JPS62299033A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62299033A
JPS62299033A JP14338686A JP14338686A JPS62299033A JP S62299033 A JPS62299033 A JP S62299033A JP 14338686 A JP14338686 A JP 14338686A JP 14338686 A JP14338686 A JP 14338686A JP S62299033 A JPS62299033 A JP S62299033A
Authority
JP
Japan
Prior art keywords
layer
resist
resist layer
organic
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14338686A
Other languages
Japanese (ja)
Other versions
JPH0638431B2 (en
Inventor
Norihiko Samoto
典彦 佐本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14338686A priority Critical patent/JPH0638431B2/en
Publication of JPS62299033A publication Critical patent/JPS62299033A/en
Publication of JPH0638431B2 publication Critical patent/JPH0638431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To reduce a gate resistance and a flinging capacitance between a gate and a source by employing a multilayer resist structure. CONSTITUTION:An organic or inorganic insulating layer 2, 1st resist layer 3, an intermediate layer 4 made of metal such as silicon oxide and 2nd resist layer 5 are successively formed on a semiconductor substrate 1. Etching is performed with a pattern formed by exposing and developing the 2nd resist layer 5 to form a predetermined pattern in the intermediate layer 4 and, further, an aperture is formed in the 1st resist layer 3 to expose the organic or inorganic insulating layer 2 and the semiconductor substrate 1 surface. Then the semicon ductor substrate 1 surface is etched or subjected to a surface treatment and coated with 3rd resist layer 6 and one side of the part above the 1st resist layer 3 is removed and, at the same time, an electrode metal layer 7 is formed on the exposed semiconductor substrate 1, the organic or inorganic insulating layer 2 and the intermediate layer 4 by a coating method with orientation applied from the above. Further, the unnecessary part of the electrode metal layer 7, intermediate layer 4, 1st resist layer 3 and organic or inorganic insulat ing layer 2 are removed.

Description

【発明の詳細な説明】 発明の詳細な説明 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関し、特に化合物半
導体からなる半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device made of a compound semiconductor.

〔従来の技術〕[Conventional technology]

近年、半導体装置の高性能化が進み、Ka帯(26,5
〜40 G II z )やU帯(40〜60GHz)
で動作する半導体装置が出現し、半導体装置に寄生する
パラメータの制約がきびしくなっている。特に、近年低
雑音化のためゲート長の縮小がけがられるようになって
来ているが、ゲート長の縮小は半面、ゲーI〜抵抗の増
加となり、低雑音化の障害となっている。
In recent years, the performance of semiconductor devices has improved, and the Ka band (26,5
~40G II z) and U band (40~60GHz)
Semiconductor devices that operate under such conditions have appeared, and the constraints on parameters parasitic to semiconductor devices have become stricter. In particular, in recent years, reducing the gate length has been gaining popularity in order to reduce noise, but on the other hand, reducing the gate length increases the gate resistance, which is an obstacle to reducing the noise.

以下、説明を簡単にするため半導体としては砒化ガリウ
ム(GaAs) 、半導体装置としては、ショットキー
ゲート構造のMES 、FETを例にして具体的に説明
する。
In order to simplify the explanation, gallium arsenide (GaAs) will be used as a semiconductor, and an MES and an FET with a Schottky gate structure will be used as semiconductor devices.

