現性に優れ、歩留ま
りが高くなる。
The first and second inverted staggered field-effect thin film transistors are formed by simultaneously forming a gate electrode and a gate insulating layer on the same insulating substrate at the same time.
Only the process of forming a polycrystalline semiconductor layer in a selected region on the gate insulating layer of the second inverted staggered field effect thin film transistor and removing the amorphous film in a region other than the polycrystalline semiconductor layer is different. Since the processes can be performed almost simultaneously, the process can be matched, and the first and second field-effect thin film transistors having the inverted staggered structure can be formed on the same insulating substrate. Further, the manufacturing process is simple, the uniformity and reproducibility are excellent, and the yield is high.

【0019】[0019]

【実施例】以下、本発明の実施例を図により説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は本実施例の薄膜半導体装置の縦断面
図である。左側に示す素子は周辺回路用薄膜トランジス
タ、右側に示す素子は画素駆動用薄膜トランジスタであ
る。本実施例では、表示部が対角305mm(12イン
チ相当)の大きさの液晶ディスプレイ用アクティブマト
リックス基板を製造する場合としており、画素部は通常
の逆スタガ構造の非晶質Si薄膜トランジスタを画素数
分480×640(×3)個を基板上に配列し、さら
に、周辺回路部においてはチャンネル領域が多結晶と非
晶質Siの二層構造とした同逆スタガ構造の薄膜トラン
ジスタ基板製作の場合である。このチャンネル領域に必
要なのは薄膜の多結晶であるが、薄膜にするとそれ以後
の他の膜を形成するプロセスで損傷を受けてチャンネル
領域として満足に作動しなくなるから、薄膜の多結晶を
保護する目的でその上に非晶質Siの層を形成し二層構
造としている。逆スタガ構造は遮光マスクが不要のため
使用される例が多い。
FIG. 1 is a longitudinal sectional view of the thin film semiconductor device of this embodiment. The element on the left is a peripheral circuit thin film transistor, and the element on the right is a pixel driving thin film transistor. In this embodiment, an active matrix substrate for a liquid crystal display having a display unit having a size of 305 mm (equivalent to 12 inches) diagonal is manufactured, and a pixel unit is formed by using an ordinary inverted-staggered amorphous Si thin film transistor. In the case of manufacturing a thin film transistor substrate having an inverted staggered structure in which 480 × 640 (× 3) components are arranged on a substrate, and a channel region in a peripheral circuit portion has a two-layer structure of polycrystalline and amorphous Si. is there. What is needed for this channel region is a thin film polycrystal, but if it is made thin, it will be damaged in the subsequent process of forming another film and will not operate satisfactorily as a channel region. Then, an amorphous Si layer is formed thereon to form a two-layer structure. The inverted stagger structure is often used because a light-shielding mask is unnecessary.

【0021】まず、大きさ対角355mm(14インチ
相当)、厚み1.1mmのガラス製の絶縁基板1を用意
する。
First, an insulating substrate 1 made of glass and having a diagonal size of 355 mm (corresponding to 14 inches) and a thickness of 1.1 mm is prepared.

【0022】図2に示す様に、絶縁基板1上にCr層を
スパッタリング法にて厚さ300nm堆積し、その後通
常のホトリソグラフの技術を用いてパターニングしゲー
ト電極2を形成する。
As shown in FIG. 2, a Cr layer is deposited on the insulating substrate 1 by a sputtering method to a thickness of 300 nm and then patterned by a usual photolithographic technique to form a gate electrode 2.

