JPS6281769A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS6281769A
JPS6281769A JP22308985A JP22308985A JPS6281769A JP S6281769 A JPS6281769 A JP S6281769A JP 22308985 A JP22308985 A JP 22308985A JP 22308985 A JP22308985 A JP 22308985A JP S6281769 A JPS6281769 A JP S6281769A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
insulating film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22308985A
Other languages
Japanese (ja)
Inventor
Yuuki Imai
祐記 今井
Kazuyoshi Asai
浅井 和義
Kuniki Owada
大和田 邦樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22308985A priority Critical patent/JPS6281769A/en
Publication of JPS6281769A publication Critical patent/JPS6281769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To make the length of a gate extremely short, by reducing the gate length shorter than a size determined by exposure technology. CONSTITUTION:A metal film 20 is etched by a etching method such as ion milling. At this time, the thickness in the depth direction of the metal film, which is deposited in a groove 21, is thicker than the other part. Therefore, the metal film at this part remains and a gate electrode 22 is formed. At this time, the length lg of the gate electrode 22 is reduced by twice the thickness t1 of an SiO film 19 with respect to the length l of an opening hole of an SiN film 17. For example, when l is 0.5-1.0mum, which can be implemented by ordinary exposure technology, the lg becomes 0.1 or less - about 0.6mum. Since the gate length lg can be reduced by twice the thickness t1 of the SiO2 film 19 with respect to the size l determined by the exposure technology, the very short gate length can be implemented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はゲート長が極めて短かく、ゲート抵抗。[Detailed description of the invention] [Industrial application field] The present invention has an extremely short gate length and low gate resistance.

ソース抵抗が極めて低い超高速・超高周波応用に適した
電界効果トランジスタの製造方法に関するものである。
This invention relates to a method of manufacturing a field effect transistor that has extremely low source resistance and is suitable for ultra-high speed and ultra-high frequency applications.

〔従来の技術〕[Conventional technology]

従来、この種の電界効果トランジスタ(以下FETと略
す)の製造方法では、谷部寸法の微細化。
Conventionally, in the manufacturing method of this type of field effect transistor (hereinafter abbreviated as FET), the valley dimension is miniaturized.

歩留り向上のためにセルファライン技術が用いられてい
る。第3図は従来のFETの代表的な製造方法を示した
ものである。第3図の製造方法では、高抵抗半導体基板
1の上にたとえばイオン注入等により口形半導体層2を
形成し、次にこの半導体層を横切るようにゲート電極3
を形成する(第3図(a))。次に熱CVD法によシ酸
化シリコン膜4を全面に付着しく第3図(b) ) 、
異方的エツチング特性をもつ共呑會孝滲6反応性イオン
エツチング(以下RIEと略す)によシエッチングし、
ゲート電極3の側面の部分に酸化シリコン膜の側壁5を
形成する(第3図(C))。次にオーミック金属6たと
えば金ゲルマニウム合金とニッケルを順次全面に付着し
、さらにレジスト7をレジスト表面が平坦化される程度
の厚さに塗布する(@3図(d))。次にRIEによシ
レジスト7をエツチングしてゲート電極3および酸化シ
リコンの側壁5の上のオーミンク金属6を露出させる(
第3図(e))。さらにイオンミーリングにより露出し
たオーミック金属を除去した後、RIEあるいはプラズ
マエツチングによりレジスト7を除去しソース電極8.
ドレイン電極9を形成する。
Self-line technology is used to improve yield. FIG. 3 shows a typical manufacturing method of a conventional FET. In the manufacturing method shown in FIG. 3, a mouth-shaped semiconductor layer 2 is formed on a high-resistance semiconductor substrate 1 by, for example, ion implantation, and then a gate electrode 3 is formed across this semiconductor layer.
(Fig. 3(a)). Next, a silicon oxide film 4 is deposited on the entire surface by thermal CVD (Fig. 3(b)).
Etched by reactive ion etching (hereinafter abbreviated as RIE) having anisotropic etching characteristics,
A side wall 5 of a silicon oxide film is formed on the side surface of the gate electrode 3 (FIG. 3(C)). Next, an ohmic metal 6 such as a gold-germanium alloy and nickel are sequentially deposited on the entire surface, and a resist 7 is further applied to a thickness such that the resist surface is flattened (@3 (d)). Next, the resist 7 is etched by RIE to expose the ohmink metal 6 on the gate electrode 3 and the silicon oxide sidewalls 5 (
Figure 3(e)). Furthermore, after removing the exposed ohmic metal by ion milling, the resist 7 is removed by RIE or plasma etching, and the source electrode 8.
A drain electrode 9 is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明した従来のFETの製造方法は種々の欠点をも
つ。1ずゲート長む(第3図(a))の短縮はFETの
性能向上の上で極めて重要であるが、この方法では、ゲ
ート長の短縮は露光技術に依存しており、最も微細なE
B露元技術を用いても、0.3μm以下のゲート長を歩
留シよく実現するのは困難であることがあげられる。又
、F’ETのゲート電極3の直下の領域10(第3図(
f))の半導体N(以下、FETの能動層と呼ぶ)のキ
ャリア濃度、厚みはFETの閾値電圧によっである値に
決するが、一方FETのソース電極8の直下の領域11
 (第3図(f))は、キャリア濃度が高く、厚みが厚
い程ソース抵抗が下がり高周波性能が向上する。しかし
上記の製造方法では、領域10 、11が1つたく同じ
キャリア濃度、厚みとなるため、ソース抵抗の低減が構
造上制限されるという欠点をもつ。
The conventional FET manufacturing method described above has various drawbacks. 1. Shortening the gate length (Fig. 3(a)) is extremely important for improving FET performance, but with this method, shortening the gate length depends on the exposure technology, and the smallest E
Even using the B exposure technology, it is difficult to realize a gate length of 0.3 μm or less with a good yield. In addition, a region 10 directly under the gate electrode 3 of the F'ET (Fig.
The carrier concentration and thickness of the semiconductor N (hereinafter referred to as the active layer of the FET) in f)) are determined to a certain value depending on the threshold voltage of the FET.
(FIG. 3(f)), the higher the carrier concentration and the thicker the thickness, the lower the source resistance and the higher the high frequency performance. However, the above manufacturing method has the disadvantage that reduction in source resistance is structurally limited because the regions 10 and 11 have the same carrier concentration and thickness.

