JPS59119765A - Manufacture of field effect type semiconductor device - Google Patents

Manufacture of field effect type semiconductor device

Info

Publication number
JPS59119765A
JPS59119765A JP22660282A JP22660282A JPS59119765A JP S59119765 A JPS59119765 A JP S59119765A JP 22660282 A JP22660282 A JP 22660282A JP 22660282 A JP22660282 A JP 22660282A JP S59119765 A JPS59119765 A JP S59119765A
Authority
JP
Japan
Prior art keywords
recess
window
film
active layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22660282A
Other languages
Japanese (ja)
Other versions
JPH0472381B2 (en
Inventor
Kinshiro Kosemura
小瀬村 欣司郎
Yoshimi Yamashita
良美 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22660282A priority Critical patent/JPS59119765A/en
Publication of JPS59119765A publication Critical patent/JPS59119765A/en
Publication of JPH0472381B2 publication Critical patent/JPH0472381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8128Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate with recessed gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a GaAs Schottky gate FET for ultrasonic jfrequency wave by a method wherein a recess is formed in an active layer by etching through a window of an insulation film, and a gate electrode is adhered on the insulation film at the same time with the recess. CONSTITUTION:A non-doped buffer layer 12 and the active layer 13 are superposed on a semi-insulation GaAs substrate 11, thus forming a source and a drain electrode of AuGe 14 and 15. They are covered with an SiO2 film 16, a resist mask 17 having a window of the width of a gate length is applied, and anisotropic etching is performed, resulting in window opening 19 through the film 16. The mask 17 is removed, a resist 20 having a window 21 wider than the window 19 by corresponding to the window 19, and the recess 22 of a fixed depth and eaves under the film 16 are formed by etching with the mixed solution of HF and H2O2. Next, Al is evaporated, thus forming an Al film 23 and a gate electrode 24, and the mask 20 is removed. By this constitution, the exfoliation of the gate electrode does not generate even when a gate length is shortened, the resistance between the source and the drain reduces by the thinned active layer, therefore a device of superhigh frequency and high performance can be obtained.

Description

【発明の詳細な説明】 (1)発明の分野 本発明は、電界効果型半導体装置に関し、特にガリウム
砒素(GaAs)化合物半導体のシ目ットキf−)電界
効果トランジスタ(SBFET)の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to a field effect semiconductor device, and particularly to a method for manufacturing a field effect transistor (SBFET) made of a gallium arsenide (GaAs) compound semiconductor. It is.

(2)技術の背景 GaAsショットキr−)電界効果トランジスタは高周
波特性が優れかつ高出力化が図れるので、研究開発が進
み実用化されつつある。特に、この電界効果トランジス
タの高性能化(高周波化、高出力化、高効率化)および
高信頼性化のために種々の構造および製造方法が提案さ
れている。高性能化のためには、f−ト長の短縮化およ
び寄生抵抗であるソース・ダート間抵抗(ソース直列抵
抗Ra )およびゲート抵抗(、Rg)の低減化などが
重要である。
(2) Background of the Technology GaAs Schottky r-) field effect transistors have excellent high frequency characteristics and can achieve high output, so research and development are progressing and they are being put into practical use. In particular, various structures and manufacturing methods have been proposed to improve the performance (higher frequency, higher output, higher efficiency) and reliability of this field effect transistor. In order to improve the performance, it is important to shorten the f-t length and reduce the parasitic resistance between the source and the dart (source series resistance Ra) and the gate resistance (Rg).