【0023】図3に示すように、順次ゲート絶縁層とな
るSiN層3を350nm及び半導体薄膜の非晶質Si
層4を60nmプラズマCVD法により堆積する。層堆
積条件は、SiN層3は原料ガスとしてSiH4とNH3
を用い、基板温度は300℃とし、非晶質Si層4は原
料ガスとしてSiH4とH2を用い、基板温度360℃で
堆積する。ここで重要なことは、非晶質Si層4中の含
有水素濃度(Si−H結合、Si−H2結合、(Si−
2)n結合等の水素濃度)が10%以下とすることで
ある。このためには基板温度を高くし、反応圧力を低く
することが望ましい。基板温度360℃で堆積する非晶
質Si層4中の水素含有量は約9%となる。尚、水素含
有量が10%を越えると、次のレーザアニール時にSi
層の剥離が生じやすい。これは、層中の水素やSiHx
が急激に蒸発飛散するためと考えられる。同図左側の周
辺回路となる部分のゲート電極2の上層のゲート絶縁層
上の非晶質Si層4のみに、エネルギー280mJ/c
2のXeClエキシマレーザ(波長308nm)を照
射する。この工程において、レーザ照射された非晶質S
i層4は多結晶Si層5に改質される。
As shown in FIG. 3, an SiN layer 3 to be a gate insulating layer is successively formed to a thickness of 350 nm and a semiconductor thin film of amorphous Si.
Layer 4 is deposited by a 60 nm plasma CVD method. The layer deposition conditions are as follows: the SiN layer 3 is made of SiH 4 and NH 3 as source gases.
The substrate temperature is set to 300 ° C., and the amorphous Si layer 4 is deposited at a substrate temperature of 360 ° C. using SiH 4 and H 2 as source gases. What is important here is that hydrogen concentration in the amorphous Si layer 4 (Si-H bonds, Si-H 2 bonds, (Si-
H 2 ) hydrogen concentration such as n-bond) is 10% or less. To this end, it is desirable to raise the substrate temperature and lower the reaction pressure. The hydrogen content in the amorphous Si layer 4 deposited at a substrate temperature of 360 ° C. is about 9%. If the hydrogen content exceeds 10%, the Si content will increase during the next laser annealing.
Layer peeling is likely to occur. This is because hydrogen or SiHx in the layer
Is thought to be due to rapid evaporation and scattering. The energy of 280 mJ / c is applied only to the amorphous Si layer 4 on the gate insulating layer above the gate electrode 2 in the portion to be the peripheral circuit on the left side of FIG.
Irradiate with m 2 XeCl excimer laser (wavelength 308 nm). In this step, the laser-irradiated amorphous S
The i layer 4 is modified into a polycrystalline Si layer 5.

【0024】図4において、一部多結晶Si層5となっ
た非晶質Si層4を極低濃度のHF(1容)−HNO3
(2容)−H2O(5容)の混液で10秒間エッチング
して非晶質Si層4のみをエッチングし、周辺回路とな
る部分の多結晶Si層5を選択的にSiN層3上にパタ
ーニングする。
In FIG. 4, the amorphous Si layer 4 which has partially become the polycrystalline Si layer 5 is replaced with an extremely low concentration of HF (1 volume) -HNO 3.
Etching is performed for 10 seconds with a mixed solution of (2 volumes) -H 2 O (5 volumes) to etch only the amorphous Si layer 4 and selectively place the polycrystalline Si layer 5 in the peripheral circuit portion on the SiN layer 3. Is patterned.

【0025】図5に示すように、非晶質Si層6及びこ
れにリンをドープしたn型Si層7をプラズマCVD法
によりそれぞれ220nm、40nm堆積する。堆積条
件は、次のとおりである。非晶質Si層は6原料ガスと
してSiH4とH2を用い、基板温度は300℃とし、こ
れにより堆積層中の水素濃度は12〜14%に制御され
る。n型非晶質Si層7は原料ガスとしてSiH4とド
ーパントとしてのPH3(濃度1%、ベースガスH2)を
用い、基板温度は300℃とし、堆積層の抵抗率は10
3Ω−cmである。ここで重要なことはプロセスの再現性
向上のため、多結晶Si層5を選択的にSiN層3上に
パターニングした基板表面のクリーニングを行うことで
ある。基板をプラズマCVD装置にセット後、非晶質S
i層6及びn型Si層7を堆積する前に水素又は水素と
ハロゲン化物(HF,NF3)の混合ガスのプラズマ中
で基板表面を薄くエッチングする。圧力0.8ToN
(100Pa)供給電力0.8W/cm2のプラズマ処理
を行った。その結果、多結晶Si層5は約10nmエッ
チングされるとともに、タングリングボンドが水素でタ
ーミネーションされる。上記の層形成は同一チャンバ内
で連続して実施することにより、コンタミネーションを
防止できる。この結果、周辺回路部はゲート電極2の上
部に改質した多結晶Si層5と非晶質Si層6、7の3
層積層構造が、また、画素部はゲート電極2の上部に非
晶質Si層6、7の2層構造が形成される。
As shown in FIG. 5, an amorphous Si layer 6 and an n-type Si layer 7 doped with phosphorus are deposited to a thickness of 220 nm and a thickness of 40 nm by a plasma CVD method. The deposition conditions are as follows. Amorphous Si layer using SiH 4 and H 2 as 6 material gas, the substrate temperature of 300 ° C., this hydrogen concentration of the deposited layer by being controlled 12-14%. The n-type amorphous Si layer 7 uses SiH 4 as a source gas and PH 3 (concentration 1%, base gas H 2 ) as a dopant, the substrate temperature is 300 ° C., and the resistivity of the deposited layer is 10%.
3 Ω-cm. What is important here is to clean the substrate surface in which the polycrystalline Si layer 5 is selectively patterned on the SiN layer 3 in order to improve the reproducibility of the process. After setting the substrate in the plasma CVD apparatus, the amorphous S
Prior to depositing the i-layer 6 and the n-type Si layer 7, the substrate surface is thinly etched in a plasma of hydrogen or a mixed gas of hydrogen and a halide (HF, NF 3 ). 0.8 ToN pressure
(100 Pa) Plasma processing was performed at a supply power of 0.8 W / cm 2 . As a result, the polycrystalline Si layer 5 is etched by about 10 nm, and the tangling bonds are terminated with hydrogen. Contamination can be prevented by performing the above layer formation continuously in the same chamber. As a result, the peripheral circuit portion has the modified polycrystalline Si layer 5 and the amorphous Si layers 6 and 7 above the gate electrode 2.
In the pixel portion, a two-layer structure of amorphous Si layers 6 and 7 is formed above the gate electrode 2 in the pixel portion.

【0026】図6に示すように、n型非晶質Si層7及
び非晶質Si層6を通常のホトリソグラフィ技術によ
り、島状にパターニングし、薄膜トランジスタの能動領
域を形成する。
As shown in FIG. 6, the n-type amorphous Si layer 7 and the amorphous Si layer 6 are patterned into an island shape by a usual photolithography technique to form an active region of a thin film transistor.

【0027】図7に示すようにスパッタリング法にて透
明電極である酸化インジウム・スズ(ITO)層を厚さ
120nm堆積した後これもホトリソグラフィ技術でパ
ターニングして画素用透明電極層8を形成する。
As shown in FIG. 7, an indium tin oxide (ITO) layer, which is a transparent electrode, is deposited to a thickness of 120 nm by a sputtering method, and is then patterned by photolithography to form a pixel transparent electrode layer 8. .

【0028】図8に示すように、Cr層9及びAl層1
0をそれぞれ層厚60nm及び350nmスパタリング
法にて順次堆積する。その後ホトリソグラフィによりソ
ース及びドレイン電極をパターニングし、更に引続い
て、ソースとドレイン電極間に露出したn型非晶質Si
層7をドライエッチングする。これにより、シリコン薄
膜トランジスタのチャンネル領域は、周辺回路用薄膜ト
ランジスタは多結晶Si5層と非晶質Si層6の積層構
造となり、画素駆動用薄膜トランジスタは非晶質Si6
層の単層構造となる。次に上記基板にパッシベーション
層11としてプラズマCVD法によりSiNを層厚約1
μmに堆積する。このようなプロセスを経て周辺回路内
蔵アクティブマトリックス基板が実現できる。本実施例
では半導体の素材としてSiを用いたが他の素材例えば
GaAs、Ge、Ceでも同様に可能である。
As shown in FIG. 8, the Cr layer 9 and the Al layer 1
0 are sequentially deposited by a sputtering method with a layer thickness of 60 nm and a layer thickness of 350 nm, respectively. Thereafter, the source and drain electrodes are patterned by photolithography, and subsequently, the n-type amorphous Si exposed between the source and drain electrodes.
Layer 7 is dry etched. Accordingly, in the channel region of the silicon thin film transistor, the thin film transistor for the peripheral circuit has a laminated structure of the polycrystalline Si5 layer and the amorphous Si layer 6, and the thin film transistor for the pixel driving has the amorphous Si6 layer.
It has a single-layer structure. Next, as the passivation layer 11, SiN is applied to the substrate by a plasma CVD method so as to have a thickness of about 1 μm.
Deposit to μm. Through such a process, an active matrix substrate with a built-in peripheral circuit can be realized. In the present embodiment, Si is used as the material of the semiconductor, but other materials such as GaAs, Ge, and Ce can be similarly used.