J、M、Moranとり、Maydanは1979年発
行のジョーナル・オブ・バキューム・サイエンス・アン
ド・テクノロジー(Journal or Vacuu
m 5cienceand Tecboology)の
1620頁に第3図(a)〜(c)に示すように、ゲー
ト寄生抵抗を低減する工夫をしたGaAs・MES −
FETのゲート部分の製法を示している。第3図<a>
に示すように、Ga人s基板11上に樹脂層12を充分
厚く塗布し、ついで塗布性SiO□中間層13を設け、
さらにその上にレジスト層14を設ける。次に、第3図
(b)に示すように、レジスト層14を露光現象し、エ
ツチングにより中間層13に所定のパターン3形成し、
さらにエツチングにより、樹脂層12を中間層13のパ
ターンより大きい開口寸法を有するように除去した後、
露呈したGa人s層11をエツチングし、前記Ga人s
基板11の法線方向から人J?層15を蒸着する。次に
、第3図(c)に示すように、樹脂層を除去すればゲー
ト電極が形成できる。
J.M. Moran and Maydan, Journal of Vacuum Science and Technology, published in 1979.
As shown in Figures 3 (a) to (c) on page 1620 of 5 Science and Technology), GaAs MES-
This shows the manufacturing method of the gate part of the FET. Figure 3<a>
As shown in FIG. 1, a resin layer 12 is coated sufficiently thickly on a Ga substrate 11, and then a coatable SiO□ intermediate layer 13 is provided.
Furthermore, a resist layer 14 is provided thereon. Next, as shown in FIG. 3(b), the resist layer 14 is exposed to light, and a predetermined pattern 3 is formed on the intermediate layer 13 by etching.
Furthermore, after removing the resin layer 12 by etching so that the opening size is larger than the pattern of the intermediate layer 13,
The exposed Ga layer 11 is etched and the Ga layer 11 is etched.
Person J from the normal direction of the board 11? Deposit layer 15. Next, as shown in FIG. 3(c), by removing the resin layer, a gate electrode can be formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来技術では、ゲート長0,2μmで高さ方向
に高く抵抗の小さいゲート形成が可能であるが、さらに
ゲート長が0.1JJ、m以下のものを形成しようとす
ると、ゲート金属蒸着時にゲート金属が中間層開口部に
付着し、ゲート長を短くするに従って、ゲート抵抗を小
さくすることができなくなる。
With the above-mentioned conventional technology, it is possible to form a gate with a gate length of 0.2 μm, which is high in the height direction and has low resistance. Gate metal adheres to the intermediate layer opening, and as the gate length is shortened, it becomes impossible to reduce the gate resistance.

本出願人はこれらの問題点を改善する方法を検討し、「
(ガンマ)形の断面のゲート電極を有するMES−FE
Tを開発し特願昭60−061331号として出願した
。このゲート電極上部の突出は片側のみとすることが出
来るので、従来問題となっていたゲート寄生抵抗を小さ
くすると共にゲート・ソース間フリンジング容量を低減
できる特徴がある。しかし従来の製造方法では片側のみ
の突出のゲート電極の形成は困難でソース・ゲート間の
距離をより小さくすることが困難でありフリンジング容
量を大幅に減少させることが出来なかった。
The applicant has considered ways to improve these problems, and has
MES-FE with (gamma) shaped gate electrode
T was developed and filed as Japanese Patent Application No. 60-061331. Since the upper part of the gate electrode can protrude only on one side, it is possible to reduce the gate parasitic resistance, which has been a problem in the past, and to reduce the fringing capacitance between the gate and the source. However, with conventional manufacturing methods, it is difficult to form a gate electrode that protrudes only on one side, and it is difficult to further reduce the distance between the source and the gate, making it impossible to significantly reduce the fringing capacitance.

本発明の目的は、このような従来技術の欠点を除去し、
上記従来技術の良い点を保持したままで、ゲート抵抗を
減少させ、ゲート・ソース間のフリンジング容量を減少
させ、なおかつ0.25μm以下の微細なゲート長をも
つゲート電極を形成し、高周波特性を向上させたところ
の化合物半導体からなる半導体装置の製造方法を提供す
ることにある。
The purpose of the present invention is to eliminate such drawbacks of the prior art,
While maintaining the above-mentioned advantages of the conventional technology, the gate resistance is reduced, the fringing capacitance between the gate and the source is reduced, and a gate electrode with a fine gate length of 0.25 μm or less is formed, resulting in high frequency characteristics. An object of the present invention is to provide a method for manufacturing a semiconductor device made of a compound semiconductor, which has improved properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、半導体基板上に順次
有機又は無機絶縁層と、第1のレジスト層と、酸化シリ
コン又は窒化シリコン又は多結晶シリコン又はアルミニ
ウム等の金属の薄い中間層と、第2のレジスト層とを設
ける工程と、前記第2のレジスト層を露光・現像し開口
部を有するパターンを形成し、該パターンを用いてエツ
チングし前記中間層に所定のパターンを設け、さらにエ
ツチングして第1のレジスト層に開口し前記有機又は無
機絶縁層を露出させ、さらにエツチングして半導体基板
表面を露出させる工程と、該露出した半導体基板表面を
エツチング又は表面処理をする工程と、第3のレジスト
層を塗布し、第3及び第1のレジスト層を露光・現像し
パターンを形成している第1のレジスト層より上を片側
除去する工程と、上方より方向性のある被着方法によっ
て電極金属層を露出した前記半導体基板上、有機又は無
機絶縁層および中間層上に被着する工程と、不要な電極
金属層を除去し、次いで中間層と第1のレジスト層及び
有機又は無機の絶縁層を除去する工程とを含んで構成さ
れる。
The method for manufacturing a semiconductor device of the present invention includes sequentially forming an organic or inorganic insulating layer, a first resist layer, a thin intermediate layer of silicon oxide, silicon nitride, polycrystalline silicon, or a metal such as aluminum on a semiconductor substrate, and forming a thin intermediate layer of a metal such as silicon oxide or silicon nitride or polycrystalline silicon or aluminum. exposing and developing the second resist layer to form a pattern having openings, etching using the pattern to form a predetermined pattern in the intermediate layer, and further etching. a step of opening the first resist layer to expose the organic or inorganic insulating layer, and further etching to expose the surface of the semiconductor substrate; a step of etching or surface-treating the exposed surface of the semiconductor substrate; A process of applying a resist layer, exposing and developing the third and first resist layers, and removing the area above the first resist layer forming a pattern on one side, and a directional deposition method from above. A step of depositing an electrode metal layer on the exposed semiconductor substrate, an organic or inorganic insulating layer, and an intermediate layer, removing unnecessary electrode metal layers, and then depositing an electrode metal layer on the exposed semiconductor substrate, an organic or inorganic insulating layer, and an intermediate layer; The method includes a step of removing an insulating layer.