本発明の目的は以上のような従来のFETの製造方法の
欠点を解決し、超高速・超高周波応用に適したFETの
製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the conventional FET manufacturing method and to provide an FET manufacturing method suitable for ultra-high speed and ultra-high frequency applications.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、半導体基板として、あらかじめ高抵抗半導体
基板の上にFETの能動層となるn形半導体層を所定の
FETの閾値電圧が得られる厚みより厚く形成し、更に
その上に高電子濃度のn形半導体層を形成したものを用
いることにより、第一の絶縁膜をマスクとしてゲート電
極の直下となる領域の能動層のみを選択的にエツチング
できるためゲート電極の直下は所定の厚み1でエツチン
グしたn形半導体層を能動層とし、一方ソース電極のi
■下の領域は厚いn形半導体層と高濃度n形半導体層の
二層によp形成されることによりソース抵抗の低減を可
能とし、さらに第1の絶縁膜と半導体層の側壁に形成し
た第二(あるいはさらに第三)の絶縁膜によυゲート長
の短縮とソース・ゲート電極間隔2ドレイン・ゲート電
極間隔および高濃度n形半導体層とゲート電極間隔の制
御とを同時に可能とし、さらにゲートを極の上部にオー
ミック金額を残すことによりゲート電極の厚さを厚くし
ゲート抵抗の低減を可能とすることを最も主要な特徴と
する。
In the present invention, as a semiconductor substrate, an n-type semiconductor layer which becomes an active layer of an FET is formed in advance on a high-resistance semiconductor substrate to a thickness thicker than that at which a predetermined threshold voltage of the FET is obtained, and then a high electron concentration By using an n-type semiconductor layer, only the active layer in the region immediately below the gate electrode can be selectively etched using the first insulating film as a mask, so the area directly below the gate electrode can be etched to a predetermined thickness of 1. The n-type semiconductor layer is used as an active layer, while the source electrode i
■The lower region is made of two layers: a thick n-type semiconductor layer and a high-concentration n-type semiconductor layer, making it possible to reduce the source resistance. The second (or even third) insulating film makes it possible to simultaneously shorten the υ gate length and control the source-gate electrode spacing, the drain-gate electrode spacing, and the spacing between the high-concentration n-type semiconductor layer and the gate electrode. The most important feature is that by leaving an ohmic layer at the top of the gate electrode, the thickness of the gate electrode can be increased and the gate resistance can be reduced.

〔作用〕[Effect]

上記によれば、ソース電極直下の領域をゲート電極直下
の能動層に比べ、キャリア濃度が高く、厚みの厚い半導
体層にすることが可能で、かつゲート長をFJ露光等の
微細な露光技術を用いずに短縮可能であり、かつゲート
電極の厚みを厚く出来る。
According to the above, it is possible to make the region directly under the source electrode a thicker semiconductor layer with higher carrier concentration than the active layer directly under the gate electrode, and to increase the gate length using fine exposure techniques such as FJ exposure. It can be shortened without using it, and the thickness of the gate electrode can be increased.

