JPH0319244A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0319244A
JPH0319244A JP1153423A JP15342389A JPH0319244A JP H0319244 A JPH0319244 A JP H0319244A JP 1153423 A JP1153423 A JP 1153423A JP 15342389 A JP15342389 A JP 15342389A JP H0319244 A JPH0319244 A JP H0319244A
Authority
JP
Japan
Prior art keywords
resist
gate
forming
pattern
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1153423A
Other languages
Japanese (ja)
Other versions
JP2667250B2 (en
Inventor
Hiromitsu Aoki
青木 裕光
Masahiro Nishiuma
西馬 正博
Kunihiko Kanazawa
邦彦 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1153423A priority Critical patent/JP2667250B2/en
Publication of JPH0319244A publication Critical patent/JPH0319244A/en
Application granted granted Critical
Publication of JP2667250B2 publication Critical patent/JP2667250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam

Abstract

PURPOSE:To form gate metal wherein only the sectional area of a gate is increased by making a gate pattern of the uppermost layer larger than the gate pattern of an intermediate layer by controlling the gate pattern of each layer of a three-layer resist. CONSTITUTION:On an N-type active layer 1, PMGI resist 2 is formed; thereon PMMA resist 3 excellent in sensitivity to electron beam is formed; thereon resist 4 sensitive to UV rays is formed. By using UV rays, a gate pattern is formed on the resist 4; by projecting electron beam in the inside of the pattern of the resist 4, a pattern is developed on the resist 3; by using the pattern of the resist 3 as a mask, the resist 2 is developed, and a pattern is formed; by using this as a mask, etching is performed, and an aperture part is formed on the layer 1; after gate metal is vapor-deposited on the whole surface, the resists 2, 3, 4, etc., are eliminated with organic releasing liquid, thereby forming gate metal 5 only on the aperture part of the layer 1. Hence only the sectional area of the metal 5 can be made large, so that electric resistance can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、特に化合物半導体装置の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, particularly a compound semiconductor device.

従来の技術 近年、化合物半導体装置は化合物半導体が有する高い移
動度のためにコンピュータなどの高速演算素子や衛星放
送釦よび衛星通信などに使用される高周波低雑音の送受
信増幅素子として期待されている。
BACKGROUND OF THE INVENTION In recent years, compound semiconductor devices have been expected to be used as high-frequency, low-noise transmitting/receiving amplifying elements used in high-speed arithmetic elements in computers, satellite broadcasting buttons, satellite communications, etc. due to the high mobility of compound semiconductors.

以下、図面を参照しながら従来の化合物半導体装置の製
造方法について説明する。
Hereinafter, a conventional method for manufacturing a compound semiconductor device will be described with reference to the drawings.

第2図は従来の化合物半導体装置のシ甘ットキーゲート
形成工程を示したものである。第2図aにおいて、1は
電界効果トランジスタのチャンネル層となるガリウムヒ
素n型活性層である。2はn型活性層1と密着性が優れ
ておシ電子ビームに対しても弱い感度をもつPMCIレ
ジストである。
FIG. 2 shows the process of forming a conventional gate key gate in a compound semiconductor device. In FIG. 2a, 1 is a gallium arsenide n-type active layer which becomes a channel layer of a field effect transistor. 2 is a PMCI resist which has excellent adhesion to the n-type active layer 1 and is weakly sensitive to electron beams.

3は電子ビームに対して強い感度をもちサブミクロンパ
ターンあ形成に優れたPMM▲レジストである。第2図
dにおいて、5はショッキーゲートを形成するためのゲ
ートメタルである。
3 is a PMM▲ resist which has strong sensitivity to electron beams and is excellent in forming submicron patterns. In FIG. 2d, 5 is a gate metal for forming a Shockey gate.

以上のように構或された化合物半導体装置のショットキ
ーゲート形成工程について説明する。
A process for forming a Schottky gate in the compound semiconductor device constructed as described above will be explained.