(3)従来技術と問題点 GaAaショットキゲート電界効果トランジスタの高性
能化の方法としてダート電極部分でのリセス(凹所)構
造が提案されている。第1図に示すようにリセス4はG
aAs基板1上にエピタキシャル連続成長させたバッフ
ァ層2上の活性層3を選択エツチングすることによって
形成され、そのリセス深さはy−上電極5直下の能動膜
厚さが最適値となるように設定される。また、ダート長
を単に短かくするとダート抵抗(Rg)の増加を招くの
で、ダート電極厚さを増すことでダート抵抗の低減化を
図ることになる。そうするとダート電極5と活性層3と
の接触面積が減ってダート電極5の高さが高くなるわけ
で、例えば、洗浄工程においてダート電極5が剥離しや
すくなる。一般的には、微細加工に適した電子線リング
ラフィで第1図に示すように電子ビーム露光用レジスト
層6をマスクとしてエツチングによシリセス4を形成し
、次に金属蒸着膜7を全面に形成し、このときリセス4
にゲート電極5を形成する。そして、レジスト層6を除
去すると同時にその上の金属蒸着膜7も除去する(いわ
ゆるリフトオフ法である)。リセス4とダート電極5と
はセルファライン的に形成されかつレジスト層の形成が
1回で済むので製造工程的には有利である。しかしなが
ら、ポジ形レジストを電子ビーム露光するので、現像さ
れてできる窓(透孔)はあシみぞ曲形状になって、リセ
ス幅がダート電極幅よシ大きくなってしまう(第1図)
。そのために、リセス4によって薄くされた活性層3部
分がダート電極の両側にあって、この部分では活性層の
直列抵抗が太きいためにソース・ダート間抵抗(R8)
の低減化が図れない。
(3) Prior Art and Problems A recess (concave) structure in the dirt electrode portion has been proposed as a method for improving the performance of GaAa Schottky gate field effect transistors. As shown in Figure 1, the recess 4 is
It is formed by selectively etching the active layer 3 on the buffer layer 2 that has been continuously grown epitaxially on the aAs substrate 1, and the recess depth is set so that the thickness of the active film directly under the y-upper electrode 5 is the optimum value. Set. Further, simply shortening the dart length causes an increase in dart resistance (Rg), so increasing the dart electrode thickness aims to reduce the dart resistance. In this case, the contact area between the dirt electrode 5 and the active layer 3 decreases, and the height of the dirt electrode 5 increases, making it easier for the dirt electrode 5 to peel off during a cleaning process, for example. Generally, a series 4 is formed by etching using electron beam phosphorography suitable for microfabrication using a resist layer 6 for electron beam exposure as a mask, as shown in FIG. form, and at this time recess 4
A gate electrode 5 is formed thereon. Then, at the same time as removing the resist layer 6, the metal vapor deposited film 7 thereon is also removed (this is a so-called lift-off method). The recess 4 and the dirt electrode 5 are formed in a self-aligned manner, and the resist layer only needs to be formed once, which is advantageous in terms of the manufacturing process. However, since the positive resist is exposed to electron beams, the developed windows (holes) have a curved groove shape, and the recess width is larger than the dart electrode width (Figure 1).
. Therefore, the active layer 3 parts thinned by the recess 4 are on both sides of the dart electrode, and the series resistance of the active layer is large in this part, so the source-to-dart resistance (R8)
cannot be reduced.

(4)発明の目的 本発明の目的は、リセス構造のGaAsショットキダー
ト電界効果トランジスタにおいてダート長を短かくして
もダート電極の剥離が生ぜず、またリセスによって薄く
された活性層でのソース・ドレイン間抵抗の低減化を図
シ、超高周波で高性能動作するGaAsショットキゲー
ト電界効果トランジスタの半導体装置の製造方法を提供
することである。
(4) Object of the Invention The object of the present invention is to prevent peeling of the dart electrode even if the dart length is shortened in a GaAs Schottky dart field effect transistor with a recess structure, and to prevent separation of the dart electrode from occurring between the source and drain in the active layer thinned by the recess. It is an object of the present invention to provide a method for manufacturing a semiconductor device of a GaAs Schottky gate field effect transistor that reduces resistance and operates with high performance at ultra-high frequencies.

(5)発明の構成 本発明の目的は、ソース及びドレイン電極が形成された
半導体活性層上に、第1の絶縁膜と第1の絶縁膜とはエ
ッチャントが異なる第2の絶縁層とを順次積層し、該第
2の絶縁層のダート電極を対応する領域に開口を形成し
、次いで前記第2の絶縁層をマスクとして前記第1の絶
縁膜を除去して前記第1の絶縁膜に開口を形成し、更に
前記第1の絶縁膜をマスクとして前記半導体活性層を所
定の深さまでエツチング除去してリセスを形成した後、
該リセス及び該リセス周辺の第1の絶縁膜上にダート電
極となる金属を被着する工程を含んでなることを特徴と
する半導体装置の製造方法によって達成される。
(5) Structure of the Invention An object of the present invention is to sequentially form a first insulating film and a second insulating layer using a different etchant from the first insulating film on a semiconductor active layer in which source and drain electrodes are formed. forming an opening in a region corresponding to the dart electrode of the second insulating layer, and then removing the first insulating film using the second insulating layer as a mask to form an opening in the first insulating film. and further etching and removing the semiconductor active layer to a predetermined depth using the first insulating film as a mask to form a recess.
This is achieved by a method for manufacturing a semiconductor device characterized by including the step of depositing metal to be a dart electrode on the recess and the first insulating film around the recess.