〔実施例〕〔Example〕

第1図は本発明によるFETの製造方法の第一の実施例
を示したもので、GaA、などの高抵抗半導体基板12
の上にたとえばイオン注入法、気相成長法によυFET
の能動層となるたとえばキャリア濃度1〜3 X 10
”cm−” 、厚み0.1〜0.5μm程度のn形半導
体層13とFETのソース抵抗の削減のためのたとえば
キャリア濃度10  cm  以上で厚さ0.1〜0.
3μm程度の高濃度n形半導体層14からなる半導体層
15を形成する(第1図(a))。次に半導体層の表面
16の全面に第1の絶縁膜としてたとえばプラズマCV
D法によりたとえば窒化シリコン膜17(以下SiN膜
と略す)を0.5〜1.5μm程度の厚さに形成し、次
にレジスト層を全面に塗布し、公知の方法によシ前記半
導体層15’i横切るように開孔したバタン全形成し、
このレジスト層をマスクとして前記SiN膜をたとえば
CF4等のフロン系ガスのRIEによυエツチングした
後レジストを除去し、前記半導体層14を横切るように
開孔部分をもつSiN膜17を形成する(第1図(b)
)。次にこのSiN膜17をマスクとして、露出した半
導体層を異方的エツチング特性音もつエツチング法たと
えばBCIs等の塩素系ガスの反応性イオンビームエツ
チング(以下RIBEと略す)によシ高濃度n形半導体
層14を除去し、更にn形半導体層を所定の閾値電圧た
とえば−IV 〜−3V程度が得られる厚み(0,1〜
0.15 pm程度)までエツチングする(第1図(C
))。次に第二の絶縁膜としてたとえばプラズマCVD
法によるたとえば酸化シリコン膜18(以下SiO膜と
略す)をたとえば厚さ0.2〜0.5μm程度全面に形
成しく第1図(d))、次に異方的エツチング特性をも
つエツチング法、たとえばCF4を用いたRIEにより
、このSiO膜18をエツチングする。このとき前記5
ill換17 、半導体層15の側壁に付着したSiO
膜19の深さ方向の厚みがその他の部分に比べて厚いの
でこの側壁に付着したSiO膜19のみが残る。このS
iO膜は厚さtlは0.2〜0.5 pm 、高さhl
は帆6〜1.65μmとなる(第1図(e))。次に前
記n形半導体層13とショットキー接触をなす金属たと
えばアルミニウム2タンクルのたとえば二層からなる金
属膜20ヲたとえばスパッタ法により全面に掘り込み溝
21が平坦化される程度の十分な厚みたとえば0.5〜
1.0 pm程度堆堆積く第1図(f))、次に異方的
エツチング特性をもつエツチング法たとえばArイオン
を用いた。たとえばイオンミーリング等のエツチング法
によりこの金属膜20をエツチングする。このとき前記
掘り込み溝21に堆積した金属膜の深さ方向の厚みが他
の部分に比べて厚いので、この部分の金属膜が残シゲー
ト電極22が形成される(第1図(g))。このときゲ
ート電極22の長さlfは前記SiN膜17の開孔の長
さl(第1図(C))に対して前記StO膜19の厚み
tL(第1図(e))の2倍分縮まり、たとえばlを通
常の露光技術で実現が可能な0.5〜1.0 pmとす
ると12は0.1μm以下から0.6μm程度となる。
FIG. 1 shows a first embodiment of the FET manufacturing method according to the present invention, in which a high-resistance semiconductor substrate such as GaA, etc.
For example, υFET is formed on the
For example, the active layer has a carrier concentration of 1 to 3 × 10
"cm-", the n-type semiconductor layer 13 with a thickness of about 0.1 to 0.5 μm and a carrier concentration of 10 cm or more and a thickness of 0.1 to 0.5 μm, for example, to reduce the source resistance of the FET.
A semiconductor layer 15 made of a highly doped n-type semiconductor layer 14 of about 3 μm is formed (FIG. 1(a)). Next, a first insulating film is formed on the entire surface 16 of the semiconductor layer using, for example, plasma CVD.
For example, a silicon nitride film 17 (hereinafter abbreviated as SiN film) is formed to a thickness of about 0.5 to 1.5 μm by method D, and then a resist layer is applied to the entire surface, and the semiconductor layer is then coated by a known method. 15'i The entire batan with holes opening across it is formed,
Using this resist layer as a mask, the SiN film is etched by RIE using a fluorocarbon gas such as CF4, and then the resist is removed to form a SiN film 17 having openings across the semiconductor layer 14. Figure 1(b)
). Next, using this SiN film 17 as a mask, the exposed semiconductor layer is etched by high concentration n-type etching using an etching method with anisotropic etching characteristics, such as reactive ion beam etching (hereinafter abbreviated as RIBE) using a chlorine-based gas such as BCIs. The semiconductor layer 14 is removed, and the n-type semiconductor layer is further heated to a thickness (0,1 to -3V) that provides a predetermined threshold voltage, for example, about -IV to -3V.
0.15 pm) (see Figure 1 (C)).
)). Next, as the second insulating film, for example, a plasma CVD film is formed.
For example, a silicon oxide film 18 (hereinafter abbreviated as SiO film) is formed on the entire surface to a thickness of about 0.2 to 0.5 μm by a method (FIG. 1(d)), and then an etching method having anisotropic etching characteristics is performed. For example, this SiO film 18 is etched by RIE using CF4. At this time, the above 5
ill exchange 17, SiO attached to the side wall of the semiconductor layer 15
Since the thickness of the film 19 in the depth direction is thicker than other parts, only the SiO film 19 attached to this side wall remains. This S
The iO film has a thickness tl of 0.2 to 0.5 pm and a height hl.
is 6 to 1.65 μm (Fig. 1(e)). Next, a metal film 20 made of, for example, two layers of metal, for example, aluminum, which makes Schottky contact with the n-type semiconductor layer 13, is formed to have a sufficient thickness, for example, by sputtering to flatten the groove 21 on the entire surface. 0.5~
After a deposition of about 1.0 pm (FIG. 1(f))), an etching method having anisotropic etching characteristics, such as Ar ions, was used. For example, this metal film 20 is etched by an etching method such as ion milling. At this time, since the thickness of the metal film deposited in the trench 21 in the depth direction is thicker than in other parts, the metal film in this part remains and forms the gate electrode 22 (FIG. 1(g)). . At this time, the length lf of the gate electrode 22 is twice the length l of the opening in the SiN film 17 (FIG. 1(C)) and the thickness tL of the StO film 19 (FIG. 1(E)). For example, if 1 is set to 0.5 to 1.0 pm, which can be realized by ordinary exposure technology, then 12 becomes from 0.1 .mu.m or less to about 0.6 .mu.m.