〔作用〕[Effect]

本発明の半導体装置の製造方法は、多層レジスト構造を
用いて段差などによる前工程のゲート形成への影響を小
さくし、半導体基板表面のエツチングあるいは表面処理
領域と、半導体表面とゲート電極が接する寸法(ゲート
長)を決定し、レジスト層の露光現像による片側除去お
よび金属の方向性被着法により、「(ガンマ)形の断面
を有し、しかもその電極上部の突出が片側のみとするこ
とが可能であることに特徴がある。
The method for manufacturing a semiconductor device of the present invention uses a multilayer resist structure to reduce the influence of steps etc. on gate formation in the previous process, and improves the etching or surface treatment region on the surface of the semiconductor substrate and the dimension where the semiconductor surface and gate electrode contact each other. By determining the (gate length), removing one side of the resist layer by exposure and development, and directional deposition of metal, it is possible to have a (gamma)-shaped cross section, with the upper part of the electrode protruding only on one side. The feature is that it is possible.

かくして本発明によれば、特に問題となるゲート寄生抵
抗と、ゲート・ソース間フリンジング容量を低減でき、
かつ、0.2μm以下のゲート長をもつ半導体装置を得
ることができる。
Thus, according to the present invention, gate parasitic resistance and gate-source fringing capacitance, which are particularly problematic, can be reduced.
Moreover, a semiconductor device having a gate length of 0.2 μm or less can be obtained.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
。第1図(a)〜(f>は本発明の一実施例の半導体装
置の製造方法を説明するために工程順に示した素子のゲ
ート部分の断面図である。
Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1A to 1F are cross-sectional views of a gate portion of a device shown in order of steps to explain a method of manufacturing a semiconductor device according to an embodiment of the present invention.

本実施例においては説明の都合上GaAs−MES・F
ETについて説明する。
In this example, for convenience of explanation, GaAs-MES・F
ET will be explained.

まず、第2図(a)に示すように、半導体GaAs基板
1の上に厚さ1000人の樹脂層2(例えばホトレジス
トを塗布し、250℃で窒素ガス中にて1時間ベークし
たもの)を設け、次に厚さ1μmの第1のレジスト層3
(例えばPMMA)を設け、次に厚さ1000人程度0
塗布性SiO□層4(例えばケイ素化合物をアルコール
等の有機溶剤に溶解したものを回転塗布し、ベークした
もの)を設は中間層と・し、さらに、その上にパターニ
ングのための第2のレジスト層5(例えば、P M M
A)を設ける。
First, as shown in FIG. 2(a), a resin layer 2 (for example, photoresist coated and baked in nitrogen gas at 250° C. for 1 hour) with a thickness of 1000 mm is placed on a semiconductor GaAs substrate 1. and then a first resist layer 3 with a thickness of 1 μm.
(e.g. PMMA), then a thickness of about 1000
A coatable SiO□ layer 4 (for example, a silicon compound dissolved in an organic solvent such as alcohol, spin-coated and baked) is provided as an intermediate layer, and a second layer for patterning is formed on it. Resist layer 5 (for example, PMM
A) will be provided.