本発明の製造方法によると、絶縁膜に設けた窓を通して
のエツチングによりてリセスが形成され。
According to the manufacturing method of the present invention, the recess is formed by etching through the window provided in the insulating film.

ダート電極が真空蒸着法又はスノやツタリング法で窓を
通してリセス上に同時に絶縁膜上に形成した導体層から
作られることになる。
A dart electrode is made from a conductor layer formed simultaneously on the insulating film through the window and on the recess by a vacuum evaporation method or a slatting method.

(6)発明の実施態様 以下、添付図面を参照して本発明の実施態様例によって
本発明の詳細な説明する。
(6) Embodiments of the invention Hereinafter, the present invention will be described in detail by way of embodiments of the invention with reference to the accompanying drawings.

第2図に示すように、半絶縁性GaAs基板11上に気
相又は液相エピタキシ1ル連続成長法でノンドーグのバ
ッファ層12(厚さ:3〜5μm)そして活性層13(
能動層、厚さ: 0.1〜0.5 fitn )を形成
する。なお、この活性層の不純物濃度は1〜3×10 
個/σ3である。次に、AuGe(Ge :12wt%
)およびAuの連続蒸着膜をフォトエツチング法又はリ
フトオフ法で所定パターン形状にして活性層3上にソー
ス電極14およびドレイン電極15を形成する。約45
0℃のアニール熱処理によってこれら電極14および1
5をオーミックコンタクト(オーム性接触)にする。
As shown in FIG. 2, a non-doped buffer layer 12 (thickness: 3 to 5 μm) and an active layer 13 (
Active layer, thickness: 0.1 to 0.5 fitn) is formed. Note that the impurity concentration of this active layer is 1 to 3×10
number/σ3. Next, AuGe (Ge: 12wt%
) and Au are formed into a predetermined pattern by photoetching or lift-off to form a source electrode 14 and a drain electrode 15 on the active layer 3. Approximately 45
These electrodes 14 and 1 are formed by annealing heat treatment at 0°C.
Make 5 an ohmic contact.

次に、第3図に示すように、絶縁膜16(厚さ二0.1
〜0.211m )をスパッタ法、減圧気相成長法(C
VD法)などによって全面に形成する。このとき、絶縁
膜16は二酸化硅素(StO2)で構成することにする
。この絶縁膜16上にレジスト層17を形成し、電子ビ
ーム露光にょシ形成すべきダート電極ノJ?ターンのあ
シみぞ曲形状の孔18を形成する@このレジスト層17
には市販の電子ビーム露光用ポジレジストを用い、孔1
8の上面側での幅をダート電極の幅(すなわち、ダート
長)に相当する0、2〜0.5庵とする。
Next, as shown in FIG.
~0.211m) by sputtering method, reduced pressure vapor phase growth method (C
It is formed on the entire surface by a VD method (VD method) or the like. At this time, the insulating film 16 is made of silicon dioxide (StO2). A resist layer 17 is formed on this insulating film 16, and dirt electrodes to be formed are exposed to electron beams. This resist layer 17 forms holes 18 in the shape of turn grooves.
A commercially available positive resist for electron beam exposure was used for hole 1.
The width on the upper surface side of 8 is set to 0.2 to 0.5 mm, which corresponds to the width of the dart electrode (that is, the dart length).

次に、このレジスト層17をマスクとして二酸化硅素か
らなる絶縁膜16をCHF、ガスを使用したドライエツ
チング法によって異方性的に選択エツチングして窓19
を開ける(第4図)。この窓の幅は0.2〜0.!5#
sとなる。そして、レジスト層17を除去する。
Next, using this resist layer 17 as a mask, the insulating film 16 made of silicon dioxide is selectively etched anisotropically by a dry etching method using CHF gas to form the window 19.
Open it (Figure 4). The width of this window is 0.2~0. ! 5#
It becomes s. Then, the resist layer 17 is removed.

第5図に示すように、別のレジスト層2oをレジスト層
17と同じポジレジストで形成し、電子ビーム露光によ
シ、該レジスト層2oに窓19に対応した孔21を形成
する。このとき、この孔21の上面側での幅を0.5〜
1.0μmとする。即ち窓19よシも幅の広い孔を形成
する。
As shown in FIG. 5, another resist layer 2o is formed of the same positive resist as the resist layer 17, and holes 21 corresponding to the windows 19 are formed in the resist layer 2o by electron beam exposure. At this time, the width on the upper surface side of this hole 21 is set to 0.5~
It is set to 1.0 μm. That is, the window 19 also forms a wide hole.

レジスト層20および絶縁膜16をマスクとして活性層
13を弗酸・過酸化水素混合水溶液でエツチングしてリ
セス22を形成する(第6図)。
Using the resist layer 20 and the insulating film 16 as a mask, the active layer 13 is etched with a mixed aqueous solution of hydrofluoric acid and hydrogen peroxide to form a recess 22 (FIG. 6).

このとき、リセス22の深さが電界効果トランジスタの
設定特性から決められる値となるようにする。絶縁膜1
6の下で窓19の付近の活性層13もアンダーカットと
して第6図のようにエツチングされる。
At this time, the depth of the recess 22 is set to a value determined from the set characteristics of the field effect transistor. Insulating film 1
The active layer 13 near the window 19 under the active layer 6 is also etched as an undercut as shown in FIG.

次に、GaAs基板11に対してほぼ垂直な方向からシ
ョットキバリア特性のダート電極を構成する金属(アル
ミニウム)を蒸着法又はスパッタ法で全面に飛着させて
、レジスト層20上に金属膜23を同時にレジスト層2
0の孔21内にゲート電極24を形成する(第7図)。
Next, a metal (aluminum) constituting a dirt electrode with Schottky barrier properties is deposited on the entire surface of the GaAs substrate 11 in a direction substantially perpendicular to it by vapor deposition or sputtering to form a metal film 23 on the resist layer 20. At the same time resist layer 2
A gate electrode 24 is formed in the hole 21 (FIG. 7).

レジスト層20を除去することによってその上の金属膜
23をも除去して、第8図に示すようにGaAsショッ
トキゲート電界効果トランジスタが得られる。このトラ
ンジスタにおいて、ダート電極24は絶縁膜16に設け
られた窓16を通して活性層13のリセス(凹所)内に
まで伸びており、r−ト長が窓19(第6図)によって
規定されている。また、リセス22(第6図)の形成に
おいても窓19がリセス22の幅を規定されているので
、ダート電極24はリセス22のほぼ全体(アンダーカ
ット部分を除いて)を埋めることになシ、したがって、
従来の電界効果トランジスタで問題となったリセスによ
って薄くなった活性層部分がないためにそれだけソース
・ダート間抵抗を下げることができる。さらに、ダート
電極24は絶縁膜16の上にも載っているので、ダート
電極24の下面の付着面積が大きくなシ剥離しにくくな
る。
By removing the resist layer 20, the metal film 23 thereon is also removed to obtain a GaAs Schottky gate field effect transistor as shown in FIG. In this transistor, the dart electrode 24 extends into the recess (recess) of the active layer 13 through a window 16 provided in the insulating film 16, and the r-t length is defined by the window 19 (FIG. 6). There is. Furthermore, in the formation of the recess 22 (FIG. 6), since the width of the recess 22 is defined by the window 19, the dirt electrode 24 is expected to fill almost the entire recess 22 (excluding the undercut portion). ,therefore,
Since there is no active layer thinned by recesses, which is a problem with conventional field effect transistors, the source-to-dart resistance can be reduced accordingly. Further, since the dirt electrode 24 is also placed on the insulating film 16, the dirt electrode 24 has a large adhesion area on the lower surface and is difficult to peel off.

しかも、第8図から明らかなようにダート電極24の体
積を従来の場合よシも大きくすることができるのでダー
ト抵抗が小さくなる。
Moreover, as is clear from FIG. 8, the volume of the dart electrode 24 can be made larger than in the conventional case, so that the dart resistance is reduced.