又、ゲート電極の厚みは前記SiO膜19の高さhi(
第1図(e))に近い厚みまで可能であり、たとえば0
.4〜1.1μm程度となる。次に前記SiN膜17′
itたとえばCF4 f用いたプラズマエツチング等に
より除去し、高濃度n形半導体# 14’を露出させる
(第1図(h))。次にこの高濃度n形半導体層14と
オーミック接触をなす金属たとえば金ゲルマニウム合金
とニッケルのたとえば二層からなる金属膜23をたとえ
ば厚み0.1〜0.5μm程度。
Further, the thickness of the gate electrode is determined by the height hi (of the SiO film 19).
It is possible to achieve a thickness close to that shown in Figure 1(e), for example 0.
.. It is about 4 to 1.1 μm. Next, the SiN film 17'
It is removed by plasma etching using CF4F, for example, to expose the high concentration n-type semiconductor #14' (FIG. 1(h)). Next, a metal film 23 made of, for example, two layers of metal such as gold germanium alloy and nickel, which makes ohmic contact with this high concentration n-type semiconductor layer 14, is formed to a thickness of about 0.1 to 0.5 μm.

たとえば真空蒸着法等によυ付着する(第1図(i))
For example, υ is attached by vacuum evaporation method etc. (Fig. 1(i))
.

次にレジスト層24をその表面が平坦化される程度の厚
み、たとえば1.0〜3.0μm程度塗布し、加熱乾燥
する(第1図(J))。次にこのレジスト層24を異方
的エツチング特性をもつエツチング法、たとえば酸素ガ
スを用いたRIEによりエツチングし、前記SiO膜1
9の上に付着した金属膜25を露出させる(第1図(k
))。次にたとえばArイオンを用いたイオンミーリン
グ法等によシこの金属膜25ヲ除去し、更に残ったレジ
スト層24を溶剤等により除去しソース電極26.ドレ
イン電極27を形成する(第1図(1))。この時ゲー
ト電極22の上に金属膜28が厚み0.1〜0.5μm
程度残るため、ゲートを極の厚みをこの分だけ厚くする
ことが出来る。更に、ソース電極26の直下の領域は高
濃度n形半導体層14とゲート電極22直下に比べて厚
いn形半導体層13から形成される。
Next, a resist layer 24 is applied to a thickness such that the surface thereof is flattened, for example, about 1.0 to 3.0 μm, and dried by heating (FIG. 1 (J)). Next, this resist layer 24 is etched by an etching method having anisotropic etching characteristics, for example, RIE using oxygen gas, and the SiO film 1 is etched.
The metal film 25 attached on top of 9 is exposed (see FIG. 1(k)
)). Next, the metal film 25 is removed by, for example, ion milling using Ar ions, and the remaining resist layer 24 is removed using a solvent or the like to remove the source electrode 26. A drain electrode 27 is formed (FIG. 1(1)). At this time, a metal film 28 is placed on the gate electrode 22 with a thickness of 0.1 to 0.5 μm.
Since a certain amount remains, the thickness of the gate pole can be increased by this amount. Further, the region immediately below the source electrode 26 is formed of the heavily doped n-type semiconductor layer 14 and the n-type semiconductor layer 13 which is thicker than the region directly below the gate electrode 22 .

以上説明したように本発明によるFETの製造方法によ
れば、ゲート長19(第1図(9))を露光技術によシ
決凍る寸法1 (第1図(C))に対して5102膜1
9の厚み1+(第1図(e))の2倍分だけ縮小するこ
とが出来るため極めて短かいゲート長をEBN光等の微
細なwr元技術によらず実現出来る。更にゲート電極n
の厚みは、厚さhy(第1図(?))に加えてゲート電
極22の上に付着した金属膜28の分だけ厚くなりゲー
ト抵抗を下げることが可能である。又、ソース電極26
の直下の領域は高濃度n形半導体層と厚いn形半導体層
により形成されソース抵抗を下げることが可能である。
As explained above, according to the FET manufacturing method according to the present invention, the gate length 19 (FIG. 1 (9)) is 5102 films for the dimension 1 (FIG. 1 (C)) determined by exposure technology. 1
Since the thickness can be reduced by twice the thickness 1+ (FIG. 1(e)) of 9, an extremely short gate length can be realized without using fine wr source technology such as EBN light. Furthermore, the gate electrode n
In addition to the thickness hy (see FIG. 1(?)), the thickness of the gate electrode 22 is increased by the amount of the metal film 28 deposited on the gate electrode 22, thereby making it possible to lower the gate resistance. In addition, the source electrode 26
The region immediately below is formed by a highly doped n-type semiconductor layer and a thick n-type semiconductor layer, making it possible to lower the source resistance.