第2図aにおいて、ガリウムヒ素n型活性層1の上に密
着性の優れたPMCIレジスト2を塗布乾燥する。次に
PMCIレジスト2の上に電子ビーム感度に優れたPM
M▲レジスト3を塗布乾燥する0次に、電子ビームの選
択照射を行ってPMM▲レジスト3にサブミクロンのゲ
ートパターンを現像によって形成する。第2図bにおい
て、PMM▲レジスト3に形成されたゲートパターンを
マスクとしてPMGIレジスト2を選択現像してゲート
パターンを形成する。第2図Cにかいて、PM(rIレ
ジスト2のゲートパターンをマスクとしてウエットエッ
チングしてn型活性層1にリセス形状の開口部を形成す
る。第2図dにおいて、ゲートメタル6を全面蒸着する
。第2図6において、PMfdレジスト2およびPMM
Aレジスト3を有機系はく離液を用いて溶解させてPM
M▲レジスト3の上のゲートメタル6をいっしょに除去
してn型活性層1の開口部のみにゲートメタル6を選択
的に残してショットキーゲートを形成する。
In FIG. 2a, a PMCI resist 2 with excellent adhesion is coated on the gallium arsenide n-type active layer 1 and dried. Next, a PM with excellent electron beam sensitivity is placed on top of the PMCI resist 2.
The M▲ resist 3 is applied and dried. Next, selective irradiation with an electron beam is performed to form a submicron gate pattern on the PMM▲ resist 3 by development. In FIG. 2b, the PMGI resist 2 is selectively developed using the gate pattern formed on the PMM▲ resist 3 as a mask to form a gate pattern. As shown in FIG. 2C, a recess-shaped opening is formed in the n-type active layer 1 by wet etching using the gate pattern of PM (rI resist 2 as a mask). In FIG. 2D, a gate metal 6 is deposited on the entire surface. In FIG. 2 6, PMfd resist 2 and PMM
Dissolve A resist 3 using an organic stripper and remove PM.
M▲The gate metal 6 on the resist 3 is removed together and the gate metal 6 is selectively left only in the opening of the n-type active layer 1 to form a Schottky gate.

発明が解決しようとする課題 しかしながら、上記のような構戒では第2図eのように
n型活性層1の開口部に形成されたゲートメタル6は、
単純な台形となう、台形の断面積はゲートメタル6の蒸
着量とPMM▲レジスト3のゲートパターン寸法で規定
されてし1うためにゲートパターンを微細化するに従っ
て台形の断面積が小さくなうゲートメタル5の電気抵抗
が増大するといった問題を有していた。
Problems to be Solved by the Invention However, in the above structure, the gate metal 6 formed in the opening of the n-type active layer 1 as shown in FIG.
The cross-sectional area of the trapezoid, which is a simple trapezoid, is determined by the amount of deposited gate metal 6 and the gate pattern dimensions of the PMM▲ resist 3, so as the gate pattern is made finer, the cross-sectional area of the trapezoid becomes smaller. However, there was a problem in that the electrical resistance of the gate metal 5 increased.

本発明は上記欠点に鑑み、n型活性層1の開口部に形威
されたゲートメタル5の断面形状をマッシュルーム型に
してゲートメタル6の電気抵抗の低減を図ることができ
る半導体装置の製造方法を提供するものである。
In view of the above drawbacks, the present invention provides a method for manufacturing a semiconductor device in which the cross-sectional shape of the gate metal 5 formed in the opening of the n-type active layer 1 is made into a mushroom shape, thereby reducing the electrical resistance of the gate metal 6. It provides:

課題を解決するための手段 上記問題点を解決するために、本発明の半導体装置の製
造方法は、n型活性層の上に第1の有機系薄膜を形成す
る工程と、第1の有機系薄膜の上に第2の有機系薄膜を
形成する工程と、第2の有機系薄膜の上に第3の有機系
薄膜を形成する工程と、第3の有機系薄膜に第1の開口
部を形成する工程と、第2の有機系薄膜に第1の開口部
よう小さい第2の開口部を形成する工程と、第1の有機
系薄膜に第2の開口部をマスクとして第3の開口部を形
成する工程と、第3の開口部をマスクとしてn型活性層
に第4の開口部を形成する工程と、金属を全面蒸着した
のち、第1,第2,第3の有機系薄膜を有機溶剤に溶解
して第3の有機系薄膜上の金属膜をいっしょに除去して
第4の開口部のみにマッシュルーム型の金属膜を形成す
る工程とから構或されている。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing a semiconductor device of the present invention includes a step of forming a first organic thin film on an n-type active layer, and a step of forming a first organic thin film on an n-type active layer. forming a second organic thin film on the thin film; forming a third organic thin film on the second organic thin film; and forming a first opening in the third organic thin film. forming a second opening as small as the first opening in the second organic thin film; forming a third opening in the first organic thin film using the second opening as a mask; a step of forming a fourth opening in the n-type active layer using the third opening as a mask, and a step of depositing the metal on the entire surface, and then forming the first, second, and third organic thin films. The process includes a step of dissolving the metal film in an organic solvent and removing the metal film on the third organic thin film together to form a mushroom-shaped metal film only in the fourth opening.