上述した実施態様例ではダート電極の形成をリフトオフ
法で行なったが、フォトエツチング法でもダート電極を
形成することができる。すなわち、絶縁膜16に窓19
を形成した(第4図)後で、この絶縁膜16をマスクと
してリセス22を選択エツチング形成し、そして金属膜
を蒸着法又はス・中ツタ法で全面に形成してからこの金
属膜をフォトエツチング法で選択的にエツチングすれば
ダート電極24(第8図)が得られる。
In the embodiments described above, the dirt electrodes were formed by the lift-off method, but the dirt electrodes can also be formed by the photoetching method. That is, a window 19 is formed in the insulating film 16.
(FIG. 4), a recess 22 is formed by selective etching using this insulating film 16 as a mask, and a metal film is formed on the entire surface by a vapor deposition method or a sprinkling method. By selectively etching using an etching method, a dart electrode 24 (FIG. 8) is obtained.

(7)発明の効果 本発明の製造方法に従って製造したGaAsショットキ
ゲート電界効果トランジスタは特に小信号用(低雑音用
)のトランジスタとして使用でき、また製造方法として
同一導電型のへテロ接合を有する高移動度トランジスタ
、例えば、HFIVITにも適用できる。
(7) Effects of the Invention The GaAs Schottky gate field effect transistor manufactured according to the manufacturing method of the present invention can be used especially as a small signal (low noise) transistor, and the manufacturing method can be used to It is also applicable to mobility transistors, such as HFIVIT.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電界効果型半導体装置の製造工程の一部
を示した半導体装置の概略断面図でアシ、第2図ないし
第8図は、本発明に係る電界効果型半導体装置の製造方
法を説明する製造工程での電界効果型半導体装置の概略
断面図である。 1・・・GaAs基板、3・・・活性層、4・・・リセ
ス(凹所)、5・・・ダート°電極、11・・・G a
A I!1基板、13・・・活性層、14・・・ソース
電極、15・・・ドレイン電極、16・・・絶縁膜、1
7・・・レジスト層、19・・・窓、20・・・レジス
ト層、23・・・金属膜、24・・・ダート電極=特許
出願人 富士通株式会社 特許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士内田幸男 弁理士 山 口 昭 之
FIG. 1 is a schematic cross-sectional view of a semiconductor device showing a part of the manufacturing process of a conventional field effect semiconductor device, and FIGS. 2 to 8 show a method for manufacturing a field effect semiconductor device according to the present invention. FIG. 2 is a schematic cross-sectional view of a field-effect semiconductor device in a manufacturing process for explaining. DESCRIPTION OF SYMBOLS 1... GaAs substrate, 3... Active layer, 4... Recess (concave), 5... Dart electrode, 11... Ga
AI! 1 substrate, 13... active layer, 14... source electrode, 15... drain electrode, 16... insulating film, 1
7...Resist layer, 19...Window, 20...Resist layer, 23...Metal film, 24...Dart electrode = Patent applicant Fujitsu Limited Patent application agent Akira Aoki Kazuyuki Shinishidate Patent Attorney Yukio Uchida Patent Attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1、 ソース及びドレイン電極が形成された半導体活性
層上に、第1の絶縁膜と第1の絶縁膜とはエッチャント
が異なる第2の絶縁層とを順次積層し、該第2の絶縁層
のダート電極を対応する領域に開口を形成し、次いで前
記第2の絶縁層をマスクとして前記第1の絶縁膜な除去
して前記第1の絶縁膜に開口を形成し、更に前記第1の
絶縁膜をマスクとして前記半導体活性層を所定の深さま
でエツチング除去してリセスを形成した後、該リセス及
び該リセス周辺の第1の絶縁膜上にダート電極となる金
属を被着する工程を含んでなることを特徴とする半導体
装置の製造方法。
1. A first insulating film and a second insulating layer having a different etchant from the first insulating film are sequentially laminated on the semiconductor active layer in which the source and drain electrodes are formed, and the second insulating layer is forming an opening in a region corresponding to the dirt electrode, then removing the first insulating film using the second insulating layer as a mask to form an opening in the first insulating film; The semiconductor active layer is etched away to a predetermined depth using the film as a mask to form a recess, and then a metal to be a dirt electrode is deposited on the recess and the first insulating film around the recess. A method for manufacturing a semiconductor device, characterized in that:
JP22660282A 1982-12-27 1982-12-27 Manufacture of field effect type semiconductor device Granted JPS59119765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22660282A JPS59119765A (en) 1982-12-27 1982-12-27 Manufacture of field effect type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22660282A JPS59119765A (en) 1982-12-27 1982-12-27 Manufacture of field effect type semiconductor device