又、ソース電極とゲート電極およびソース電極側高電子
濃度n形半導体とゲート電極の間隔は、SiO2膜19
膜厚91. (第1図(e))によシ決1り露光技術に
よらず短かく出来るためソース抵抗を下げることが可能
である。
Moreover, the distance between the source electrode and the gate electrode, and between the high electron concentration n-type semiconductor on the source electrode side and the gate electrode is determined by the SiO2 film 19.
Film thickness 91. As shown in FIG. 1(e), the source resistance can be lowered because it can be made shorter regardless of the exposure technique.

又、第2図は本発明によるFETの製造方法の第二の実
施例を示したものである。@2図(a) 、 (blの
工程は第1図(a) 、 (b)と同一の工程であり、
図中の番号も同一のものを示している。次にSiN膜1
7ヲマスクとして第1図(C)と同一の方法によシ半導
体層15のエツチングを行なうが(第2図(c) ) 
、この時第1図(clでは、高濃度n形半導体層14を
除去し、更にn形半導体層13を所定の閾値電圧たとえ
ば一1v〜−3v程度が得られる厚み(0,1〜0.1
5μm程度)1でエツチングするのに対し、第2図(e
)では、高濃度n形半導体層14のみを除去する。次に
、第1図(dlと同一の方法によりたとえばSiO膜2
膜上9とえば厚さ0,1〜0.5μm程度全面に形成し
く第2図(d) ) 、次に第1図(e)と同一のエツ
チング方法にヨリ、このSiO膜2膜上9ツチングする
。このとき前記SiN膜17.半導体層15の側壁に付
着したSiO膜Jの深さ方向の厚みがその他の部分に比
べて厚いので第1図(e)と同様にこの側壁に付着した
SiO膜おのみが残る。このSiO膜は厚さt2は11
〜0.5pm r高さh2は帆5〜1.5μmとなる(
第2図(e))。
Further, FIG. 2 shows a second embodiment of the FET manufacturing method according to the present invention. @Figure 2 (a), (the process in bl is the same process as in Figure 1 (a), (b),
The numbers in the figures also indicate the same thing. Next, SiN film 1
7. The semiconductor layer 15 is etched using the same method as in FIG. 1(C) as a mask (FIG. 2(c)).
At this time, the high concentration n-type semiconductor layer 14 is removed in FIG. 1
5 μm) 1), whereas Fig. 2 (e
), only the high concentration n-type semiconductor layer 14 is removed. Next, for example, the SiO film 2 is
The film 9 is formed on the entire surface to a thickness of, for example, 0.1 to 0.5 μm (FIG. 2(d)), and then the SiO film 2 is etched using the same etching method as in FIG. 1(e). Tsuching. At this time, the SiN film 17. Since the thickness of the SiO film J attached to the side wall of the semiconductor layer 15 in the depth direction is thicker than other parts, the SiO film J attached to the side wall remains as in FIG. 1(e). The thickness t2 of this SiO film is 11
~0.5pm r height h2 becomes sail 5~1.5μm (
Figure 2(e)).

次にこのSiO膜加とSiN膜17をマスクとして、異
方的エツチング特性をもつエツチング法たとえばRIB
E i用いて半導体層15ヲエツチングし、n形半導体
層13を所定の閾値電圧たとえば−IV〜−3v程度が
得られる厚み(0,1〜0.15μm程度)までエツチ
ングする(第2図(f))。次に再びたとえば、プラズ
マCVD法によυたとえばSiO膜31をたとえば厚さ
0.1〜0.5μm程度全面に形成しく第2図(g))
、次に異方的エツチング特性をもつエツチング法、たと
えばRIEにより、このSiO膜31をエツチングする
。このとき前記SiO膜30.半導体層15の側壁に付
着したStO膜32の深さ方向の厚みがその他の部分に
比べて厚いので、この側壁に付着したSiO膜32のみ
が残る。このSiO膜は厚さt8は0.1〜0.5μm
、高さh8は帆5〜1.5μmとなる(第2図(h))
Next, using this SiO film and the SiN film 17 as a mask, an etching method having anisotropic etching characteristics such as RIB is applied.
The semiconductor layer 15 is etched using Ei, and the n-type semiconductor layer 13 is etched to a thickness (approximately 0.1 to 0.15 μm) that provides a predetermined threshold voltage, for example, approximately -IV to -3V (see FIG. 2(f)). )). Next, for example, a SiO film 31, for example, is formed over the entire surface to a thickness of about 0.1 to 0.5 μm by, for example, the plasma CVD method (Fig. 2 (g)).
Next, this SiO film 31 is etched by an etching method having anisotropic etching characteristics, such as RIE. At this time, the SiO film 30. Since the thickness of the StO film 32 attached to the side wall of the semiconductor layer 15 in the depth direction is thicker than other parts, only the SiO film 32 attached to this side wall remains. The thickness t8 of this SiO film is 0.1 to 0.5 μm.
, the height h8 is 5 to 1.5 μm (Figure 2 (h))
.

以後の工程は第1図のSiO膜1膜上9i0膜30およ
び32におきかえる点を除けば第1図(f)〜(k)と
同一の工程により、ソース電極26.ドレイン電極n、
ゲート電極22を形成する(第2図(i))。以上説明
した本発明による第二の実施例のFET製造方法は、第
一の実施例と比べて第一の実施例の第1図(c)〜(e
)の工程を二層くりかえす点が異なり、これにより第2
図(i)に示したように、ソース電極26とゲート電極
22の間およびドレイン電極27とゲート電極22の間
のn形半導体層13が、段差形の形状をもつ。
The subsequent steps are the same as those in FIGS. 1(f) to (k) except that the 9i0 films 30 and 32 on the SiO film 1 shown in FIG. 1 are replaced to form the source electrode 26. drain electrode n,
A gate electrode 22 is formed (FIG. 2(i)). The FET manufacturing method of the second embodiment of the present invention described above is different from that of the first embodiment in FIGS.
) is different in that the process is repeated for two layers.
As shown in Figure (i), the n-type semiconductor layer 13 between the source electrode 26 and the gate electrode 22 and between the drain electrode 27 and the gate electrode 22 has a stepped shape.

又、ゲート長lf(第2図(i))は、露光技術によυ
決まる寸法l(第2図(C))に対して、SiO膜加。
In addition, the gate length lf (Fig. 2 (i)) is determined by υ depending on the exposure technology.
Add a SiO film to the determined dimension l (Fig. 2 (C)).

32の厚みt2.tg (第2図(e) 、 (h) 
)の和の2倍分だけ縮小することが出来るため第1の実
施例と同様に極めて短かいゲート長をEB II光等の
露光技術によらず実現出来る。更にソース電極26とゲ
ート電極22の間のn形半導体層13が段差形の形状と
なるメζめ、ソース電極26とゲート電極ηの間隔が第
一の実施例と同一の時(tg ” ta= h)、第一
の実施例に比べこの間隔による抵抗が下がり、この分第
一の実施例に比べ更にソース抵抗が減少する。
32 thickness t2. tg (Figure 2 (e), (h)
), it is possible to achieve an extremely short gate length, similar to the first embodiment, without using exposure technology such as EB II light. Furthermore, since the n-type semiconductor layer 13 between the source electrode 26 and the gate electrode 22 has a stepped shape, when the distance between the source electrode 26 and the gate electrode η is the same as in the first embodiment (tg ” ta = h), the resistance due to this interval is lower than in the first embodiment, and the source resistance is further reduced by this amount compared to the first embodiment.

本方法を用いて、ゲート長0.1μm、ゲート電極厚み
2.0μm、半導体層として、n形半導体層濃度3 X
IO”cm’−’ 、厚み0.3 pm 、高濃度n形
半導体11×lυ” cm= 、 0.2 l+mの二
層とした、短ゲート長、低ゲー 1抵抗、低ソース抵抗
のFET を製作すると、遮断周波数たは従来の値に比
べ40GHz程度大きく一ケリ、約80 GI(zが得
られ、又、雑音指数NFは30GHzで2 dB程度減
少し、約1 dBが得られ高周波特性が極めて改善する
Using this method, the gate length is 0.1 μm, the gate electrode thickness is 2.0 μm, and the n-type semiconductor layer concentration is 3×.
FET with short gate length, low gate resistance, and low source resistance, with IO"cm'-', thickness 0.3 pm, high concentration n-type semiconductor 11 x lυ" cm=, 0.2 l+m double layer. When manufactured, a cutoff frequency of about 80 GI (z), which is about 40 GHz higher than the conventional value, is obtained, and the noise figure NF is reduced by about 2 dB at 30 GHz, and about 1 dB is obtained, and the high frequency characteristics are improved. Extremely improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のF’ETの製造方法によ
シ、ゲート長を露光技術により決まる寸法より縮小する
ことができ、ゲート長を極めて短かくすることが可能と
なる。
As explained above, according to the F'ET manufacturing method of the present invention, the gate length can be made smaller than the dimension determined by exposure technology, making it possible to make the gate length extremely short.

また、ゲート電極の上に付着した金M4膜によシゲート
抵抗を下げることが可能であυ、また、ソース電極の直
下の領域は高濃度n形半導体層と厚いn形半導体層によ
り形成され、さらに、ソース電極とゲート電極シよびソ
ース電極側高電子濃度n形半導体とゲート電極の間隔は
側壁のSi0g膜の厚みにより決まり露光技術によらず
短かくできるため、ソース抵抗を下げることが可能であ
る。これらのことから、ゲート抵抗、ソース抵抗が低く
、極めてゲート長が短かいFET i実現でき、その高
周波性能を可善することができる。
In addition, the gate resistance can be lowered by the gold M4 film deposited on the gate electrode, and the region directly under the source electrode is formed by a highly doped n-type semiconductor layer and a thick n-type semiconductor layer. Furthermore, the distance between the source electrode and the gate electrode, as well as the distance between the high electron concentration n-type semiconductor on the source electrode side and the gate electrode, is determined by the thickness of the SiOg film on the sidewall and can be shortened regardless of the exposure technique, making it possible to lower the source resistance. be. For these reasons, it is possible to realize an FET with low gate resistance, low source resistance, and extremely short gate length, and to improve its high frequency performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(lりは本発明によるF’ETの製造方
法の実施例を示した図、 第2図(a)〜(i)は本発明によるF’ETの製造方
法の他の実施例を示した図、 第3図(a)〜(f)は従来例の製造工程を示す図。 1・・・高抵抗半導体基板 2・・・n形半導体層 3・・・ゲート電極 4・・・酸化シリコン膜 5・・・側壁部の酸化シリコン膜 6・・・オーミック金属 7・・・レジスト 8・・・ソース電極 9・・・ドレイン電極 10・・・ゲート電極直下の領域 11・・・ソース電極直下の領域 12・・高抵抗半導体基板 13・・・n形半導体層 14・・・高濃度n形半導体層 15・・・半導体層 16・・・半導体層表面 17・・・SiN膜 18・・・SiO膜 19・・・側壁のSiO膜 20・・・ショットキ接触をなす金属膜21・・・掘り
込み溝 22・・・ゲート電極 お・・・オーミック接触をなす金属膜 24・・・レジスト層 5・・・金属膜 26・・・ソース電極 n・・・ドレイン電極 28・・・金属膜 四・・・SiO膜 (9)・・・側壁のSiO膜 31・・・SiO膜 32・・・側壁のSiO膜
FIGS. 1(a) to (1) are diagrams showing an example of the F'ET manufacturing method according to the present invention, and FIGS. 2(a) to (i) are diagrams showing an example of the F'ET manufacturing method according to the present invention. Figures 3(a) to 3(f) are diagrams showing the manufacturing process of a conventional example. 1... High resistance semiconductor substrate 2... N-type semiconductor layer 3... Gate electrode 4...Silicon oxide film 5...Silicon oxide film 6 on side wall portion...Ohmic metal 7...Resist 8...Source electrode 9...Drain electrode 10...Region 11 directly under the gate electrode ...Region 12 directly under the source electrode...High resistance semiconductor substrate 13...N-type semiconductor layer 14...High concentration n-type semiconductor layer 15...Semiconductor layer 16...Semiconductor layer surface 17... SiN film 18...SiO film 19...SiO film 20 on the side wall...Metal film 21 making Schottky contact...Drilled trench 22...Gate electrode...Metal film 24 making ohmic contact ...Resist layer 5...Metal film 26...Source electrode n...Drain electrode 28...Metal film 4...SiO film (9)...SiO film 31 on side wall...SiO Film 32...SiO film on side wall

Claims (2)

【特許請求の範囲】[Claims] (1)高抵抗半導体基板の主表面を含む一部領域に、高
キャリア濃度の半導体層を最上層部とし、次層を半導体
能動層とする少なくとも二層以上の層からなる半導体層
を形成する工程と、該半導体層を横切るように開孔部分
をもつ第一の絶縁膜を形成する工程と、この絶縁膜をマ
スクとして該開孔部分の半導体層をエッチングし、少な
くとも前記高キャリア濃度の半導体層を除去し、前記半
導体能動層を露出させる工程と、前記第一の絶縁膜およ
び半導体層の対向する側壁に第二の絶縁膜を形成して前
記で露出した半導体能動層表面を縮小する工程と、露出
した半導体能動層表面全面に該半導体能動層とショット
キー接触をなす金属を形成し、ゲート電極を形成する工
程と、前記の第一の絶縁膜を除去し前記高キャリア濃度
半導体層を露出させる工程と、該高キャリア濃度半導体
とオーミック接触をなす金属を全面に付着する工程と、
該全面に付着した金属のうち前記の第二の絶縁膜の上部
に付着した金属を除去し、高キャリア濃度半導体層の上
に付着した金属とゲート電極の上に付着した金属を分離
し、ソース電極、ドレイン電極を形成する工程とを含む
ことを特徴とする電界効果トランジスタの製造方法。
(1) Forming a semiconductor layer consisting of at least two layers, with a semiconductor layer with high carrier concentration as the top layer and the next layer as a semiconductor active layer, in a partial region including the main surface of a high-resistance semiconductor substrate. a step of forming a first insulating film having an opening portion across the semiconductor layer, etching the semiconductor layer in the opening portion using the insulating film as a mask, and etching the semiconductor layer with at least the high carrier concentration. removing the layer to expose the semiconductor active layer; and forming a second insulating film on opposing sidewalls of the first insulating film and the semiconductor layer to reduce the exposed surface of the semiconductor active layer. a step of forming a metal that makes Schottky contact with the semiconductor active layer on the entire exposed surface of the semiconductor active layer to form a gate electrode; and a step of removing the first insulating film and forming the high carrier concentration semiconductor layer. a step of exposing, and a step of attaching a metal that makes ohmic contact with the high carrier concentration semiconductor over the entire surface;
Of the metals that adhere to the entire surface, the metal that adheres to the top of the second insulating film is removed, the metal that adheres to the high carrier concentration semiconductor layer and the metal that adheres to the gate electrode are separated, and the metal that adheres to the top of the gate electrode is removed. 1. A method for manufacturing a field effect transistor, comprising the step of forming an electrode and a drain electrode.
(2)高抵抗半導体基板の主表面を含む一部領域に、高
キャリア濃度の半導体層を最上層部とし、次層を半導体
能動層とする少なくとも二層以上の層からなる半導体層
を形成する工程と、該半導体層を横切るように開孔部分
をもつ第一の絶縁膜を形成する工程と、この絶縁膜をマ
スクとして該開孔部分の半導体層をエッチングし、少な
くとも前記高キャリア濃度の半導体層を除去し、前記半
導体能動層を露出させる工程と、前記第一の絶縁膜およ
び半導体層の対向する側壁に第二の絶縁膜を形成して前
記で露出した半導体能動層表面を縮小する工程と、該第
一の絶縁膜と第二の絶縁膜をマスクとして半導体能動層
をエッチングする工程と、該第二の絶縁膜および半導体
能動層の対向する側壁に第三の絶縁膜を形成する工程と
、露出した半導体能動層表面全面に半導体能動層とショ
ットキー、接触をなす金属を形成し、ゲート電極を形成
する工程と、前記の第一の絶縁膜を除去し前記高キャリ
ア濃度半導体層を露出させる工程と、該高キャリア濃度
半導体とオーミック接触をなす金属を全面に付着する工
程と、該全面に付着した金属のうち前記の第二、第三の
絶縁膜の上部に付着した金属を除去し、高キャリア濃度
半導体層の上に付着した金属とゲート電極の上に付着し
た金属を分離し、ソース電極、ドレイン電極を形成する
工程とを含むことを特徴とする電界効果トランジスタの
製造方法。
(2) Forming a semiconductor layer consisting of at least two layers, with a high carrier concentration semiconductor layer as the top layer and the next layer as a semiconductor active layer, in a partial region including the main surface of the high-resistance semiconductor substrate. a step of forming a first insulating film having an opening portion across the semiconductor layer, etching the semiconductor layer in the opening portion using the insulating film as a mask, and etching the semiconductor layer with at least the high carrier concentration. removing the layer to expose the semiconductor active layer; and forming a second insulating film on opposing sidewalls of the first insulating film and the semiconductor layer to reduce the exposed surface of the semiconductor active layer. a step of etching the semiconductor active layer using the first insulating film and the second insulating film as masks; and a step of forming a third insulating film on opposing sidewalls of the second insulating film and the semiconductor active layer. A step of forming a metal that makes Schottky contact with the semiconductor active layer on the entire surface of the exposed semiconductor active layer and forming a gate electrode, and a step of removing the first insulating film and forming the high carrier concentration semiconductor layer. an exposing step, a step of attaching a metal that makes ohmic contact with the high carrier concentration semiconductor to the entire surface, and removing the metal attached to the upper part of the second and third insulating films from among the metals attached to the entire surface. A method for manufacturing a field effect transistor, comprising the step of: separating metal deposited on the high carrier concentration semiconductor layer from metal deposited on the gate electrode to form a source electrode and a drain electrode.
JP22308985A 1985-10-07 1985-10-07 Manufacture of field effect transistor Pending JPS6281769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22308985A JPS6281769A (en) 1985-10-07 1985-10-07 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22308985A JPS6281769A (en) 1985-10-07 1985-10-07 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS6281769A true JPS6281769A (en) 1987-04-15

Family

ID=16792662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22308985A Pending JPS6281769A (en) 1985-10-07 1985-10-07 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS6281769A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356823A (en) * 1989-12-22 1994-10-18 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device
JP2005026325A (en) * 2003-06-30 2005-01-27 Toshiba Corp Semiconductor device and its manufacturing method
US8141751B2 (en) 2005-10-03 2012-03-27 Mettler-Toledo Ag Dosage-dispensing device for substances in powder-or paste form

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356823A (en) * 1989-12-22 1994-10-18 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device
JP2005026325A (en) * 2003-06-30 2005-01-27 Toshiba Corp Semiconductor device and its manufacturing method
US8141751B2 (en) 2005-10-03 2012-03-27 Mettler-Toledo Ag Dosage-dispensing device for substances in powder-or paste form

Similar Documents

Publication Publication Date Title
JPH04223342A (en) Gate electrode of semiconductor device and manufacture thereof
JP2553699B2 (en) Method for manufacturing semiconductor device
US5776805A (en) Method for manufacturing MESFET
JPS6281769A (en) Manufacture of field effect transistor
JP3062186B1 (en) Method for manufacturing thin film transistor
JPS6155969A (en) Semiconductor device and manufacture thereof
JP2664527B2 (en) Semiconductor device
JPS6323366A (en) Manufacture of field-effect transistor
JPS6142169A (en) Manufacture of semiconductor device
JPH05291301A (en) Field-effect transistor and manufacture thereof
KR100366422B1 (en) Metal Transistor Manufacturing Method
JPS62115782A (en) Manufacture of semiconductor device
JPH0684950A (en) Manufacture of field effect transistor
JP2558766B2 (en) Method for manufacturing semiconductor device
JPH0997801A (en) Manufacture of semiconductor device
JPS6232661A (en) Manufacture of field effect transistor
JPS6190470A (en) Manufacture of compound semiconductor device
JPH0595004A (en) Manufacture of field-effect transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH11233527A (en) Semiconductor device and its manufacture
JPS62171162A (en) Manufacture of field-effect transistor
JPS6229915B2 (en)
JPH04258139A (en) Fabrication of semiconductor device
JPH065629A (en) Method for manufacturing semiconductor device
JPH038344A (en) Manufacture of semiconductor device