JPS6174373A - Formation for fine electrode - Google Patents

Formation for fine electrode

Info

Publication number
JPS6174373A
JPS6174373A JP19612684A JP19612684A JPS6174373A JP S6174373 A JPS6174373 A JP S6174373A JP 19612684 A JP19612684 A JP 19612684A JP 19612684 A JP19612684 A JP 19612684A JP S6174373 A JPS6174373 A JP S6174373A
Authority
JP
Japan
Prior art keywords
layer
gate
mask
film
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19612684A
Other languages
Japanese (ja)
Inventor
Hitoshi Ito
仁 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19612684A priority Critical patent/JPS6174373A/en
Publication of JPS6174373A publication Critical patent/JPS6174373A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a gate electrode; which has the thick gate film thickness, is formed in a T shape and has the large sectional area; by a method wherein a high-temperature bakelite resin layer is used as the intermediate layer and an electrical insulating layer; which is the bakelite resin layer with the temperature lower than that of the high-temperature bakelite resin layer, has the superior sputtering resistant property and is corroded with weak acid; is used as the gate mask. CONSTITUTION:A buffer layer 12, an SiO2 layer 13 and a PMMA resist 14 are formed in order on a GaAs substrate 11, and after that, a gate opening part is formed on the resist 14. Then, after an opening part 15 is transferred on the film 13, an overetching is performed on the film 12 to form an opening part 16, and furthermore, an opening part 17 to reach the substrate 11 is formed. Then, a tungsten film 18 is coated and after the film 13 is removed, a metal film 19 is coated thicker than the layer 12. Then, after the metal film 19 is etched up to reach the layer 12 using a resist pattern 20 as a mask, the layer 12 is removed and the purposive gate electrode is obtained on the substrate 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に高周波トランジスタにおけるゲート抵抗
の低減を図る微細電極形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forming fine electrodes, particularly for reducing gate resistance in high frequency transistors.

〔従来技術〕[Prior art]

近来、高周波トランジスタは動作周波数がX帯(8〜1
2GHz )からに帯(18〜26GHz ) 、 K
a帯(26〜40GHz)とより高周波域での高性能化
を目指しての研究開発が盛んに行なわれている。高性能
化(Il−図るためには寄生抵抗の低減と共にゲート電
極の数細化、即ちサブミクロン以下ゲートの実現が必要
となってくる。従来、このようなサブミクロン以下ゲー
トの形成方法としては昭和58年度電子A信学会総合全
国大会において発明者らが報告しているが、これは第2
図(a)に示す様に、まず、半2重体基板31上にゲー
ト金属であるM32 It被着し、通常の写真蝕刻法に
より形成したフォトレジストパターン:33f:マスク
として、例えば熱リン酸により第2図(b)のように該
M32 ’にオーバエツチングし、第2図(c)に示す
帆5ミクロンゲート34を実現するものである。又、従
来の別の形成方法としては、1979年IEDMにおい
て、K、 0hataらが報告しているが、これは、第
3図(a)に示す様に、半導体基板41上にスペーサ3
iQ、42を設け、その上に形成したレジストパターン
43ヲマスクトシてスペーサ5iOz 42 tオーバ
ーエツチングし、続いて該基板41を掘り込んだ後、同
図(b)のようにゲート金6M44を被着し、次に同図
(c)のようにレジストパターン43を除去するリフト
オフ法により0.5ミクロンゲート45を実現するもの
である。
Recently, high-frequency transistors have operating frequencies in the X band (8 to 1
2GHz) to (18-26GHz), K
Research and development is actively being conducted with the aim of improving performance in the A-band (26 to 40 GHz) and higher frequency ranges. In order to achieve high performance (Il-), it is necessary to reduce the parasitic resistance and to reduce the number of gate electrodes, that is, to realize a sub-micron gate. Conventionally, the method of forming such a sub-micron gate is to The inventors made a report at the 1985 National Conference of the Society of Electronics and Communications Engineers, but this is the second
As shown in Figure (a), first, M32 It, which is a gate metal, is deposited on a semi-duplex substrate 31, and a photoresist pattern is formed by ordinary photolithography. As shown in FIG. 2(b), the M32' is overetched to realize the sail 5 micron gate 34 shown in FIG. 2(c). Another conventional method of forming spacers 3 on a semiconductor substrate 41 was reported by K. Ohata et al. in IEDM in 1979, as shown in FIG. 3(a).
After forming the resist pattern 42 formed on the resist pattern 42 with a mask and over-etching the spacer 5iOz 42t, and subsequently digging into the substrate 41, a gate gold 6M 44 is deposited as shown in FIG. Next, a 0.5 micron gate 45 is realized by a lift-off method in which the resist pattern 43 is removed as shown in FIG. 4(c).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来のこのようなサイドエツチング法お
よびリフトオフ法によりサブミクロン長以下のゲート電
極を形成する方法では、得られたゲート電極断面形状は
等方性エッチ−/グおよびレジストマスク側面にゲート
金tAAlが被着するために矩形ではなく、台形状或い
は三角形状になり従ってゲート抵抗の増加をもたらす。
However, in the conventional method of forming a gate electrode with a submicron length or less using such side etching method and lift-off method, the cross-sectional shape of the gate electrode obtained is is deposited, the gate becomes trapezoidal or triangular instead of rectangular, resulting in an increase in gate resistance.