Publications (2)

Publication Number Publication Date
JPS59119765A true JPS59119765A (en) 1984-07-11
JPH0472381B2 JPH0472381B2 (en) 1992-11-18

Family

ID=16847763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22660282A Granted JPS59119765A (en) 1982-12-27 1982-12-27 Manufacture of field effect type semiconductor device

Country Status (1)

Country Link
JP (1) JPS59119765A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500946A (en) * 1986-10-08 1989-03-30 ヒユーズ・エアクラフト・カンパニー T-gate electrode for field effect transistor and field effect transistor forming it
JPH01274477A (en) * 1988-04-26 1989-11-02 Fujitsu Ltd Manufacture of semiconductor device
JPH0265141A (en) * 1988-08-30 1990-03-05 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH02299245A (en) * 1989-05-15 1990-12-11 Rohm Co Ltd Manufacture of field-effect transistor
JPH0319244A (en) * 1989-06-15 1991-01-28 Matsushita Electron Corp Manufacture of semiconductor device
JPH05211171A (en) * 1990-03-12 1993-08-20 Electron & Telecommun Res Inst Manufacture of gallium arsenide semiconductor element
JPH0897232A (en) * 1994-09-29 1996-04-12 Nec Corp Manufacture of semiconductor device
JP2003100776A (en) * 2001-09-21 2003-04-04 Hitachi Cable Ltd Compound semiconductor wafer and field-effect transistor using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194373A (en) * 1982-05-10 1983-11-12 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194373A (en) * 1982-05-10 1983-11-12 Nec Corp Manufacture of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500946A (en) * 1986-10-08 1989-03-30 ヒユーズ・エアクラフト・カンパニー T-gate electrode for field effect transistor and field effect transistor forming it
JPH01274477A (en) * 1988-04-26 1989-11-02 Fujitsu Ltd Manufacture of semiconductor device
JPH0265141A (en) * 1988-08-30 1990-03-05 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH02299245A (en) * 1989-05-15 1990-12-11 Rohm Co Ltd Manufacture of field-effect transistor
JPH0319244A (en) * 1989-06-15 1991-01-28 Matsushita Electron Corp Manufacture of semiconductor device
JPH05211171A (en) * 1990-03-12 1993-08-20 Electron & Telecommun Res Inst Manufacture of gallium arsenide semiconductor element
JPH0897232A (en) * 1994-09-29 1996-04-12 Nec Corp Manufacture of semiconductor device
JP2003100776A (en) * 2001-09-21 2003-04-04 Hitachi Cable Ltd Compound semiconductor wafer and field-effect transistor using the same

Also Published As

Publication number Publication date
JPH0472381B2 (en) 1992-11-18

Similar Documents

Publication Publication Date Title
JPS59119765A (en) Manufacture of field effect type semiconductor device
JPH05121448A (en) Compound semiconductor device and its manufacture
JPH08306708A (en) Semiconductor device and its fabrication
JP3109590B2 (en) Method for manufacturing semiconductor device
JP3365380B2 (en) High frequency semiconductor device and manufacturing method thereof
JP2003059949A (en) Field effect transistor and production method therefor
JPH08274118A (en) Field-effect semiconductor device and its manufacture
JP2557432B2 (en) Field effect transistor
JP3075245B2 (en) Method for manufacturing compound semiconductor
JP3018662B2 (en) Method for manufacturing field effect transistor
JP3509166B2 (en) Method for manufacturing semiconductor device
JPS58159381A (en) Semiconductor device
JPS59113670A (en) Manufacture of field effect semiconductor device
JP3304595B2 (en) Method for manufacturing semiconductor device
JPS6165480A (en) Manufacture of semiconductor device
JPS6257257A (en) Manufacture of field effect type semiconductor device
JPS6167274A (en) Manufacture of semiconductor device
JPH07235666A (en) Semiconductor device and manufacture
JPS60198869A (en) Manufacture of semiconductor device
JPS62260370A (en) Field-effect transistor
JPS59224178A (en) Manufacture of field effect transistor
JPS5850434B2 (en) Method for manufacturing field effect transistors
JP2000183022A (en) Manufacture of compound semiconductor device
JPS60140877A (en) Manufacture of semiconductor device
JPS6194373A (en) Manufacture of field-effect transistor