作用 との構戒によって、n型活性層の開口部に断面積を制御
して大きなマッシュルーム型のゲートメタルを形成する
ことができるために電気抵抗を大幅に低減させることが
できる。
By controlling the cross-sectional area of the opening of the n-type active layer and controlling the action, a large mushroom-shaped gate metal can be formed, so that the electrical resistance can be significantly reduced.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例にふ・ける化合物半導体装置
のシヲットキーゲート形成工程を示したものである。第
1図乙において、1はガリウムヒ素n型活性層である。
FIG. 1 shows a step of forming a Schottky gate in a compound semiconductor device according to an embodiment of the present invention. In FIG. 1B, 1 is a gallium arsenide n-type active layer.

2はn型活性層1と密着性が優れており電子ビームに対
して弱い感度をもつPMGIレジストである。3は電子
ビームに対して強い感度をもちサブミクロンパターンの
形成に優れたPMM人レジストである。4は紫外線に対
して感度をもつフォトレジストである。第1図6におい
て、5はショットキーゲートを形成するためのゲートメ
タルである。
2 is a PMGI resist which has excellent adhesion to the n-type active layer 1 and is weakly sensitive to electron beams. No. 3 is a PMM resist that has strong sensitivity to electron beams and is excellent in forming submicron patterns. 4 is a photoresist sensitive to ultraviolet light. In FIG. 1, 5 is a gate metal for forming a Schottky gate.

以上のように構或された化合物半導体装置のショットキ
ーゲート形成工程について以下その動作を説明する。
The operation of the Schottky gate forming process of the compound semiconductor device constructed as described above will be described below.

第1図aにおいて、ガリウムヒ素n型活性層1の上に密
着性の優れたPMCIレジスト2を塗布乾燥する。次に
、PMGエレジスト2の上に電子ビームに対して感度の
優れ九PMM▲レジスト3を塗布乾燥する。さらに、P
MM▲レジスト3の上に紫外線に対して感度をもつフォ
トレジスト4を塗布乾燥する。次に紫外線の選択露光と
現像によってフォトレジスト4にアンダーカット形状の
ゲートパターンを寸法制御して形成する。第1図bにか
いて、フォトレジスト4のゲートパターンの内側に電子
ビームの選択照射を行ってPMM▲レジスト3に7ォト
レジスト4のゲートパターンようも小さいサブミクロン
のゲートパターンヲ現像によって形成する。第1図Cに
おいて、PMM▲レジスト3のゲートパターンをマスク
としてPMDIレジスト2を選択現像によって寸法制御
してゲートパターンを形成する。第1図dにおいて, 
PMCIレジスト2のゲートパターンをマスクとしてウ
エットエッチングを行ってn型活性層1にリセス形状の
開口部を形成する。第1図6において、ゲートメタル5
を全面゛蒸着してn型活性層1の開口部上とPMM人レ
ジスト♀上およびフォトレジスト4上に金属膜を形成す
る。第1図fにおいて、PMGIレジスト2とPMM▲
レジスト3およびフォトレジスト4を有機系はく離液に
溶解してPMM▲レジスト3上およびフォトレジスト4
上のゲートメタル5を同時に除去してn型活性層1の開
口部上のみにマッシュルーム型のゲートメタル5を形成
する。
In FIG. 1a, a PMCI resist 2 with excellent adhesion is applied and dried on a gallium arsenide n-type active layer 1. Next, a 9PMM▲ resist 3, which is highly sensitive to electron beams, is coated on the PMG electroresist 2 and dried. Furthermore, P
MM▲A photoresist 4 sensitive to ultraviolet rays is coated on the resist 3 and dried. Next, an undercut-shaped gate pattern is formed on the photoresist 4 by selective exposure to ultraviolet rays and development with controlled dimensions. As shown in FIG. 1B, a submicron gate pattern, which is as small as the gate pattern of the photoresist 4, is formed in the PMM▲ resist 3 by selective irradiation of an electron beam onto the inside of the gate pattern of the photoresist 4 by development. In FIG. 1C, using the gate pattern of the PMM▲ resist 3 as a mask, the dimensions of the PMDI resist 2 are controlled by selective development to form a gate pattern. In Figure 1d,
Wet etching is performed using the gate pattern of the PMCI resist 2 as a mask to form a recess-shaped opening in the n-type active layer 1. In FIG. 16, gate metal 5
A metal film is formed on the opening of the n-type active layer 1, on the PMM resist ♦, and on the photoresist 4 by evaporating the metal film over the entire surface. In Fig. 1 f, PMGI resist 2 and PMM▲
Resist 3 and photoresist 4 are dissolved in an organic stripping liquid to form PMM▲ on resist 3 and photoresist 4.
The upper gate metal 5 is removed at the same time, and a mushroom-shaped gate metal 5 is formed only over the opening of the n-type active layer 1.