次いで、第2図(b)に示すようにレジスト層5を露光
、現像処理して0.25μm幅の細長いパターンを形成
し、そのレジストパターンをマスクにして四弗化炭素(
CF4)ガスと水素(112>ガスの混合ガスを用いた
反応性スパッタエツチングを行なうことにより、5i0
2層4をエツチングし、次いで酸素ガスを用いた反応性
エツチングの手段を用いてレジスト層3及び樹脂層2を
エツチングし、同時にレジスト層5をエツチング除去す
る。
Next, as shown in FIG. 2(b), the resist layer 5 is exposed and developed to form an elongated pattern with a width of 0.25 μm, and using the resist pattern as a mask, carbon tetrafluoride (
By performing reactive sputter etching using a mixed gas of CF4) gas and hydrogen (112> gas), 5i0
The second layer 4 is etched, and then the resist layer 3 and the resin layer 2 are etched using a reactive etching method using oxygen gas, and the resist layer 5 is etched away at the same time.

このレジスト層3及び樹脂層2のエツチングで用いた酸
素ガスによるドライエツチングでは、5i02層4はほ
とんどエツチングされない。
In the dry etching using oxygen gas used in etching the resist layer 3 and resin layer 2, the 5i02 layer 4 is hardly etched.

次いで、第2図(c)に示すように、中間層4上全面に
第3のレジスト6(例えばシップレイ社製ホトレジスト
AZ−2400>を塗布し、開口部を端に含まないよう
に第3のレジスト層6を露光現像し、中間層4を露呈し
CF4ガスとH2ガスの混合ガスによる反応性ガスある
いはプラズマエツチングにより前記中間層4を除去し、
さらに現像することによりレジスト層3が除去され、結
果として片側の、この場合、右側の第1のレジスト層3
中間層4が除去される。ついで、先に露出した半導体表
面をウェットエツチングあるいはドライエツチングで溝
を形成するか、又は表面処理を行なう。
Next, as shown in FIG. 2(c), a third resist 6 (for example, Photoresist AZ-2400 manufactured by Shipley) is coated on the entire surface of the intermediate layer 4, and the third resist 6 is coated so as not to include the openings at the edges. The resist layer 6 is exposed and developed to expose the intermediate layer 4, and the intermediate layer 4 is removed by reactive gas or plasma etching using a mixed gas of CF4 gas and H2 gas,
Further development removes the resist layer 3, resulting in the first resist layer 3 on one side, in this case on the right.
Intermediate layer 4 is removed. Next, grooves are formed on the previously exposed semiconductor surface by wet etching or dry etching, or surface treatment is performed.

次いで、第2図(d)に示すように上面からAg層7を
垂直方向から全面被着(厚さは任意だが第1のレジスト
層3より薄くする。この場合、1μm以下)する。
Next, as shown in FIG. 2(d), an Ag layer 7 is vertically deposited on the entire surface from the upper surface (the thickness is arbitrary, but it is thinner than the first resist layer 3; in this case, it is 1 μm or less).

次いで、第2図(e)に示すように、全面に第4レジス
ト層8(例えばホトレジストシップレイ社製AZ−14
00−17)を塗布し、露光現象し、ゲート部以外のA
g層7を露出させた後、60℃のリン酸により Ag層
7をエツチング除去する。
Next, as shown in FIG. 2(e), a fourth resist layer 8 (for example, AZ-14 manufactured by Photoresist Shipray Co., Ltd.) is applied over the entire surface.
00-17), exposed to light, and
After exposing the G layer 7, the Ag layer 7 is removed by etching with phosphoric acid at 60°C.

次いで、第2図(、f)に示すように、0□ガスにより
第3のレジスト層6を、そしてCF4とi12の混合ガ
スにより中間層4を除去し、ついで02ガスによる反応
性エツチング及びプラズマエツチングにより第1及び第
3のレジスト層3.6と樹脂層2が除去され、同時に不
要部のゲート金属人2層7も除去されることにより、図
示のようなGaAs・MES −FETのゲート部断面
構造が得られる。
Next, as shown in FIG. 2(,f), the third resist layer 6 is removed with 0□ gas, the intermediate layer 4 is removed with a mixed gas of CF4 and i12, and then reactive etching with 02 gas and plasma are performed. By etching, the first and third resist layers 3.6 and the resin layer 2 are removed, and at the same time, the unnecessary portion of the gate metal layer 7 is also removed, resulting in the gate portion of the GaAs MES-FET as shown in the figure. A cross-sectional structure is obtained.

以上の工程により得られた本実施例のMES・FETは
GaAs基板1の上にゲート電極7が断面として「(ガ
ンマ)形をし、そのゲート電極の突出が片側のみの構造
を有している。なおゲート電極のAg層とGaAs基板
1が接している部分がシヨ・ソトキー接合をしており、
ゲート電極の左側にソース電極が形成されることにより
目的念達成できる。なお上記実施例の説明の中で、特定
の物質、厚さを述べた。これは説明の便宜のためであり
、たとえばゲート金属は人2層7でなくとも半導体基板
と良好なショッ1へキー特性をもつ金属あるいは多層構
造が使用可能である。また第1のレジスト層3の厚さも
ゲート金属となる人1層7より厚く制御されたものであ
ればよい。又、中間層4も塗布性5i02でなくとも、
薄い金属膜であってもよく、このときは、樹脂層2に樹
脂の代わりに塗布性5i02を使用することらできる。
The MES/FET of this example obtained through the above steps has a structure in which the gate electrode 7 is formed on the GaAs substrate 1 in a "(gamma)" shape in cross section, and the gate electrode protrudes only on one side. Note that the part where the Ag layer of the gate electrode and the GaAs substrate 1 are in contact has a horizontal-Sotky junction.
This purpose can be achieved by forming the source electrode on the left side of the gate electrode. Note that in the description of the above embodiments, specific materials and thicknesses were mentioned. This is for convenience of explanation; for example, the gate metal does not have to be two-layer 7, but can be a metal or a multilayer structure that has key characteristics with respect to the semiconductor substrate and good shot 1. Further, the thickness of the first resist layer 3 may be controlled to be thicker than the layer 7 serving as the gate metal. Moreover, even if the intermediate layer 4 does not have coating property 5i02,
It may be a thin metal film, and in this case, coating property 5i02 can be used for the resin layer 2 instead of the resin.

又、^e層7を蒸着する際に斜口蒸着法を用いれば(第
2図d)、ゲート長をさらに小さくすることも可能であ
る。
Furthermore, if an oblique evaporation method is used when depositing the ^e layer 7 (FIG. 2d), it is possible to further reduce the gate length.

〔発明の効果〕〔Effect of the invention〕

以上、詳細説明したとおり、本発明によれば上記構成に
より、短いゲート長(0,2μm以下)でも「型となっ
ているためゲート抵抗の増大を抑止することができるば
かりでなく、ゲート・ソース電極間のフリンジング容量
を減少させることができ、結果として高周波特性として
重要な利得、低雑音特性、高出力特性にすぐれた化合物
半導体からなる半導体装置を製造することができる。
As explained in detail above, according to the present invention, with the above structure, even with a short gate length (0.2 μm or less), it is possible to not only suppress an increase in gate resistance, but also to prevent an increase in gate resistance. The fringing capacitance between electrodes can be reduced, and as a result, it is possible to manufacture a semiconductor device made of a compound semiconductor that has excellent gain, low noise characteristics, and high output characteristics, which are important as high frequency characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は、本発明の一実施例を説明する
ために工程順に示した素子のゲート部分の縦断面図、第
2図<a)〜(C)は従来のGaAs・MES −FE
Tの製造方法を説明するために工程順に示したゲート部
分の縦断面図である。 1.11・・・Ga人s基板、2.12・・・樹脂層、
3・・・第2レジスト層、4,13・・・中間層(Si
O□)、5・・第2レジスト層、6・・・第3のレジス
ト層、7゜15・・・AN層、8・・・第4のレジスト
層、14・・・レジスト層。 $ I 図 5、補正の対Q
FIGS. 1(a) to (f) are vertical cross-sectional views of the gate portion of a device shown in order of process to explain one embodiment of the present invention, and FIGS.・MES-FE
FIG. 4 is a vertical cross-sectional view of a gate portion shown in order of steps to explain the method for manufacturing T. FIG. 1.11... Ga substrate, 2.12... Resin layer,
3... Second resist layer, 4, 13... Intermediate layer (Si
O□), 5... second resist layer, 6... third resist layer, 7°15... AN layer, 8... fourth resist layer, 14... resist layer. $ I Figure 5, Correction pair Q

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に順次有機又は無機絶縁層と、第1のレジ
スト層と、酸化シリコン又は窒化シリコン又は多結晶シ
リコン又はアルミニウム等の金属の薄い中間層と、第2
のレジスト層とを設ける工程と、前記第2のレジスト層
を露光・現像し開口部を有するパターンを形成し、該パ
ターンを用いてエッチングし前記中間層に所定のパター
ンを設け、さらにエッチングして第1のレジスト層に開
口し前記有機又は無機絶縁層を露出させ、さらにエッチ
ングして半導体基板表面を露出させる工程と、該露出し
た半導体基板表面をエッチング又は表面処理をする工程
と、第3のレジスト層を塗布し、第3及び第1のレジス
ト層を露光・現像しパターンを形成している第1のレジ
スト層より上を片側除去する工程と、上方より方向性の
ある被着方法によって電極金属層を露出した前記半導体
基板上、有機又は無機絶縁層および中間層上に被着する
工程と、不用な電極金属層を除去し、次いで中間層と第
1のレジスト層及び有機又は無機の絶縁層を除去する工
程とを含むことを特徴とする半導体装置の製造方法。
An organic or inorganic insulating layer, a first resist layer, a thin intermediate layer of silicon oxide or silicon nitride or a metal such as polycrystalline silicon or aluminum, and a second layer are formed on the semiconductor substrate in sequence.
exposing and developing the second resist layer to form a pattern having openings, etching using the pattern to form a predetermined pattern in the intermediate layer, and further etching. a step of opening the first resist layer to expose the organic or inorganic insulating layer, and further etching to expose the surface of the semiconductor substrate; a step of etching or surface-treating the exposed surface of the semiconductor substrate; A process of applying a resist layer, exposing and developing the third and first resist layers, and removing the area above the first resist layer forming a pattern on one side, and applying a directional deposition method from above to form an electrode. A step of depositing a metal layer on the exposed semiconductor substrate, an organic or inorganic insulating layer, and an intermediate layer, removing an unnecessary electrode metal layer, and then depositing the intermediate layer, the first resist layer, and the organic or inorganic insulating layer. 1. A method for manufacturing a semiconductor device, comprising the step of removing a layer.
JP14338686A 1986-06-18 1986-06-18 Method for manufacturing semiconductor device Expired - Lifetime JPH0638431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14338686A JPH0638431B2 (en) 1986-06-18 1986-06-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14338686A JPH0638431B2 (en) 1986-06-18 1986-06-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62299033A true JPS62299033A (en) 1987-12-26
JPH0638431B2 JPH0638431B2 (en) 1994-05-18

Family

ID=15337564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14338686A Expired - Lifetime JPH0638431B2 (en) 1986-06-18 1986-06-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0638431B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319244A (en) * 1989-06-15 1991-01-28 Matsushita Electron Corp Manufacture of semiconductor device
US11119405B2 (en) * 2018-10-12 2021-09-14 Applied Materials, Inc. Techniques for forming angled structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319244A (en) * 1989-06-15 1991-01-28 Matsushita Electron Corp Manufacture of semiconductor device
US11119405B2 (en) * 2018-10-12 2021-09-14 Applied Materials, Inc. Techniques for forming angled structures

Also Published As

Publication number Publication date
JPH0638431B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US4333965A (en) Method of making integrated circuits
JPS5950567A (en) Manufacture of field effect transistor
JP3332851B2 (en) Method for manufacturing semiconductor device
JPH07176544A (en) Semiconductor device and manufacture thereof
JPH09148269A (en) T-type gate electrode superimposing method and t-type low-resistance metal superimposing method
JPS62299033A (en) Manufacture of semiconductor device
JPS6155969A (en) Semiconductor device and manufacture thereof
JPS5891640A (en) Manufacture of semiconductor device
JP2714026B2 (en) Method for forming electrode for semiconductor device
JPS61220375A (en) Semiconductor device and manufacture thereof
JP2962262B2 (en) Method of forming fine gate electrode
JPH0684950A (en) Manufacture of field effect transistor
JPS60120574A (en) Manufacture of field effect transistor
JPH11233527A (en) Semiconductor device and its manufacture
JPH02191348A (en) Method of forming semiconductor device electrode
JPS6143484A (en) Formation of electrode in semiconductor device
JPH0845962A (en) Manufacture of semiconductor device
JPS63122244A (en) Method for forming wiring in semiconductor device
JPH02191347A (en) Method of forming semiconductor device electrode
JPH05315242A (en) Formation method of fine resist pattern
JPS62195146A (en) Manufacture of semiconductor device
JPS62131584A (en) Manufacture of semiconductor device
KR20000074002A (en) method for fabricating a T-gate
JPH065629A (en) Method for manufacturing semiconductor device
JPH0427129A (en) Manufacture of field-effect transistor