特にトランジスタ特性の一層の高性能化の為に更にゲー
ト長を0.2ミクロンまで短縮した場合には、同一ゲー
ト抵抗を得るために2.5倍のゲート高さが必要となる
にも拘わらず、実際には前記口出に伴ない第4図(a)
 、 (b)中ゲート51 、52の形状に示すように
ゲート高さを高くできず一層のゲート抵抗の増加をまね
き、従って、トランジスタの性能向上の面での大きな欠
点となっていた。
In particular, if the gate length is further shortened to 0.2 microns in order to further improve transistor characteristics, the gate height will be 2.5 times as large to obtain the same gate resistance. ,According to the above statement, in reality, Fig. 4(a)
, (b) As shown in the shape of the middle gates 51 and 52, the gate height cannot be increased, resulting in a further increase in gate resistance, which is a major drawback in terms of improving the performance of the transistor.

本発明はこのような従来の欠点を除去せしめて抵抗の低
減を図った微細電極形成方法を提供することにある。
The object of the present invention is to provide a method for forming fine electrodes which eliminates such conventional drawbacks and reduces resistance.

〔問題点を解決するための平段〕[Level for solving problems]

本発明は、半導体基板上に設けられた中間層を微細寸法
にパターニングされた第1のマスクよりも広い寸法にエ
ツチング開口する工程と、該第1のマスクと同一寸法に
半導体基板に達するまで中間層をエツチング除去する工
程と、露出した基板上に第1の金晩層を被着する工程と
、第1のマスクを除去後、第2の金属層をゲート開口部
で該中間層よりも厚く被着する工程と、開口部よりも広
く第2の金+?i層を俊う第2のパターンをマスクとし
て第2の全4層および中間層をエツチング除去する工程
とを行うことを特徴とする微細電極形成方法である。
The present invention includes a process of etching an opening in an intermediate layer provided on a semiconductor substrate to a size wider than a first mask patterned to minute dimensions, and an etching process until the opening of the intermediate layer provided on a semiconductor substrate reaches the same size as that of the first mask. etching away the metal layer; depositing a first metal layer over the exposed substrate; and after removing the first mask, depositing a second metal layer thicker than the intermediate layer at the gate opening; The process of depositing the second gold+? This method of forming a fine electrode is characterized by performing a step of etching and removing all four second layers and an intermediate layer using the second pattern that cuts the i-layer as a mask.

〔作用〕[Effect]

本発明は上述の構成をとることにより従来技術の問題点
を解決した。即ち、スペーサとなる中間層を、基板上の
開口幅はゲート寸法にして第1の薄いショットキ全域で
ゲート長を決め、マスク側はオーバーハング構造に広く
開口し、かつマスクを除去後、第2の金属層を被着する
ために、従来のようにマスク側面に被着して開口部がふ
さが9゜ある厚さ以上のゲート高さを得られないという
問題は解消され、ゲート抵抗の低減された高くて短いゲ
ート長のものが得られる。又、中間層に高謡ベークした
樹脂層を用いることにより制御性、に優れたドライエツ
チングのみにより上述の形状が得られ、更に、例えばプ
ラズマエツチングによって容易に除去でき、リフトオフ
のスペーサとしても良好である。一方、第1のマスクと
してスピン塗布、ベークした電気絶縁層を用いる小は、
中間層に用いた樹脂層のベーク温度よりも低温ベークで
形成でき、又耐スパツタ性がGつ法により被着した杷し
膜に匹敵するもので1.かつ弱い化学エツチング液によ
り第1の金6層を侵す事なく、容易に除去でき、本発明
の実現にとって極めて有効である。
The present invention has solved the problems of the prior art by adopting the above-described configuration. That is, for the intermediate layer that will become a spacer, the opening width on the substrate is the gate dimension, the gate length is determined across the first thin Schottky area, the mask side has a wide opening in the overhang structure, and after the mask is removed, the second The conventional problem of not being able to obtain a gate height greater than 9 degrees when the opening is covered by depositing the metal layer on the side surface of the mask is solved, and the gate resistance is reduced. A high and short gate length can be obtained. In addition, by using a highly baked resin layer as the intermediate layer, the above-mentioned shape can be obtained only by dry etching with excellent controllability, and it can also be easily removed by, for example, plasma etching, making it suitable as a lift-off spacer. be. On the other hand, a small one using a spin-coated and baked electrically insulating layer as the first mask,
1. It can be formed by baking at a lower temperature than the baking temperature of the resin layer used for the intermediate layer, and its spatter resistance is comparable to that of a diluted film deposited by the G method. Moreover, it can be easily removed using a weak chemical etching solution without damaging the first six gold layers, which is extremely effective for realizing the present invention.

〔実施例〕〔Example〕

以下、本発明の具体的一実施例としてガリウム砒素(以
下、G a A sと称す)基板上に第1の金4層とし
てタングステン、第2の金訊層として金を用いた場合に
ついて図面を参照して詳細に説明する。第1図(a)〜
(g)は本発明の実施例を工程順に示す町「面図である
つまず第1図(a)において、GaA s基板ll上に
レジス) AZ−2400(商品名)全塗布し紫外光照
射後、窒素雰囲気中にて300℃1時間ベークし中間層
としてバッファ層12を形成する・次に、Si5.9 
(%) OCDフィルム(東京応化社製商品名)を塗布
し、250℃、30分間窒素中でベークし、5ins膜
13を形成し、続いてPMMA (Poly meth
yl meth−acrylate )レジスト14を
塗布し、170℃、20分間蒙素中でベークしたのち、
該PMMAレジスト14に0.3μmにゲート開口部1
5を電子ビーム露光を用いて形成する。続いて、該レジ
ストパターンをマスクにSiO2膜13にCF4ガスを
用いた平行平板型反応性イオンエツチングにより開口部
15を転写する。
Hereinafter, as a specific example of the present invention, a drawing is shown in which tungsten is used as the first four gold layers and gold is used as the second metal layer on a gallium arsenide (hereinafter referred to as GaAs) substrate. This will be explained in detail with reference to the following. Figure 1(a)~
(g) is a top view showing an example of the present invention in the order of steps. After that, the buffer layer 12 is formed as an intermediate layer by baking at 300° C. for 1 hour in a nitrogen atmosphere.Next, Si5.9
(%) OCD film (trade name manufactured by Tokyo Ohka Co., Ltd.) was applied and baked in nitrogen at 250°C for 30 minutes to form a 5-ins film 13, and then PMMA (Poly meth
yl meth-acrylate) resist 14 was applied and baked in monoxide at 170°C for 20 minutes.
A gate opening 1 of 0.3 μm is formed in the PMMA resist 14.
5 is formed using electron beam exposure. Subsequently, using the resist pattern as a mask, the opening 15 is transferred onto the SiO2 film 13 by parallel plate reactive ion etching using CF4 gas.

次に、バッファ層12を、1ず02ガスを用いた円筒型
プラズマエツチングによりオーバーエツチングし、マス
クよりも広い開口部16ヲ形成する(il1図(b) 
) 、ひきつづき、バッファ層12を02ガスを用いた
平行平板型反応性イオンエツチングにより、GaAs 
g板11に到述するまでエツチングし、マスクと同一寸
法の開口部17ヲ形成する(第1図(C))。
Next, the buffer layer 12 is over-etched by cylindrical plasma etching using 1Z02 gas to form an opening 16 wider than the mask (FIG. 1(b)).
), Subsequently, the buffer layer 12 is etched with GaAs by parallel plate type reactive ion etching using O2 gas.
G plate 11 is etched until it is fully etched to form an opening 17 having the same dimensions as the mask (FIG. 1(C)).

尚、この時最上層P思1A 14はエツチング除去され
る。続いてスパッタ蒸着により第1の金回であるタング
ステン18を被着する( F 1図(d))。
At this time, the uppermost layer P1A14 is removed by etching. Subsequently, tungsten 18, which is the first gold layer, is deposited by sputter deposition (FIG. 1(d)).

次に、5int膜13を弗酸+水(1:LO)で除去し
た後、第2の金4である金19ヲスバツタ蒸着によりゲ
ート開口部でバッファ層12よりも厚く被着する(第1
図(e) ) 、続いてゲート開口部16よりも広く、
金19を覆うように通常の写真蝕刻法により形成したレ
ジストパターン20をマスクに金19ヲイオンミリング
により、バッファ層L2に到遅するまでエツチングする
(第1図(f) ) 、次に02ガスを用いた円筒型プ
ラズマエツチングによりバッファ層目をエツチング除去
することによりGaAs基板11上にゲート電極21が
得られる(第1図(g) ) 、尚、この時レジストパ
ターン20はエツチング除去される。
Next, after removing the 5-inch film 13 with hydrofluoric acid + water (1:LO), gold 19, which is the second gold 4, is deposited thicker than the buffer layer 12 at the gate opening by sputter deposition (first gold 4).
(e)), then wider than the gate opening 16,
Using a resist pattern 20 formed by ordinary photolithography to cover the gold 19 as a mask, the gold 19 is etched by ion milling until it reaches the buffer layer L2 (FIG. 1(f)), and then 02 gas is etched. The gate electrode 21 is obtained on the GaAs substrate 11 by etching away the buffer layer by cylindrical plasma etching using cylindrical plasma etching (FIG. 1(g)). At this time, the resist pattern 20 is also etched away.

〔発明の効果〕〔Effect of the invention〕

本発明によって得られたゲート電極(第1図(g)に示
すもの)と従来の形成方法によって侍られたもの(第4
図(a) 、 (b)に示すもの)とを比較すると、本
発明のものは中間層に高温ベーク樹脂層を、ゲートマス
クとしてスピン塗布し樹脂層より低温ベークで耐スパツ
タ性に優れ、弱酸で腐喰される電気絶縁層を用いたため
、マスク側面にゲート金4が付着して断面形状が三角形
となったり或いは厚みに限界が生じたりすることはなく
、ゲート膜厚が厚く、アルファベートのT文字型で断面
担の大きいゲート電極を形成することが出来る・また、
中間層に樹脂層を用いる効果としては、例えば酸化膜ス
ペーサの様に弗酸系の化学エツチング銭を用いて金員層
を侵す恐れのあるものとは異なり、02プラズマにより
容易にエツチング、ゲートリフトオフできる点が挙げら
れる。
The gate electrode obtained by the present invention (shown in FIG. 1(g)) and the gate electrode prepared by the conventional formation method (see FIG.
When compared with those shown in Figures (a) and (b), the present invention has a high-temperature baked resin layer as an intermediate layer and is spin-coated as a gate mask, has better spatter resistance than the resin layer when baked at a lower temperature, and Since we used an electrical insulating layer that is etched away by the process, the gate gold 4 does not adhere to the side surface of the mask, resulting in a triangular cross-sectional shape or a limit on the thickness. It is possible to form a T-shaped gate electrode with a large cross-sectional area.
The effect of using a resin layer as an intermediate layer is that unlike an oxide film spacer, which may attack the metal layer using a hydrofluoric acid-based chemical etching solution, it can be easily etched and gate lift-off with 02 plasma. Here are some things you can do.