以上のように本夾施例によれば、第1図a,第1図b,
第1図Cのように、3層レジストの各層ごとに寸法制御
を独立して行うことによってゲートパターンを任意に制
御することができ、第1図fのように、n型活性層1の
開口部に形成されたマッシュルーム型のゲートメタル6
の断面積を制御して大きくすることができるため電気抵
抗の低減を図ることができる。
As described above, according to this example, Fig. 1a, Fig. 1b,
As shown in FIG. 1C, the gate pattern can be arbitrarily controlled by independently controlling the dimensions of each layer of the three-layer resist, and as shown in FIG. Mushroom-shaped gate metal 6 formed on the part
Since the cross-sectional area can be controlled and increased, electrical resistance can be reduced.

なお、実施例ではガリウムヒ素n型活性層を用いたが活
性層はガリウムヒ素に限定されるものではなく化合物半
導体であれば何でもよい。例えばアルミニウムガリウム
ヒ素などが考えられる。1た、3層レジストの最上層レ
ジストとしてフォトレジストを用いたが、最上層レジス
トはフォトレジストに限定されるものではなく、アンダ
ーカット形状が得られるものなら何でもよい。
Although a gallium arsenide n-type active layer is used in the embodiment, the active layer is not limited to gallium arsenide, and may be any compound semiconductor. For example, aluminum gallium arsenide can be considered. First, although a photoresist was used as the uppermost resist layer of the three-layer resist, the uppermost resist layer is not limited to a photoresist, and any resist may be used as long as an undercut shape can be obtained.

発明の効果 以上のように本発明は、3層レジストの各層のゲートパ
ターンを制御して最上層のゲートパターンを中間層のゲ
ートパターンようも大きくすることによって、n型活性
層の開口部にゲート長はサブミクロンの1″1でゲート
の断面積だけを大きくシタマッシュルーム型のゲートメ
タルを形成することができ、これによってゲートメタル
の電気抵抗を任意に低減することができ、その実用的効
果は大なるものがある。
Effects of the Invention As described above, the present invention allows gate patterns to be formed in the openings of the n-type active layer by controlling the gate patterns of each layer of the three-layer resist and making the gate pattern of the top layer larger than the gate pattern of the intermediate layer. With a length of submicron 1"1, it is possible to form a mushroom-shaped gate metal with a large cross-sectional area of the gate. This allows the electrical resistance of the gate metal to be arbitrarily reduced, and its practical effects are as follows. There is something big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における化合物半導体装置の
ショットキーゲート形成工程図、第2図は従来の化合物
半導体装置のシッットキーゲート形成工程図である。 1・・・・・・ガリウムヒ素n型活性層、2・・・・・
・PMGIレジスト、3・・・・・・PMM▲レジスト
、4・・・・・・フォトレジスト、6・・・・・・ゲー
トメタル。
FIG. 1 is a process diagram for forming a Schottky gate in a compound semiconductor device according to an embodiment of the present invention, and FIG. 2 is a process diagram for forming a Schottky gate in a conventional compound semiconductor device. 1... Gallium arsenide n-type active layer, 2...
-PMGI resist, 3...PMM▲resist, 4...photoresist, 6...gate metal.

Claims (1)