【0029】本実施例で製作したそれぞれの薄膜トラン
ジスタの特性は、周辺回路部においては電界効果移動
度;50cm2/V・s、しきい電圧;2.2±0.1
V、オフ電流2〜6×10~12A(Vg=−5V)が得
られ、画素部においては、電界効果移動度;0.3〜
0.6cm2/V・s、しきい電圧;1.5±0.2V、
オフ電流;1〜3×10~12Aが得られる。
The characteristics of each of the thin film transistors manufactured in the present embodiment are as follows: field effect mobility: 50 cm 2 / V · s, threshold voltage: 2.2 ± 0.1 in the peripheral circuit portion.
V, and an off-state current of 2 to 6 × 10 to 12 A (Vg = −5 V). In the pixel portion, a field-effect mobility of 0.3 to
0.6 cm 2 / V · s, threshold voltage; 1.5 ± 0.2 V,
An off-current of 1 to 3 × 10 to 12 A is obtained.

【0030】[0030]

【発明の効果】本発明によれば、第2の逆スタガ構造の
電界効果型薄膜トランジスタのオン電流は多結晶質半導
体層チャンネル領域を流れ、多結晶層ではトラップ密度
が著しく低いため、高い電界効果移動度が得られる。一
方、第1の逆スタガ構造の電界効果型薄膜トランジスタ
は、通常のプラズマCVD法で大面積均一性が得られ
る。 そして、第1、第2の逆スタガ構造の電界効果型
薄膜トランジスタの形成は、プロセスをほぼ同時進行さ
せることが可能であるからプロセスのマッチングがとれ
同一基板上に形成することが出来る。また、製造プロセ
スが簡単であり、均一性・再現性に優れ、歩留まりが高
くなる。
According to the present invention, the ON current of the field-effect thin film transistor having the second inverted staggered structure flows through the channel region of the polycrystalline semiconductor layer, and the trap density of the polycrystalline layer is extremely low. Mobility is obtained. On the other hand, the first field-effect thin film transistor having the inverted staggered structure can achieve large area uniformity by a normal plasma CVD method. The first and second field-effect thin-film transistors having an inverted staggered structure can be formed on the same substrate by matching the processes because the processes can proceed almost simultaneously. Further, the manufacturing process is simple, the uniformity and reproducibility are excellent, and the yield is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の薄膜半導体装置の縦断面図で
ある。
FIG. 1 is a longitudinal sectional view of a thin film semiconductor device according to an embodiment of the present invention.

【図2】本発明の実施例の薄膜半導体装置の製造工程毎
の縦断面図である。
FIG. 2 is a longitudinal sectional view of a thin-film semiconductor device according to an embodiment of the present invention for each manufacturing process.

【図3】本発明の実施例の薄膜半導体装置の製造工程毎
の縦断面図である。
FIG. 3 is a longitudinal sectional view of the thin-film semiconductor device according to the embodiment of the present invention for each manufacturing process.

【図4】本発明の実施例の薄膜半導体装置の製造工程毎
の縦断面図である。
FIG. 4 is a longitudinal sectional view of a thin-film semiconductor device according to an embodiment of the present invention for each manufacturing process.

【図5】本発明の実施例の薄膜半導体装置の製造工程毎
の縦断面図である。
FIG. 5 is a longitudinal sectional view of a thin-film semiconductor device according to an embodiment of the present invention for each manufacturing process.

【図6】本発明の実施例の薄膜半導体装置の製造工程毎
の縦断面図である。
FIG. 6 is a longitudinal sectional view of a thin-film semiconductor device according to an embodiment of the present invention for each manufacturing process.

【図7】本発明の実施例の薄膜半導体装置の製造工程毎
の縦断面図である。
FIG. 7 is a longitudinal sectional view of the thin film semiconductor device according to the embodiment of the present invention for each manufacturing process.

【図8】本発明の実施例の薄膜半導体装置の製造工程毎
の縦断面図である。
FIG. 8 is a longitudinal sectional view of a thin-film semiconductor device according to an embodiment of the present invention for each manufacturing process.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 ゲート電極 3 ゲート絶縁層 4 非晶質シリコン層 5 多結晶シリコン層 6 非晶質シリコン層 7 n型非晶質シリコン層 8 画素用透明電極層 9 ソース電極層 10 ドレイン電極層 11 パッシベーション層 REFERENCE SIGNS LIST 1 insulating substrate 2 gate electrode 3 gate insulating layer 4 amorphous silicon layer 5 polycrystalline silicon layer 6 amorphous silicon layer 7 n-type amorphous silicon layer 8 pixel transparent electrode layer 9 source electrode layer 10 drain electrode layer 11 Passivation layer

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 29/786 G02F 1/136 500 H01L 27/12Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 29/786 G02F 1/136 500 H01L 27/12

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 同一の絶縁基板上にゲート電極、ゲート
絶縁層、第1の非晶質半導体層を順次形成し、該第1の
非晶質半導体層上の選択された領域にレーザアニール
し、該第1の非晶質半導体層の不要領域をエッチング除
去して多結晶半導体層を形成し、該多結晶半導体層上に
第2の非晶質半導体層、ソース電極及びドレイン電極を
形成してアクティブマトリクス基板を形成することを含
んでなる液晶表示装置の製造方法。
1. A gate electrode, a gate insulating layer and a first amorphous semiconductor layer are sequentially formed on the same insulating substrate, and laser annealing is performed on a selected region on the first amorphous semiconductor layer. An unnecessary region of the first amorphous semiconductor layer is removed by etching to form a polycrystalline semiconductor layer, and a second amorphous semiconductor layer, a source electrode, and a drain electrode are formed on the polycrystalline semiconductor layer. A method for manufacturing a liquid crystal display device, comprising: forming an active matrix substrate by a method.
【請求項2】 同一の絶縁基板上にゲート電極、ゲート
絶縁層、第1の非晶質半導体層を順次形成し、該第1の
非晶質半導体層上の選択された領域にレーザアニール
し、該第1の非晶質半導体層の不要領域をエッチング除
去して多結晶半導体層を形成し、該多結晶半導体層及び
前記ゲート絶縁層を水素主体のプラズマ雰囲気中で処理
し続いてプラズマCVD法で第2の非晶質半導体層を形
成し、次にソース電極及びドレイン電極を形成してアク
ティブマトリクス基板を形成することを含んでなる液晶
表示装置の製造方法。
2. A gate electrode, a gate insulating layer and a first amorphous semiconductor layer are sequentially formed on the same insulating substrate, and laser annealing is performed on a selected region on the first amorphous semiconductor layer. An unnecessary region of the first amorphous semiconductor layer is removed by etching to form a polycrystalline semiconductor layer, and the polycrystalline semiconductor layer and the gate insulating layer are treated in a plasma atmosphere mainly composed of hydrogen, followed by plasma CVD. A method for manufacturing a liquid crystal display device, comprising: forming a second amorphous semiconductor layer by a method, and then forming a source electrode and a drain electrode to form an active matrix substrate.
【請求項3】 前記第1の非晶質半導体層をSiH4
2を用いプラズマCVD法により形成し、前記第1の
非晶質半導体層中のH2含有量を10%以下とすること
を特徴とする請求項または請求項に記載の液晶表示
装置の製造方法。
3. The first amorphous semiconductor layer is formed by a plasma CVD method using SiH 4 and H 2, and the H 2 content in the first amorphous semiconductor layer is set to 10% or less. The method for manufacturing a liquid crystal display device according to claim 1 or 2 , wherein:
【請求項4】 画素駆動用の複数の薄膜トランジスタ
と、該薄膜トランジスタを駆動する周辺駆動回路用の複
数の薄膜トランジスタとを同一の絶縁基板上に形成して
なるアクティブマトリクス基板を有する液晶表示装置に
おいて、 前記画素駆動用の薄膜トランジスタは、金属で形成され
たゲート電極と、該ゲート電極の上に形成されたゲート
絶縁層と、該絶縁層の上に形成されたシリコンを主成分
とする非晶質半導体層と、該半導体層の上に対向させて
形成されたソース電極及びドレイン電極とを有してな
り、 前記周辺駆動回路用の薄膜トランジスタは、金属で形成
されたゲート電極と、該ゲート電極の上に形成されたゲ
ート絶縁層と、該絶縁層の上に形成されたシリコンを主
成分とする非晶質半導体層をレーザにより再結晶化して
なる多結晶半導体層と、該多結晶半導体層の上に形成さ
れた非晶質の半導体層と、該半導体層の上に対向させて
形成されたソース電極及びドレイン電極とを有してなる
ことを特徴とする液晶表示装置。
4. A liquid crystal display device having an active matrix substrate in which a plurality of pixel driving thin film transistors and a plurality of peripheral driving circuit driving thin film transistors are formed on the same insulating substrate. A thin film transistor for driving a pixel includes a gate electrode formed of metal, a gate insulating layer formed on the gate electrode, and an amorphous semiconductor layer containing silicon as a main component formed on the insulating layer. And a source electrode and a drain electrode formed on the semiconductor layer so as to face each other. The thin film transistor for the peripheral driver circuit has a gate electrode formed of metal, and a thin film transistor formed on the gate electrode. The gate insulating layer formed and the amorphous semiconductor layer containing silicon as a main component formed on the insulating layer are recrystallized by a laser. A semiconductor layer, an amorphous semiconductor layer formed on the polycrystalline semiconductor layer, and a source electrode and a drain electrode formed on the semiconductor layer to face each other. Liquid crystal display device.
【請求項5】 請求項1から請求項のうち何れかの請
求項に記載の製造方法により製造された液晶表示装置。
5. A liquid crystal display device manufactured by the method according to claim 1, claim of claims 3.
【請求項6】 請求項1から請求項のうち何れかの請
求項に記載の製造方法により製造された液晶表示装置用
のアクティブマトリックス基板。
6. An active matrix substrate for a liquid crystal display device manufactured by the method according to claim 1, claim of claims 3.
JP21869091A 1991-08-29 1991-08-29 Liquid crystal display device and method of manufacturing the same Expired - Lifetime JP2814319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21869091A JP2814319B2 (en) 1991-08-29 1991-08-29 Liquid crystal display device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21869091A JP2814319B2 (en) 1991-08-29 1991-08-29 Liquid crystal display device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0555570A JPH0555570A (en) 1993-03-05
JP2814319B2 true JP2814319B2 (en) 1998-10-22

Family

ID=16723889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21869091A Expired - Lifetime JP2814319B2 (en) 1991-08-29 1991-08-29 Liquid crystal display device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2814319B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222647B2 (en) 2007-05-18 2012-07-17 Sony Corporation Method for making semiconductor apparatus and semiconductor apparatus obtained by the method, method for making thin film transistor substrate and thin film transistor substrate obtained by the method, and method for making display apparatus and display apparatus obtained by the method

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678204B2 (en) 2002-12-10 2010-03-16 Nippon Steel Corporation Good-workability and high-strength cold-rolled steel sheet excellent in post-painting corrosion resistance
JP5226259B2 (en) 2007-08-21 2013-07-03 株式会社ジャパンディスプレイイースト Liquid crystal display
JP5236912B2 (en) * 2007-09-04 2013-07-17 株式会社ジャパンディスプレイイースト Liquid crystal display
JP2009099636A (en) * 2007-10-15 2009-05-07 Hitachi Displays Ltd Display device and method of manufacturing the same
JP5111167B2 (en) * 2008-03-06 2012-12-26 株式会社ジャパンディスプレイイースト Liquid crystal display
JP5485517B2 (en) 2008-03-17 2014-05-07 株式会社ジャパンディスプレイ Display device and manufacturing method thereof
JP5475250B2 (en) 2008-05-28 2014-04-16 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
JP2010040848A (en) 2008-08-06 2010-02-18 Hitachi Displays Ltd Liquid crystal display device
JP5442228B2 (en) 2008-08-07 2014-03-12 株式会社ジャパンディスプレイ Display device and manufacturing method of display device
JP2010113253A (en) 2008-11-07 2010-05-20 Hitachi Displays Ltd Display device and method of manufacturing the same
JP5004101B2 (en) * 2008-12-07 2012-08-22 栄 田中 High performance display device and manufacturing method thereof
KR101667622B1 (en) * 2008-12-11 2016-10-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor and display device
JP2010245480A (en) * 2009-04-10 2010-10-28 Hitachi Displays Ltd Display device
JP5470519B2 (en) * 2009-07-24 2014-04-16 株式会社ブイ・テクノロジー Thin film transistor, manufacturing method thereof, and liquid crystal display device
WO2011034012A1 (en) * 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, light emitting device, semiconductor device, and electronic device
WO2011141954A1 (en) * 2010-05-11 2011-11-17 パナソニック株式会社 Thin film semiconductor device for display device, and method for manufacturing the thin film semiconductor device
WO2017042941A1 (en) * 2015-09-10 2017-03-16 堺ディスプレイプロダクト株式会社 Display device and display device manufacturing method
CN105390551B (en) * 2015-10-28 2018-05-29 京东方科技集团股份有限公司 Thin film transistor (TFT) and its manufacturing method, array substrate, display device
CN105845737B (en) 2016-05-17 2019-07-02 京东方科技集团股份有限公司 Thin film transistor (TFT) and its manufacturing method, array substrate, display device
CN111725239B (en) * 2020-06-09 2022-04-05 武汉华星光电半导体显示技术有限公司 Display panel driving circuit, array substrate and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062158A (en) * 1983-09-16 1985-04-10 Fujitsu Ltd Thin film transistor array
JPH0828509B2 (en) * 1986-11-07 1996-03-21 株式会社リコー Method of forming active region of thin film transistor
JPH0380569A (en) * 1989-08-23 1991-04-05 Oki Electric Ind Co Ltd Thin film transistor
JPH03171776A (en) * 1989-11-30 1991-07-25 Casio Comput Co Ltd Thin film transistor and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222647B2 (en) 2007-05-18 2012-07-17 Sony Corporation Method for making semiconductor apparatus and semiconductor apparatus obtained by the method, method for making thin film transistor substrate and thin film transistor substrate obtained by the method, and method for making display apparatus and display apparatus obtained by the method

Also Published As

Publication number Publication date
JPH0555570A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
JP2814319B2 (en) Liquid crystal display device and method of manufacturing the same
US5424230A (en) Method of manufacturing a polysilicon thin film transistor
US5264383A (en) Method of manufacturing a thin film transistor
JP2860869B2 (en) Semiconductor device and manufacturing method thereof
US5834071A (en) Method for forming a thin film transistor
US20110007234A1 (en) Tft-lcd array substrate and manufacturing method thereof
JPH05226656A (en) Thin film semiconductor device and its manufacture
JPH08228011A (en) Semiconductor device and manufacture thereof
JPH0563196A (en) Thin film semiconductor device, manufacture thereof and liquid crystal display device
JPH0640550B2 (en) Method of manufacturing thin film transistor
JP2001217424A (en) Thin film transistor and liquid crystal display using the same
US7407838B2 (en) Method of manufacturing a semiconductor method of manufacturing a thin-film transistor and thin-film transistor
JP3352191B2 (en) Method for manufacturing thin film transistor
US7049163B1 (en) Manufacture method of pixel structure
JP4249886B2 (en) Method for manufacturing thin film semiconductor device
JPH07263698A (en) Thin film transistor and its manufacture
KR100504538B1 (en) Method For Crystallizing Amorphous Layer And Method For Fabricating Liquid Crystal Display Device By Using Said Method
JPS62172761A (en) Amorphous silicon thin film transistor and manufacture thereof
US6482685B1 (en) Method for fabricating a low temperature polysilicon thin film transistor incorporating multi-layer channel passivation step
JPH0618930A (en) Production of active matrix type liquid crystal display device
JP2930053B2 (en) Liquid crystal display device and manufacturing method thereof
JPH10177968A (en) Thin film device, forming method thereof, and manufacturing method of this film transistor and liquid crystal display device
US7271410B2 (en) Active matrix circuit
JPH0645607A (en) Liquid-crystal display device and its manufacture
JPH0575125A (en) Thin-film transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090814

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100814

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110814

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110814

Year of fee payment: 13

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110814

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110814

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110814

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 14