この様にして得られたゲート電極は、従来のものに比ベ
ゲート抵抗が低減され、例えば超高周波電界効果トラン
ジスタに応用した場合にマイクロ波特性の向上を期待で
きる。なお、本発明の実施例の中では半導体基板として
、GaAaを、第1の金6層としてタングステン、第2
の金属として金を用いた例を示したが、他の材料、例え
ばSi* In−GaAs及び第1の金礒層として良好
なショットキ接触が得られるモリプデ/、メンタルアル
ミニウム、モリブデン、タンタル及びタングステンのシ
リサイド膜、窒化膜、更に第2の金妨層としてはゲート
抵抗低減のための高導電率金属と金m laj反応のス
トッパ金属とを積層したチタン、白金と金の二層金6で
もよく、餌用材料は本発明を何ら限定するものではない
The gate electrode thus obtained has a reduced gate resistance compared to conventional ones, and can be expected to improve microwave characteristics when applied to, for example, ultra-high frequency field effect transistors. In the embodiments of the present invention, GaAa is used as the semiconductor substrate, tungsten is used as the first gold 6 layer, and tungsten is used as the second gold layer.
Although we have shown examples using gold as the metal of A silicide film, a nitride film, and a second gold blocking layer may be titanium or a two-layer gold layer of platinum and gold in which a high conductivity metal for reducing gate resistance and a stopper metal for a gold reaction are laminated. The bait material does not limit the invention in any way.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)は本発明のゲート電極形状方法を
工程順に示す断面図、第2図(a)〜(C)は従来のゲ
ート電極形成方法を工程題に示す断面図、第3図(a)
〜(C)は従来の別のゲート電極形成方法を工程順に示
す断面図、第4図(a) 、 (b)は従来のゲート・
電極形成方法により得られたゲート電極の断面図である
。 11− GaAs基板、12・・−バッファ層、13−
 Sin、、14・・・PMMAレジスト、15・・・
ゲート開口部、16・・・第1のバッファ層開口部、1
7・・・第2のバッファ層開口部、18・・・タングス
テン、19・・・金、20.43・・・レジストパター
ン、21,34,45.51.52−・・ゲート電極、
31 、41・・・半導体基板、32 、44・・・M
、33・・・フォトレジスト、42・・・スペーサSi
O□ 特許用1q大  日本電気株式会社 第1図 (b) 嘉1のハθファM開口部 (C) )も2のバッファ層げ閘口忘じ 第1図 (e) (f) 第1図 第2図(Q) 33フ朴しシスト 第2図(b) 嬰 第2図 第3図 第3図
FIGS. 1(a) to (g) are cross-sectional views showing the gate electrode forming method of the present invention in the order of steps; FIGS. 2(a) to (C) are cross-sectional views showing the conventional gate electrode forming method in process order; Figure 3(a)
~(C) are cross-sectional views showing another conventional gate electrode forming method in the order of steps, and FIGS. 4(a) and 4(b) are cross-sectional views showing the conventional gate electrode
FIG. 3 is a cross-sectional view of a gate electrode obtained by the electrode forming method. 11- GaAs substrate, 12...- buffer layer, 13-
Sin, 14...PMMA resist, 15...
Gate opening, 16...first buffer layer opening, 1
7... Second buffer layer opening, 18... Tungsten, 19... Gold, 20.43... Resist pattern, 21, 34, 45.51.52-... Gate electrode,
31, 41... semiconductor substrate, 32, 44...M
, 33... Photoresist, 42... Spacer Si
O□ 1q large for patent NEC Corporation Fig. 1 (b) Ka 1's θfa M opening (C) ) Also forgot the buffer layer gate of 2 Fig. 1 (e) (f) Fig. 1 Figure 2 (Q) 33 Futoshi cyst Figure 2 (b) Infant Figure 2 Figure 3 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に設けられた中間層を、微細寸法に
パターニングされた第1のマスクよりも広い寸法にエッ
チング開口する工程と、該第1のマスクと同一寸法に半
導体基板に達するまで中間層をエッチング除去する工程
と、露出した基板上に第1の金属層を被着する工程と、
第1のマスクを除去後、第2の金属層を電極開口部で該
中間層よりも厚く被着する工程と、開口部よりも広く第
2の金属層を覆う第2のパターンをマスクとして第2の
金属層および中間層をエッチング除去する工程を行うこ
とを特徴とする微細電極形成方法。
(1) A step of etching an intermediate layer provided on a semiconductor substrate to a size wider than a first mask patterned to minute dimensions, and etching the intermediate layer until it reaches the semiconductor substrate with the same dimensions as the first mask. etching away the layer; and depositing a first metal layer on the exposed substrate;
After removing the first mask, depositing a second metal layer thicker than the intermediate layer at the electrode opening, and applying a second metal layer using a second pattern as a mask to cover the second metal layer wider than the opening. 2. A method for forming a fine electrode, comprising performing the step of etching away the metal layer and the intermediate layer.
(2)前記中間層として高温ベークした樹脂層を、第1
のマスクとしてスピン塗布、ベークした電気絶縁層を用
いることを特徴とする特許請求の範囲第1項記載の微細
電極形成方法。
(2) A resin layer baked at a high temperature as the intermediate layer is used as the first layer.
2. The method of forming a fine electrode according to claim 1, wherein an electrically insulating layer that has been spin-coated and baked is used as a mask.
JP19612684A 1984-09-19 1984-09-19 Formation for fine electrode Pending JPS6174373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19612684A JPS6174373A (en) 1984-09-19 1984-09-19 Formation for fine electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19612684A JPS6174373A (en) 1984-09-19 1984-09-19 Formation for fine electrode

Publications (1)

Publication Number Publication Date
JPS6174373A true JPS6174373A (en) 1986-04-16

Family

ID=16352675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19612684A Pending JPS6174373A (en) 1984-09-19 1984-09-19 Formation for fine electrode

Country Status (1)

Country Link
JP (1) JPS6174373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683410A (en) * 2011-03-11 2012-09-19 索尼公司 Field-effect transistor, field-effect transistor manufacturing method, solid-state imaging device, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683410A (en) * 2011-03-11 2012-09-19 索尼公司 Field-effect transistor, field-effect transistor manufacturing method, solid-state imaging device, and electronic apparatus

Similar Documents

Publication Publication Date Title
CA1092254A (en) High power gallium arsenide schottky barrier field effect transistor made by electron lithography
KR910005400B1 (en) Manufacturing method of self align gaas fet using multi layer photo resistor
JPS5950567A (en) Manufacture of field effect transistor
US3994758A (en) Method of manufacturing a semiconductor device having closely spaced electrodes by perpendicular projection
WO2014154120A1 (en) High-electron-mobility transistor employing gate first process and manufacturing method for the transistor
CN111933523B (en) Manufacturing method of T-shaped gate for compound semiconductor device
KR0140950B1 (en) Fabrication process of compound semiconductor device comprising l-shaped gate electrode
KR0170498B1 (en) Method of forming t-gate electrode
US5620909A (en) Method of depositing thin passivating film on microminiature semiconductor devices
JPS6174373A (en) Formation for fine electrode
JPS6180869A (en) Manufacture of semiconductor device
WO2014154125A1 (en) Radio-frequency power device for realizing source-drain gate asymmetrical self-alignment and manufacturing method
JPS63273363A (en) Manufacture of semiconductor device
JPH0555141A (en) Creation of semiconductor quantum microline
JPS625667A (en) Manufacture of semiconductor device
JPS61154177A (en) Manufacture of semiconductor device
JPH0574817A (en) Manufacture of semiconductor device
JPS62299033A (en) Manufacture of semiconductor device
CN114023641A (en) Manufacturing method and application of enhanced HEMT ohmic contact structure
JPS6143484A (en) Formation of electrode in semiconductor device
JPS61220375A (en) Semiconductor device and manufacture thereof
JPS6281769A (en) Manufacture of field effect transistor
KR100488475B1 (en) Manufacturing method of ultra high frequency semiconductor device
JPS6180870A (en) Semiconductor transistor and manufacture thereof
JPS59114826A (en) Manufacture of semiconductor device