【特許請求の範囲】[Claims] n型活性層の上に第1の有機系薄膜を形成する工程と、
前記第1の有機系薄膜の上に電子ビームに対して感度を
もつ第2の有機系薄膜を形成する工程と、前記第2の有
機系薄膜の上に光あるいは電子ビームに対して感度をも
つ第3の有機系薄膜を形成する工程と、選択露光あるい
は選択電子ビーム照射によって前記第3の有機系薄膜に
第1の開口部を形成する工程と、前記第1の開口部の内
側に電子ビーム照射を行って第2の有機系薄膜に第1の
開口部より小さい第2の開口部を形成する工程と、前記
第2の開口部をマスクとして前記第1の有機系薄膜に第
3の開口部を寸法制御して形成する工程と、前記第3の
開口部をマスクとして前記n型活性層に第4の開口部を
形成する工程と、前記第1、第2、第3、第4の開口部
に金属膜を形成する工程と、第1、第2、第3の有機系
薄膜を溶解することによって前記第3の有機系薄膜の上
の金属膜を除去する工程とからなる半導体装置の製造方
法。
forming a first organic thin film on the n-type active layer;
forming a second organic thin film sensitive to electron beams on the first organic thin film; and forming a second organic thin film sensitive to light or electron beams on the second organic thin film. a step of forming a third organic thin film; a step of forming a first opening in the third organic thin film by selective exposure or selective electron beam irradiation; forming a second opening smaller than the first opening in the second organic thin film by irradiation; and forming a third opening in the first organic thin film using the second opening as a mask. forming a fourth opening in the n-type active layer using the third opening as a mask; A semiconductor device comprising the steps of forming a metal film in the opening, and removing the metal film on the third organic thin film by dissolving the first, second, and third organic thin films. Production method.
JP1153423A 1989-06-15 1989-06-15 Method for manufacturing semiconductor device Expired - Fee Related JP2667250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153423A JP2667250B2 (en) 1989-06-15 1989-06-15 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153423A JP2667250B2 (en) 1989-06-15 1989-06-15 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0319244A true JPH0319244A (en) 1991-01-28
JP2667250B2 JP2667250B2 (en) 1997-10-27

Family

ID=15562185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153423A Expired - Fee Related JP2667250B2 (en) 1989-06-15 1989-06-15 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2667250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368135A (en) * 1991-06-14 1992-12-21 Mitsubishi Electric Corp Formation of t-shaped pattern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105326A (en) * 1979-02-07 1980-08-12 Matsushita Electronics Corp Manufacturing method of electrode of semiconductor device
JPS59119765A (en) * 1982-12-27 1984-07-11 Fujitsu Ltd Manufacture of field effect type semiconductor device
JPS60153124A (en) * 1984-01-20 1985-08-12 Matsushita Electric Ind Co Ltd Formation of coating film
JPS62299033A (en) * 1986-06-18 1987-12-26 Nec Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105326A (en) * 1979-02-07 1980-08-12 Matsushita Electronics Corp Manufacturing method of electrode of semiconductor device
JPS59119765A (en) * 1982-12-27 1984-07-11 Fujitsu Ltd Manufacture of field effect type semiconductor device
JPS60153124A (en) * 1984-01-20 1985-08-12 Matsushita Electric Ind Co Ltd Formation of coating film
JPS62299033A (en) * 1986-06-18 1987-12-26 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368135A (en) * 1991-06-14 1992-12-21 Mitsubishi Electric Corp Formation of t-shaped pattern

Also Published As

Publication number Publication date
JP2667250B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US4599790A (en) Process for forming a T-shaped gate structure
KR0130963B1 (en) Method for manufacturing field effect transistor
EP0801418B1 (en) Method for forming a T-shaped gate electrode in a semi-conductor device, and the T-shaped gate electrode
JP4015756B2 (en) Manufacturing method of semiconductor device
US20080254632A1 (en) Method for forming a semiconductor structure having nanometer line-width
JP3119957B2 (en) Method for manufacturing semiconductor device
US20090075463A1 (en) Method of fabricating t-gate
US7141464B2 (en) Method of fabricating T-type gate
JPH0319244A (en) Manufacture of semiconductor device
JPH0260216B2 (en)
EP0332680B1 (en) Process of forming a t-gate metal structure on a substrate
JP2664736B2 (en) Method for forming electrode for semiconductor device
KR100564746B1 (en) Method for fabricating T gate in a compound semiconductor device
KR100521700B1 (en) Method for fabricating T-gate in semiconductor device
JPH0281441A (en) Manufacture of semiconductor device
JPS61181132A (en) Formation of patterned layer
JPH0265139A (en) Method of forming electrode for semiconductor device
JPH04291733A (en) Gaas device and forming method for t-shaped gate electorode
JPH045834A (en) Manufacture of semiconductor device
JPH0684950A (en) Manufacture of field effect transistor
JPH0461235A (en) Manufacture of compound semiconductor junction fet
JPS61245581A (en) Manufacture of semiconductor device
JPH04144242A (en) Manufacture of semiconductor device
JPH08162477A (en) Manufacture of semiconductor device
JP2009198587A (en) Method for forming resist pattern and method for forming metal pattern using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees