JPS62127439A - Copper alloy for lead frame - Google Patents

Copper alloy for lead frame

Info

Publication number
JPS62127439A
JPS62127439A JP26782485A JP26782485A JPS62127439A JP S62127439 A JPS62127439 A JP S62127439A JP 26782485 A JP26782485 A JP 26782485A JP 26782485 A JP26782485 A JP 26782485A JP S62127439 A JPS62127439 A JP S62127439A
Authority
JP
Japan
Prior art keywords
alloy
copper alloy
lead frames
strength
lead frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26782485A
Other languages
Japanese (ja)
Inventor
Teruo Nakanishi
中西 輝雄
Takefumi Ito
武文 伊藤
Hiroyuki Teramoto
浩行 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26782485A priority Critical patent/JPS62127439A/en
Publication of JPS62127439A publication Critical patent/JPS62127439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve electric conductivity and mechanical strength of a Cu alloy for lead frames by incorporating specific amounts of Ti to a Cu-Sn alloy. CONSTITUTION:The alloy for lead frames has a composition consisting of, by weight, 0.2-2.0% Sn, 0.2-1.0% Ti, and the balance essentially Cu. If necessary, one or more kinds among 0.02-0.3% P, 0.05-0.5% Mn, 0.001-0.01% B, 0.01-0.35% Si, 0.05-0.20% Fe, and 0.02-0.20% Co are further incorporated to the above alloy. Moreover, it is preferable that oxygen content in this copper alloy is regulated to <=0.0010% and that grain size of the alloy is adjusted to <=15mum. In the above-mentioned specified compositional ranges, an intermetallic compound of Sn and Ti is dispersedly precipitated in a Cu matrix finely and uniformly, so that the effect of improving electric conductivity, strength, etc., can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分計〕 この発明は、IC,LSIなどの半導体機器用リードフ
レームとして適した、優れた導電性と強度を有するリー
ドフレーム用銅合金に関するものである。
[Detailed Description of the Invention] [Industrial Application] The present invention relates to a copper alloy for lead frames, which has excellent conductivity and strength and is suitable as lead frames for semiconductor devices such as ICs and LSIs. .

〔従来の技術〕[Conventional technology]

半導体機器用のリードフレーム材とシテは、従来から熱
膨張係数が小さく、セラミックやガラスによる封止性に
優れた42合金(Fe−42%Ni )が多く用いられ
てきた。そして最近LSIなどの高集積化の進展に伴っ
てICの消費電力が高くなってきたことから、それらの
放熱性(熱伝導性)の良い銅系材料の使用が増大してい
る。かかる銅系材料としてはCDA194(Cu−2,
4%Fe−0,1%Zn) 、Cu −0,15%Sn
合金、りん青銅(Cu−5%5n−0,1%P)、Cu
−2%5n−0,2%Ni合金などがある。
42 alloy (Fe-42%Ni), which has a small coefficient of thermal expansion and excellent sealability with ceramics and glass, has traditionally been used for lead frame materials and shite for semiconductor devices. Recently, the power consumption of ICs has increased with the progress of higher integration in LSIs and the like, so the use of copper-based materials with good heat dissipation (thermal conductivity) is increasing. Such copper-based materials include CDA194 (Cu-2,
4%Fe-0,1%Zn), Cu-0,15%Sn
Alloy, phosphor bronze (Cu-5%5n-0,1%P), Cu
-2%5n-0,2%Ni alloy, etc.

ところで一般にリードフレーム材に対しては上記の熱伝
導性を含め以下のような特性が要求される。
Incidentally, lead frame materials are generally required to have the following properties, including the above-mentioned thermal conductivity.

(1)熱伝導性及び導電性に優れること、(11)強度
が比較的高いこと、 (iii)繰返し曲げ性の良好なこと、Gv)耐熱性の
高いこと、 (■)はんな付は時専のめつき性が良好なこと。
(1) Excellent thermal conductivity and electrical conductivity, (11) Relatively high strength, (iii) Good repeat bendability, Gv) High heat resistance, (■) No soldering Good adhesion properties of Jisen.

これらの要求特性中特に重視苫れるのは導電性(熱伝導
性)及び機械的強度であり、具体的数値としては導電¥
50%lAC350%lAC350に9f/−以上が求
められている。
Among these required properties, electrical conductivity (thermal conductivity) and mechanical strength are particularly important.
9f/- or more is required for 50%lAC350%lAC350.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上記CDA194等現用のリードフレーム材で上
記要求特性を満足するものはほとんど見あたらない。例
えばCDA194は導1率は優れる(65%lAC3)
が、引張強さが不足する(45に9f/wl12)。ま
た、りん青銅では強度(53KIIf/+”)は充分な
がら導電率(16%lAC3)が不充分である。かかる
導電率と強度に関する要求を満たすものとして、Cu−
Στ系合金+Cu  Zr系合金などの析出硬化形合金
が知られているが、他面めっき性等の問題があり広く実
用化されるには至っていない0 この発明は、リードフレーム材として要求される上記特
性中特に導電率と強度を同時に満足(2、さらに繰返し
曲げ性、はんだ等のめっき性及び耐熱性の良好なI C
IJ −)’フレーム用材料を提供するものである。
However, there are almost no currently used lead frame materials such as CDA194 that satisfy the above required characteristics. For example, CDA194 has excellent conductivity (65%lAC3)
However, the tensile strength is insufficient (45 to 9f/wl12). In addition, although phosphor bronze has sufficient strength (53KIIf/+"), its conductivity (16% lAC3) is insufficient.As a material that satisfies such requirements regarding conductivity and strength,
Precipitation hardening alloys such as Στ alloy + Cu Zr alloy are known, but they have not been widely put into practical use due to problems such as the plating property on the other side.0 This invention is required for lead frame materials. Among the above properties, especially the I
IJ-)' frame material is provided.

〔問題点を解決するための手段J この発明のリードフレーム材は、Sn0.2〜20wj
%、 Ti 0.2〜1−0wt%、残りが実・質的に
Cu#xらなる合金である。この発明において、上記S
nとTiとの金属間化合物をCuのマ) IJクス中に
均一、微細に分散析出させることにより、上述の導電率
及び強度の向上が得られ、更に良好なはんだ付性。
[Means for solving the problem J The lead frame material of this invention has Sn0.2 to 20wj
%, Ti 0.2 to 1-0 wt %, and the remainder substantially substantially Cu#x. In this invention, the above S
By uniformly and finely dispersing and precipitating an intermetallic compound of n and Ti in a Cu matrix, the above-mentioned improvements in electrical conductivity and strength can be obtained, and even better solderability can be obtained.

耐熱性を有する材料とし得たものである。Sn及びTi
の組成を上記範囲に限定した理由は、両成分とも0.2
wt%未満ではリードフレーム材に求められる強度、耐
熱性が充分に得られず、またSnが2.0wt%、Ti
が1.0wt%を超えると導電率が要求値の50%lA
C3に対して著しく低下し、加工性、はんだ付性の劣化
をも招くからである。
This material has heat resistance. Sn and Ti
The reason why the composition of is limited to the above range is that both components are 0.2
If the Sn content is less than 2.0 wt% and the Ti
If it exceeds 1.0wt%, the conductivity will decrease to 50% lA of the required value.
This is because it is significantly lower than C3, leading to deterioration in workability and solderability.

又本発明の銅合金においては、P、Mn、BあるいはS
iを夫々0.02〜o、3wt%、 0.05〜0.5
wt% 、 0.001〜0.01wt%、 0.01
〜0.35wt%の範囲にて合金溶製時に脱酸剤として
添加することにより、鋳造性が改善されるとともに、特
に主要成分の上記Tiの醗化減耗を防止して、該Tiの
含有量を安定化することができ、さらに合金の酸素含有
が低く抑えられる。また微量のFeあるいはC。
Further, in the copper alloy of the present invention, P, Mn, B or S
i is 0.02 to o, 3wt%, and 0.05 to 0.5, respectively.
wt%, 0.001-0.01wt%, 0.01
By adding it as a deoxidizing agent in the range of ~0.35 wt% during alloy melting, castability is improved, and in particular, the main component Ti is prevented from being depleted by melting, and the Ti content is reduced. can be stabilized, and the oxygen content of the alloy can be kept low. Also a trace amount of Fe or C.

(具体的には夫々帆05〜0.2wt%、 0.02〜
0.2wt%)の添加はこの合金の強度、耐熱性を向上
させる効果がある。
(Specifically, sail05~0.2wt%, 0.02~
Addition of 0.2 wt%) has the effect of improving the strength and heat resistance of this alloy.

また本発明の合金中その酸素含有量を0.0010wt
%以下に抑えることにより、酸素量がこの値を超える場
合に比べてはんだ等のめっき性及びめっきの密着性がよ
り良好になる。また、更に本発明の合金では、その結晶
粒度を15μm以下に微細化することによって、合金の
曲げ加工性及び繰返し曲げ性をより向上させることがで
きる。合金の結晶粒度を上記微細化するには次の方法が
最適である。即ち本発明の如き組成のCu−8n−Ti
系合金は析出硬化形合金で、一般の析出硬化形合金と同
様に高温での溶体化処理後に時効処理をして析出を生じ
させることは可能であるが、高温での溶体化処理によれ
ば結晶粒が粗大化する。そこで上記析出処理として比較
的低温での焼鈍後、炉冷(炉中冷却)を行うことにより
、徐冷過程で析出を起こす方法が有効である。これによ
って15μm以下の微細な結晶粒度が達成されこの場合
の焼鈍温度としては400〜650℃が適当である。
Further, the oxygen content in the alloy of the present invention is 0.0010wt.
% or less, the plating properties of solder and the like and the adhesion of the plating become better than when the oxygen amount exceeds this value. Further, in the alloy of the present invention, by reducing the crystal grain size to 15 μm or less, the bending workability and repeated bendability of the alloy can be further improved. The following method is optimal for reducing the crystal grain size of the alloy to the above-mentioned level. That is, Cu-8n-Ti having the composition according to the present invention
The system alloy is a precipitation hardenable alloy, and like general precipitation hardenable alloys, it is possible to cause precipitation by aging treatment after solution treatment at a high temperature. Crystal grains become coarser. Therefore, an effective method for the precipitation treatment is to perform furnace cooling (in-furnace cooling) after annealing at a relatively low temperature to cause precipitation during the slow cooling process. As a result, a fine grain size of 15 μm or less is achieved, and the appropriate annealing temperature in this case is 400 to 650°C.

〔作 用〕[For production]

この発明においては、上記の如き特定化された組成範囲
において、Sn及びTiの金属間化合物がCuマ) I
Jソックス中著しく均一、微細に分散析出しこのために
上述の導電性1強度等の向上が得られるのである。
In this invention, in the specified composition range as described above, the intermetallic compound of Sn and Ti is
It is extremely uniformly and finely dispersed and precipitated in the J-socks, which is why the above-mentioned improvement in conductivity 1 strength etc. can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1〜10.比較例1〜5 高周波溶解炉を用いて第1表に示す組成の合金を溶製し
な。得られた各鋳塊を800℃で5hr均質化処理後に
開削し、中間焼鈍と冷間圧延を繰返し行って最終冷間加
工率37%にて厚さ0.25+a+これらの各例板材に
ついてその導電率、引張強さ、繰返し曲げ性、はんだ付
性等の緒特性を測定し結果を同表に示した。
Examples 1-10. Comparative Examples 1 to 5 Alloys having the compositions shown in Table 1 were melted using a high frequency melting furnace. Each obtained ingot was homogenized at 800°C for 5 hours, then cut into holes, and intermediate annealing and cold rolling were repeated to obtain a thickness of 0.25 + a + the conductivity of each of these example plates at a final cold working rate of 37%. The properties such as elasticity, tensile strength, repeated bendability, and solderability were measured and the results are shown in the same table.

尚これらの特性中、繰返し曲げ性は、幅7mの短冊片を
用いてMIL−8TD−883B (荷重500路。
Among these characteristics, the repeated bending property was measured using MIL-8TD-883B (load of 500 passes) using a strip of width 7m.

t=51,90°曲げ往復1回)の試験法、又はんだめ
っきの密着性は、上記短冊試片を15%塩酸で表面清浄
化し、230℃の60Sn−40Pbはんだ浴中に10
秒間浸漬し之後、大気中で150℃X500hr、20
0℃X500hrそれぞれ保持したものについて90V
曲げ試験を行って、めっき層のはくりの有無により評価
した。同表では、150℃X500hrのもとではめっ
きの密着性が良好であったが200℃のもとでは不良(
はぐり有り)となったものはΔ印、150℃、200℃
両条件下で密着性が良かったものは○印で表した。
The test method (t = 51, 90° bending and reciprocation once) or the adhesion of solder plating was carried out by cleaning the surface of the strip specimen with 15% hydrochloric acid and placing it in a 60Sn-40Pb solder bath at 230°C for 10 minutes.
After immersion for 2 seconds, immersion in the atmosphere at 150°C for 500 hours for 20
90V for each held at 0℃ x 500hr
A bending test was conducted and evaluation was made based on the presence or absence of peeling of the plating layer. In the same table, plating adhesion was good at 150°C for 500 hours, but poor at 200°C (
Items marked with ``with cracks'' are marked Δ, 150℃, 200℃
Those with good adhesion under both conditions are marked with a circle.

また窒未雰囲気中にて350’CXS分加熱後の引張強
さを測定して耐熱性を評価した。
The heat resistance was also evaluated by measuring the tensile strength after heating for 350'CXS in a non-nitrogen atmosphere.

なお、実施例8以外は、450℃で最終焼鈍後炉冷し、
その後冷間圧延したもので、実施例8は850℃で溶体
化処理後に冷間加工し、その後450℃X1hrの時効
処理を施したものである。
In addition, except for Example 8, furnace cooling was performed after final annealing at 450°C.
After that, it was cold rolled, and Example 8 was cold worked after solution treatment at 850°C, and then subjected to aging treatment at 450°C for 1 hour.

同表の結果によれば、本発明のCu−8n−Ti系合金
においては、リードフレーム材に要求される特性レベル
を満足する高い導電率2強度及び優れ之繰返し曲げ性、
はんだめっきの密着性及び耐熱性が得られている。又脱
酸剤として上記のようにP。
According to the results in the same table, the Cu-8n-Ti alloy of the present invention has high conductivity 2 strength that satisfies the property levels required for lead frame materials, excellent repeated bending properties,
Adhesion and heat resistance of solder plating are obtained. In addition, as a deoxidizing agent, P is used as described above.

Mn、B、Siを併用すれば酸素含有量を減少感せ、鋳
塊の健全性を高め、含有主要成分としての特にTiの酸
化減耗を抑えてTi含有量を安定化するので製造作業を
容易にし、リードフレームとしての使用に際して重要で
あるはんだ等のめっきの密着性をより向上させ得ること
が明らかである。尚第1表において実施例1,2のΔ印
で表したものの密着性は実用上に特に問題はなかった。
If Mn, B, and Si are used together, the oxygen content will be reduced, improving the soundness of the ingot, and stabilizing the Ti content by suppressing the oxidation loss of Ti, which is the main component contained, making manufacturing work easier. It is clear that the adhesion of plating such as solder, which is important when used as a lead frame, can be further improved. In Table 1, the adhesion of Examples 1 and 2 indicated by Δ did not pose any practical problems.

またFe 、 C。Also Fe, C.

の微量添加は合金の耐熱性を向上させそして結晶粒度を
微細化したもの(実施例8以外)では繰返し曲げ性の著
しい教養が認められた。
The addition of a small amount of the alloy improved the heat resistance of the alloy, and in those with finer grain size (other than Example 8), a remarkable improvement in repeated bendability was observed.

〔発明の効果〕 この発明の合金によれば、Cu−8n−Ti系の合金に
おいて、Cuマトリクス中KSnとTiからなる微細な
金属間化合物が均一に分散され、その結果高導電率と高
強度を非常にバランスよく得られ、さらにはんだ付性や
その他めっき性、耐熱性、成形性等の緒特性が著しく向
上しトランゾスター、IC。
[Effects of the Invention] According to the alloy of the present invention, in the Cu-8n-Ti alloy, fine intermetallic compounds consisting of KSn and Ti are uniformly dispersed in the Cu matrix, resulting in high electrical conductivity and high strength. In addition, the solderability and other properties such as plating properties, heat resistance, and moldability have been significantly improved for Tranzostar and IC.

LSIなど半導体機器のリードフレーム用として好適な
材料を提供し得る。
A material suitable for lead frames of semiconductor devices such as LSIs can be provided.

Claims (4)

【特許請求の範囲】[Claims] (1)Sn0.2〜2.0wt%、Ti0.2〜1.0
wt%を含み、残部が実質的にCuからなるリードフレ
ーム用銅合金。
(1) Sn0.2-2.0wt%, Ti0.2-1.0
A copper alloy for lead frames including wt% and the remainder substantially consisting of Cu.
(2)Sn0.2〜2.0wt%、Ti0.2〜1.0
wt%を含み、残部が実質的にCuからなり、更にP0
.02〜0.3wt%、Mn0.05〜0.5wt%、
B0.001〜0.01wt%、Si0.01〜0.3
5wt%、Fe0.05〜0.20wt%及びCo0.
02〜0.20wt%の1種ないし2種以上を合計量で
0.001〜0.8wt%含むリードフレーム用銅合金
(2) Sn0.2-2.0wt%, Ti0.2-1.0
wt%, the remainder substantially consists of Cu, and further P0
.. 02-0.3wt%, Mn0.05-0.5wt%,
B0.001~0.01wt%, Si0.01~0.3
5wt%, Fe0.05-0.20wt% and Co0.
A copper alloy for lead frames containing one or more of 0.02 to 0.20 wt% in a total amount of 0.001 to 0.8 wt%.
(3)前記銅合金の酸素含有量が0.0010wt%以
下である特許請求の範囲第(1)項または第(2)項記
載のリードフレーム用銅合金。
(3) The copper alloy for lead frames according to claim (1) or (2), wherein the copper alloy has an oxygen content of 0.0010 wt% or less.
(4)前記銅合金の結晶粒度が15μm以下である特許
請求の範囲第(1)項または第(2)項あるいは第(3
)項に記載のリードフレーム用銅合金。
(4) Claims (1), (2), or (3), wherein the copper alloy has a crystal grain size of 15 μm or less.
Copper alloy for lead frames described in ).
JP26782485A 1985-11-28 1985-11-28 Copper alloy for lead frame Pending JPS62127439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26782485A JPS62127439A (en) 1985-11-28 1985-11-28 Copper alloy for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26782485A JPS62127439A (en) 1985-11-28 1985-11-28 Copper alloy for lead frame

Publications (1)

Publication Number Publication Date
JPS62127439A true JPS62127439A (en) 1987-06-09

Family

ID=17450116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26782485A Pending JPS62127439A (en) 1985-11-28 1985-11-28 Copper alloy for lead frame

Country Status (1)

Country Link
JP (1) JPS62127439A (en)

Similar Documents

Publication Publication Date Title
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JPS63149344A (en) High strength copper alloy having high electrical conductivity
JP2001207229A (en) Copper alloy for electronic material
JPS63109130A (en) Copper alloy for electronic equipment
KR100403187B1 (en) copper alloy for electronic materials with excellent surface special and manufacturing method therefor
JPS6254048A (en) Copper alloy for lead frame
JPS6314056B2 (en)
JPH01272733A (en) Lead frame material made of cu alloy for semiconductor device
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP4431741B2 (en) Method for producing copper alloy
JPS59145745A (en) Copper alloy for lead material of semiconductor apparatus
JPS6215621B2 (en)
JPS6215622B2 (en)
JPH02277735A (en) Copper alloy for lead frame
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPS6338547A (en) High strength conductive copper alloy
JPH0978162A (en) Copper alloy for electronic equipment and its production
JPS594493B2 (en) Copper alloy for lead material of semiconductor equipment
JPS62127439A (en) Copper alloy for lead frame
JPS63109132A (en) High-strength conductive copper alloy and its production
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JP2597773B2 (en) Method for producing high-strength copper alloy with low anisotropy
JPS62133033A (en) Cu alloy lead material for semiconductor device
JPS63125628A (en) Copper alloy for semiconductor device lead material
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment